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1-13. Find the state transition matrices @@ for the systems (a), (b), (e}, (), (),
and () in Problem 1-12.

1-14. For each of the following systems determine:
(i} If the system is conirollable.
(ii) 1If the system is observable.
(i) The block diagram or signal flow graph of the system.

@ %) = [g ;]xm + [‘;]u(r); HO) = 5,0,
(b) %() = [g ;] x0 + ] 0 50 = x0.

(¢) The coupled circuit in Problem 1-9 with M == 0, y{t) = [vc(t) ]

i[,,(f)
{d) The coupled circuit in Problem 1-9 with M = 05H,L; = 1.OH, L; =
0.5H, Ry = 2,08, R, = 1.082, C = 0.5F, and »{t) = ».().
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PO = xf0); & #0,i=10,1,2,3.
1-15. What are the requirements for the system
A; O 0 O by
X(f) = g ‘;2 Z g x() + g: u(e};
¢ 0 0 A by

wey = ley e ez eddx(r)

to be:

(i) Controllable?

(if) Observable?

Assume that 1;, 7 = 1, ..., 4 are real and distinct,

2

The Performance Measure

Having already considered the modeling of systems and the determination
of state and control constraints, we are now ready to discuss performance
measures used in control problems. Our objective is to provide physical
motivation for the selection of a performance measure,

Classical design techniques have been successfully applied to Lnear, time-
invariant, single-input single-output systems with zero initial conditions. Typical
performance criteria are system response to a step or ramp input—charac-
terized by rise time, settling time, peak overshoot, and steady-state accuracy
—and the frequency response of the system—characterized by gain and phase
margin, peak amplitude, and bandwidth. Classical techniques have proved
to be successful in many applications; however, we wish to consider systems
of a more general nature with performance objectives not readily described
in classical terms.

2.1 PERFORMANCE MEASURES FOR OPTIMAL
CONTROL PROBLEMS

The “optimal control problem™ is to find a control w* € U which causes
the system

x(7) = a(x(), u(®), 1) (2.1-1)
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30 Describing the System and Evaluating lts Perfarmance Sec. 2.1

to follow a trajectory x* € X that minimizes the performance measure
= @), 1) + [ 2@, (o), . 21-2)
ta

Let us now discuss some typical control problems to provide some physical
motivation for the selection of a performance measure.

Minimum-Time Problems

Problem; To transfer a system from an arbitrary initial state x(¢,) = %,
to a specified target set S in minimum time.
The performance measure to be minimized is

T=t, —t,

. 2.1-3
2 !dt, 21:3)

L]

with ¢, the first instant of time when x(r) and S intersect. The automobile
example discussed in Section 1.1 is a minimum-time problem. Other typical
examples are the interception of attacking aircraft and missiles, and the
slewing mode operation of a radar, or gun system.

Terminal Control Problems

Problem: To minimize the deviation of the final state of a system from its
desired value x(z,).
A possible performance measure is

J= é:l [x() — rt)]~ (2.1-4)

Since positive and negative deviations are equally undesirable, the error is
squared. Absolute values could also be used, but the quadratic form in Eq.
(2.1-4) is easier to handle mathematically. Using matrix notation, we have

J = [x(t,) — x(t,) FIx(t,) — x(ep)], 1(2.1-5)
or this can be written as
J = ||x(t) — xR P (2.1-52)
lix(z,) — x(z,) || is called the norm of the vector [x(z,) — r(t)}.

% T denotes the matrix transpose.
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To allow greater generality, we can insert a real symmetric positive
semi-definite n x » weighting matrix HY to obtain

J = [x(t;) — r(t ) TH[x(,) — ()] (2.1-6)
This quadratic form is also written

¥
4

Nominal flight path

Nominal flight path

Missile at time ¢

&)
Figure 2-1 A ballistic missile aimed toward the target §
t A real symmetric matrix H is positive semi-definite {or nonnegative definite) i for all

vectors z, 2THz = 0. In other words, there are some vectors for which Hz == 0 in which
case z7Hz = 0, and for all other z, 27Hz > 0.
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Jo=1x(ty) — x|k (2.1-62)

If H is the identity matrix,t (2.1-6) and (2.1-5} are identical.

Suppose that H is a diagonal matrix. The assumption that H is positive
semi-definite implies that all of the diagonal elements are nonnegative. By
adjusting the element values we can weight the relative importance of the
deviation of each of the states from their desired values. Thus, by increasing
h,} we attach more significance to deviation of x,(#,) from its desired value;
by making 4,; zero we indicate that the final value of x; is of no concern
whatsoever.

The elements of H should also be adjusted to normalize the numerical
values encountered. For example, consider the ballistic missile shown in Fig.
2-1. The position of the missile at time 7 is specified by the spherical coordi-
nates I(z), &(f), and @(¢). [ is the distance from the origin of the coordinate
system, and & and § are the elevation and azimuth angles. If L = 5000 miles
and [(t,) = L, an azimuth error at impact of 0.01 rad results in missing the
target § by 50 miles! If the performance measure is

T = by, [Kt;) — 500012 + by, [6G)]%, 2.1-7)

then we would select /,, == [50/0.01]2-A,, to weight equally deviations in
range and azimuth, Alternatively, the variables @ and / could be normalized,
in which case i, = h,,.

Minimurm-Control-Effort Problems

Problem: To transfer a system from an arbitrary initial state x(z,) = X,
to a specified target set S, with a minimum expenditure of control effort.

The meaning of the ferm “minimum control effort” depends upon the
particular physical application; therefore, the performance measure may
assume various forms. For example, consider a spacecraft on an interplane-
tary exploration—Ilet u(z) be the thrust of the rocket engine, and assume that
the magnitude of thrust is proportional to the rate of fuel consumption. In
order to minimize the total expenditure of fuel, the performance measure

t The identity matrix is

1000 0
0100 0
(20010 0
- 0000 ... 1

1 hy denotes the iith clement of M,
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J= f (u(r)| dt (2.1-8)

would be selected. If there are several controls, and the rate of expenditure
of control effort of the ith control is ¢, |u{t}}, i=1,...,m {c, is a con-
stant of proportionality), then minimizing :

7= [ﬁé B,1u(0) (] dt (2.1-82)

would minimize the control effort expended. The fs are nonnegative
weighting factors.

As another example, consider a voltage source driving a network con-
taining no energy storage elements. Let u(z) be the source voltage, and sup-
pose that the network is to be controlled with minimum source energy
dissipation. The source current is directly proportional to u(r) in this case,
so to minimize the energy dissipated, minimize the performance measure

7= uX(2) dt. (2.1-9)

For several control inputs the general form of performance measure corre-
sponding to (2.1-9) is

J f 7 [uT(O)Ru(z)] dt
y (2.1-9a)
= [l

where R is a real symmetric positive definitet weighting matrix. The elements
of R may be functions of time if it is desired to vary the weighting on con-
trol-effort expenditure during the interval [4,, #,].

Tracking Problemns
Problem: To maintain the system state x(¢) as close as possible to the

desired state x(¢} in the interval [z, 7/].
As a performance measure we select

7= ["l1x0) = @ lfew dr, (2.1-10)

1 A real symmetric matrix R Is positive definite if
TRz > 0
forallz 9.
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where Q) is a real symmetric #» X # matrix that is positive semi-definite
for all £ € [#,, t,]. The elements of the matrix Q are selected to weight the
relative importance of the different components of the state vector and to
normalize the numerical values of the deviations. For example, if Q is a con-
stant diagonal matrix and g;, is zero, this indicates that deviations of x, are
of nd’ concern. i

If the set of admissible controls is bounded, e.g., |u{f)| <1, i=1,
2, ..., m, then (2.1-10) is a reasonable performance rmeasure; however, if
the controls are not bounded, minimizing (2.1-10) results in controls with
impulses and their derivatives. To avoid placing bounds on the admissible
controls, or if control energy is to be conserved, we use the modified per-
formance measure

7= [ 1l1x®) — Ol + 11O o] . @1-11)

R(r) is a real symmetric positive definite m X m matrix for all 1 & {#, ¢/l
We shall see in Section 5.2 that if the plant is linear this performance measure
leads to an easily implemented optimal controller.

It may be especially important that the states be close to their desired
values at the final time. In this case, the performance measure

7= 1xt) —xe) U+ [ [1%0) — 1)l + 10 [
(2.1-12)

could be used. H is a real symmetric positive semi-definite # X » matrix.

Regulator Problems

A regulator problem is the special case of a tracking problem which re-
sults when the desired state values are zero (r(y) = 0 for all € {¢,, £,].

o

2.2 SELECTING A PERFORMANCE MEASURE

In selecting a performance measure the designer attempis to define a
mathematical expression which when minimized indicates that the system is
performing in the most desirable manner, Thus, choosing a performance
measure is a translation of the system’s physical requirements into mathe-
matical terms. In particular, suppose that two admissible control histories
which cause admissible state trajectories are specified and we are to select
the better one. To evaluate these controls, perform the test shown in Fig.
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) (D
PERFORMANCE | I~
T SYSTEM [ ) MEASURER >J

e} el

PERFORMANCE o
T SYSTEM [ MEASURER >3
{b)

Figure 2-2 Evaluating two specified control histories

(a)

2-2. First, apply the control u'®’ to the system and determine the value of the
performance measure J1?; then repeat this procedure with u'® applied to
obtain J 22, If J1 < J¥, then we designate u‘?’ as the better control; if J®
< J @ s better; if JU? = J™® the two controls are equally desirable.
An alternative test is to apply each control, record the state trajectories, and
then subjectively decide which trajectory is better.

If the performance measure truly reflects desired system performance,
the trajectory selected by the designer as being “more to his liking” should
yield the smaller value of J. If this is not the case, the performance measure
or the constraints should be modified.

Example 2.2-1. Figure 2-3 shows a manned spacecraft whose attitude is
to be controlled by a gas expulsion system. As a simplification, we shall

S\
= - a(r)

e . \

Reference axis

Figure 2-3 Attitude control of a spacecraft
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consider only the control of the pitch angle €(7). The differential equation
that describes the motion is

%
12, 100)] = 40, @21
where I is the angular moment of inertia and A(¢) is_the torque produced

by the gas jets. Selecting x;{r) = 8() and x,{r) = 6() as state variables,
and u(tf) & AT as the control gives the state equations

10,
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Figure 2-4(a) Position and velocity as functions of time

4 0 10
Q= [0 O])vaiax(o)ﬁ[o}
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() = x3(8)

2.2-2)
Z5(1) = ult). ¢

The primary objective of the control system is to maintain the angular
position near zero. This is to be accomplished with small acceleration,
As a performance measure we select

J = f: [g1:33(8) + g2x30) + Ru()] (2.2-3)

where g1, d22 = 0, and R > 0 are weighting factors. In Figs. 24, 2-5,
2-6, and 2-7 the optimal trajectories for g;; = 4.0, g22 =0, and several

u 0t

Figure 2-4(b) Acceleration as a function of time
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10.

-2,

i,

g,

—8.

Figure 2-5(a} Position and velocity as functions of time
4 0 10
Q [O G-J,R—— 1. %(0) = [0]

values of R are shown.T Increasing R places a heavier penalty on acceler-
ation and control energy expenditure. All of these trajectories are optimal,
each for a different performance measure. If we are most concerned
about reducing the angular displacement to zero quickly, then the tra-
jectory in Fig. 2-4 would be our choice. The astronauts, however, would
probably prefer the trajectory shown in Fig. 2-7 because of the much
smaller accelerations.

We must be very careful when interpreting the numerical value of the

+ These trajectories were obtained by using the techniques discussed in Sections 3.12
and 5.2,
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u*(:) I 3

Figure 2-5(b) Acceleration as a function of time

minimum performance measure. By multiplying every weighting factor in
the performance measure by a positive constant k, the value of the measure
would be k times its original value, but the optimal control and trajectory
would remain exactly the same. In fact, it may be possible to adjust the weight-
ing factors by different amounts and still retain the same optimal control
and trajectory.t ,

The physical interpretation of the value of the performance measure is
also a factor to be considered. The minimum value of a performance measure
such as elapsed time or consumed fuel has a definite physical significance;
however, for problems in which the performance measure is a weighted

+ See Chapter 8 of reference [S-2].
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Figure 2-6(a) Position and velocity as functions of time
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Figure 2-6(b) Acceleration as a function of time
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Figure 2-7(a) Position and velocity as functions of time
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Figure 2-7(b) Acceleration as a function of time
i
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combination of different physical quantities—as in the preceding spacecraft
example—the numerical value of the performance measure does not rep-
resent a physically meaningful quantity.

2.3 SELECTION OF A PERFORMANCE MEASURE:
THE CARRIER LANDING OF A JET AIRCRAFT

The following example, which is similar to a problem considered by
Merriam and Ellert [M-1}, illustrates the selection of a performance measure,
The problem is to design an automatic control system for landing a high-
speed jet airplane on the deck of an aircraft carrier.

The jet aircraft is shown in Fig. 2-8. The x direction is along the velocity
vector of the aircraft, and the y and z directions are as shown. & is the angle
of attack, @ is the pifch angle, and y is the glide path angle.

¥y
f
/
!

i
LIFT

Center of gravity

Horizontal

e m——

s
7 WEIGHT

Figure 2-8 Aircraft coordinates and angles

We shall make the following simplifying assumptions:

1. Lateral motion is ignored; only motion in the x-y plane is considered.

2. Random disturbances, such as wind gusts and carrier deck motion, are
neglected.

3. The nominal glide path angle  is small, so that cosy =~ 1 and siny
== y in radians (it will be shown that the nominal y is —0.0636 rad).

4. The velocity of the aireraft with respect to the nominal landing point
is maintained at a constant value of 160 mph (235 fi/sec) by an auto-
matic throttle control device.
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5. The longitudinal motion of the aircraft is controlled entirely by the

elevator deflection angle [J.(¢), shown in Fig. 2-9], which has been
trimmed to a nominal setting of 0° at the start of the automatic land-

ing phase,
_ 5_7\ / Horizontai tail surface
e

Figure 2-9 Elevator deflection angle

6. The aircraft dynamics are described by a set of differential equations
that have been linearized about the equilibrivm flight condition.

Since we desire to have readily available information concerning the
system states to generate the required control, the altitude above the flight
deck #, altitude rate £, pitch angle 8, and pitch rate @ are selected as the state
variables. % is measured by a radar altimeter, by a barometric rate meter,
¢ and § by gyros. If we define x, & A, x, 2 4, x, 2. 6, x,28,andu s d,
the state equations that result from the linearization of the aircraft motion
about the equilibrium flight condition are?

(0 = x.0)

(1) = 55,8 + ay3%5(2)

. (2.3-1)
#3(8) = x,(8)
X4(8) == @, %,(8) + dy5%(0) + auyx,(8) + boule),
where the ¢'s and b, are known constants. In matrix form
(1) = Ax{z) + bu(s); 2.3-2)
1 0 0 0
0 a, a,; 0 0
A == ; =3
60 0 1 b 0
0 ay a4 as, by,

Next, the desired behavior for the aircraft must be defined. The nominal
flight path is selected as a straight line which begins at an altitude of 450 ft
and at a range of 7,050 ft measured from the landing point on the carrier
deck. This results in 30 seconds’ being the nominal time required for the
terminal phase of the landing. The desired altitude trajectory 4, is shown
in Fig. 2-10. This selection for A, implies that the desired altitude rate

1 See [M-1].
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h, is as shown in Fig. 2-11. It is desired to maintain the attitude of the
aircraft at 5°. This is most important at touchdown because it is required
that the main landing gear touch before the nose or tail gear. Since 8,(f) = 5°
for ¢ € [0, 30], 8,(f) = O during this time interval, and the desired attitude
and attitude rate profiles are shown in Figs. 2-12 and 2-13. The desired atti-

Ba(0) ()
4

y=—3,65%=—0636 rad
Nominal glide path

450

0{¢ 30 N Time {sec)
—7,050 4] Range (ft)
Figure 2-16 Desired altitude history
h () (ft/sec)
F
4] 30 N Time {s8¢)
0]-7,050 {0 Range (ft)
|
i
|
i
~15 g
Figure 2-11 Desired rate of ascent history
84(2) (deg)
> ;
I
i
olo +.30 Time (sec)
—7,650 0 Range (ft)
Figure 2-12 Desired attitude profile
Qd(z‘) {degfsec)
0 I G 30 Time (sec)
| ~7,050 0 Range(ft)

Figure 2-13 Desired attitude rate profile
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tude and glide path angle profiles imply that the desired angle of attack
%, is 8.65° during the entire 30 sec interval,

It is assumed that large deviations of J, from the nominal 0° setting
are indicative of a suboptimal landing and should be avoided; therefore, the
desired value of &, is 0° throughout the terminal phase of landing.

The assumption is also made that there are Hmits on allowable departure
from nominal values during descent. If any of these limits are exceeded, a
wave-off is given, and the pilot takes control.

The iranslation of the performance requirements into a quantitative
measure is the next task. The performance measure is selected as the integral
of a sum of gquadratic terms in the state and control variables and some addi-
tional terms to account for quantities which are crucial at touchdown. The
index selected is

T = k[ (30) — RBO)]* + kAR — A, B0 + &,[0(30) — 8,30
+ [ @@h@ ~ h@T + a@li@) ~ AT

+ g(@[0() — 040 + q@)[0@) — 6.
+ 1 (D[8.7) — 8. (D]} dr,

where 7 is 2 dummy variable of integration. The £’s, ¢’s, and r,_ are weight-
ing factors that are specified to assign relative importance to each of the terms
in the performance measure and to account for differences in the relative
size of numerical values encountered. The ¢'s and r,;_ are written as time-
varying functions because deviations of some of the variables from nominal
values may be more critical during certain periods of time than others. For
example, rate of ascent errors are more critical over the flight deck than at
earlier instants, so g,(¢t) should increase as ¢ approaches 30 sec, The terms
outside of the integral are there to help ensure that the attitude, rate of
ascent, and aliitude are close to nominal at ¢ = 30 sec, Notice that the term
containing £(30) penalizes a landing that occurs too soon or too late.
There is no term in the measure containing the angle of attack & explicitly;
however, if the values for § and § are maintained “close” to their desired
values, then it is reasonable to expect that a will be satisfactory. Certainly a
term could be added containing the deviation of angle of attack from its
nominal value, but this would necessitate the selection of an additional
weighting factor, and it is generally desirable to keep the problem simple for
the initial solution. The desired, or nominal, aircraft trajectory is specified
by Figs. 2-10 through 2-13. Figure 2-10 gives h(¢) = 450 — 15¢ ft as the
desired altitude history, and the desired altitude at ¢ = 30 {the nominal time
touchdown occurs) is /,(30) = 0 ft. From Fig. 2-11 the desired altitude rate
history is —15 ft/sec throughout the interval [0, 30]; thus, A(f) = —15
ft/sec and A,(30) = —15 ftfsec. The desired aircraft attitude is +5° in the

(2.3-3)
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entire Janding interval; therefore, €,(¢) == 0.0873 rad, and 6,(30) == 0.0873
rad. From Fig. 2-13 we have @,(f) = 0 rad/sec as the nominal attitude rate,
and 8,(30) = 0 rad/sec. Substituting the desired values in (2.3-3) gives

I = k[RGB + kAB30) + 151 + k,[8(30) — 0.0873]
+ [ {alh) — 450 + 150] + @@ + 157

+ g()[8(z) - 0.0873]* + g()[6(r)]?
+ re (D[S )]} dr,

where @ is in radians, § in radians per second, % in feet, and % in feet per
second. In matrix form

(2.3-4)

J = [x(30) — x(30) FH[x(30) — x(30)]

30 2.3-5
+ f , {[x(x) — r@ Q@) x(2) — r(7)] + rs (v ()} d, (23-3)

where x{¢) is the state at time ¢, r(¢) is the desired or nominal value of the
state at time ¢, u(z) is the control, r;, is a positive function of time,

k 0 0 0O
Ha 0O %4 0 0 ,

0 0 Lk 0O

g 0 0 o

and

q(y 0 0 0

R 0 g:(t) 0 0
WE1s o 4w o
0 0 0 g

The designer must select functional relationships for g, ¢;, 44, g and
r;, and numerical values for k,, k;, and k,. In this example the deviation
from the desired trajectory is to be minimized; therefore, the ¢’s and ks
would assume only nonnegative values, and r,, would be positive for all
¢t & [0, 30]. This performance measure allows sufficient flexibility to satisfy
system requirements, and also leads to an optimal control law that is rela-
tively easy to implement. Reference [M-1] discusses implementation in more
detail and also shows trajectories that illustrate the effects of varying weighting
parameters in a performance measure.
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PROBLEMS

2-1. Refer to the chemical mixing process of Problem 1-6. The amount of dye
in tank 2, ».(7), is to be maintained as closely as possible to M ft* during
a one-day interval.
{a) What would you suggest as a performance measure to be minimized?
{b) Determine a set of physically realistic state and conirol constraints.

2-2. Repeat Problem 2-1 if the objective is to maximize the amount of dye in
tank 2 at the end of one day. It is specified that the total volume of dye that

enters tank 1 in the one-day period cannot be more than N ft3.

+

2-3. An unmanned roving vehicle has been proposed as part of the Mariner Mars
exploration series of space missions. The roving vehicle is designed to navigate
on the Martian surface and transmit television pictures and other scientific
data to earth. Suppose that the rover is to be driven by & dc motor supplied
from rechargeable storage batteries; a simplified model is shown in Fig. 2-P3.

I, = constant

i1}
i R,
+ Coefficient of
Rf L, viscous friction, 8
+ Voltage ;
b regulating | e(f) w/
T system vy / I
L V3 Q } '
Nt 8(ty 722227 N (1)

Figure 2-P3

The output of the voltage regulating system is the control signal eff). The
developed torgue is A(f) = K,i/{f), where K, is a known constant; 2.(¢) is the
load torque caused by hills on the Martian surface, The vehicle’s speed is to



