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The Calculus of Variations

A branch of mathematics that is extremely useful in solving optimization
problems is the calculus of variations, Queen Dido of Carthage was appar-
ently the first person to attack a problem that can readily be solved by using
variational calculus.t Dido, having been promised all of the land she could
enclose with a bull’s hide, cleverly cut the hide into many lengths and tied
the ends together. Having done this, her problem was to find the closed curve
_with a fixed perimeter that encloses the maximum area. We know that she
should have chosen a circle. The calculus of variations enables us to prove
this fact and, in addition, other resulis that are more useful, since real estate
transactions are performed somewhat differently today.

Altbough the history of the calculus of variations dates back to the ancient
Greeks, it was not until the seventeenth century in western Europe that
substantial progress was made. Sir Isaac Newton used variational principles
to determine the shape of a body moving in air that encounters the least
resistance. Another problem of historical interest is the brachistochrone
problem shown in Fig. 4-1, posed by Johano Bernoulli in 1696. Under the
influence of gravity, the bead slides along a frictionless wire with fixed end
points 4 and B, The problem is to find the shape of the wire that causes the
bead to move from 4 to B in minimum time. The solution, a cycloid lying
in the vertical plane, is credited to Johann and Jacob Bernoulli, Newton,
and I Hospital.

1 See [M-2].
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A

Bead

B

Figure 4-1 The brachistochrone problem

In Dido’s problem, and in the brachistochrone problem, curves are sought
which cause some criterion to assume extreme values, The connection with
the optimal control problem, wherein we seek a conirol function that mini-
mizes a performance measure, should be apparent.

41 FUNDAMENTAL CONCEPTS

In optimal control problems the objective is to determine a function that
" minimizes a specified functional-the performance measure. The analogous
problem in calculus is to determine a point that yields the minimum value
of a function. In this section we shall introduce some new concepts concern-
ing functionals by appealing to some familiar results from the theory of
functions.t

Functionals
To begin, let us review the definition of a function.

DEFINITION 4-1
A function fis a rule of correspondence that assigns to each element
q in a certain set & a unique element in a set . P is called the domain
of fand # is the range.

We shall be considering functions that assign a real number to each point
(or vector) in n-dimensional Euclidean space.}

Example 4.1-1. Suppose qy,¢;, . . .,d, are the coordinates of a point
in n-dimensional Buclidean space and

t Appropriate references for functions of real variables are [B-4] and [0-2]. For additional
reading on the calculus of variations see [G-1] and [E-1].

t It is assumed that the reader is familiar with the concept of a Euclidezan space. See
[Q-2], pp. 293-301 for a detailed exposition.
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f@=NFTaF - Fa. @11
The real number assigned by fis the distance of the point q from the origin.
The definition of a functional parallels that of a function.

DEFINITION 4-2

A functional J is a rule of correspondence that assigns to each func-
tion x in a certain class £ a unique real number. Q is called the
domain of the functional, and the set of real numbers associated
with the functions in § is called the range of the functional.

Ngtice that the domain of a functional is a class of functions; intuitively,
we might say that a functional is a “function of a function.”

Example 4.1-2. Suppose that x is a continucus function of ¢ defined in
the interval [t;, ] and :

_— ) = | ey d; @.1-2)

the real number assigned by the functional J is the area under the x(1)
curve,

Linearity of Functionals

Let us review the concept of linearity, which will be useful to us later,
by considering a function f of ¢, defined for q € .

DEFINITION 4-3

[fis a linear function of q if and only if it satisfies the principle of
homogeneity

fleg) = of (@) (4.1-3)

for all ¢ € & and for all real numbers & such that aq € 2, and
the principle of additivity

7@ + ¢¥) = £@) + /@) @.14)
for all ¢V, ¢¥, and ¢'V + ¢ in G.T

1 In our applications we shall be concerned only with functions of real variables, so «
and the components of q will be real numbers.
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DEFINITION 4-4

Example 4.1-3. If f{r) = 5¢ for all ¢, then ) .
Jis a linear functional of x if and only if it satisfies the principle of

flad) = o] (4.1-5a) homogeneity
and Jox) = a.J(x) (4.1-82)
af (6) = af5tl; {4.1-5b) for all x €  and for all real numbers « such that ax € £, and the
therefore, since F principle of addirivity
St} = afsi] (4.1-5¢) ‘. JE A x) = J(x ) 4 T(x?) (4.1-8b)

{1) {2 (i) {(2) 3
for ail ¢, the principle of homogeneity is satisfied. Now, let us test to see for all x*’, x**, and x*) +x* in Q.

if the property of additivity is satisfie Example 4.1-4. Consider the functional

S L @)Y = ST e p @] 4.1-62) .
J(x) = j x() d, (4.1-9)
and o ‘
where x is a continuous function of ¢ Let us see if this functional satisfies
1} (23} = 13 4- 2). wd . . e s
FQEO) 4 F®) =510 4 5, (4-1-6b) the principles of homogeneity and additivity.
thus, since Homogeneity:
S 1] = 500 £ 5 @160 | () =a [ 50 d, (4.1-102)
3 I
for all ¢, +22, the principle of additivity is satisfied. Since the principle j‘3 Jlotx) = | axls) di: R
of homogeneity and the principle of additivity are both satisfied, fis 2 : (@x) f to @ at; (4.1-106)
linear function. k
; therefi
WNow consider the function g; with g{¢) = 2/¢ for all ¢ > 0, then 3 erelore,
5 J{ox) = aJ(x) (4.1-10c)
g(f) = = (4.1-7a)
ot for all real & and for all x and ax in Q.
Additivity:
and
T @y — (10 (2} -
ag(t) = 06[%] (4.1-7b) T + x) L [xV@) + x@(]dr,  (41-11a)
7
J(x) = J' X d, 4.1-11b
Clearly, ) LEN® ( )
ir
J(x2y o= f x(y dr; (4.1-11c)
2 2 , ;
Z al2] (@.1-7c) ,
therefore,
for all e¢; therefore, the principle of homogeneity is not satisfied, and g )
is a nonlinear function, J) A X2y = J(x) 4 J(x2) (4.1-11d)

for all x7, x22, apd x{? 4 x) in §2.
Since additivity and homogeneity are both satisfied, the functional is
linear.

Next, we shall define a linear functional. Assume that x is a function
which is a member of some class §, and J is a functional of x; that is, to each
x in §, J assigns a unique real number.
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Now consider the functional
TG = j “ x20) dt, (4.1-12)
fa

where x is a continuous function of r. Again let us ascertain whether
homogeneity and additivity are satisfied.

Homogeneity:

Jox) = [ fax(o]p de

o (4.1-13a)
—ar |7y
% Lx ) d,
Ly

XJ(x) = & j X3ty dt. (4.1-13b)
Clearly, ’ .
T(ox) 5 e (x) (4.1-13¢)

for all &, so the functional (4.1-12) is nonlinear.

Closeness of Functions

If two points are said to be close to one another, a geometric interpreta-

tion springs immediately to mind. But what do we mean when we say two
functions -are close to one another? To give a precise meaning to the term
“close” we next introduce the concept of a norm.

DEFINITION 4-5

The norm in n-dimensional Euclidean space is a rule of correspon-
dence that assigns to each point q a real number. The norm of g,
denoted by || q|!, satisfies the following properties:

1. {la}l = O and |{q|} = O if and only if g = 0. (4.1-14a)
2. ||agq]l = «|+]]q]i for all real numbers «. (4.1-14b)
3.0aw + @ < Hla Pl + g ]I (4.1-14c)

When we say that two points ¢!’ and q* are close together, we
mean that

llg -

Example 4.1-5, What is a suitable norm for two-dimensional Euclidean
space? It is easily verified that

lallz & /4% + 4% or llali: £+l

q‘%7 || is small.
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satisfies properties (4.1-14). Now suppose that a point gV is specified and
it is required that ||q'2 — q'U|| < §. What are the acceptable locations
for q® TIf q ||, is used as the norm, g2 must lie within the circle centered
at g’ having radius § as shown in Fig. 4-2(a). On the other hand, if
llall; is used as the norm, the acceptable locations for q'# are as shown

in Fig. 4-2(b).
¥ must He
within this
circle

-

q2

(a)

q‘¥ must lie
within this
region

<

{b)

Fig. 4-2 {(a) The set of points that satisfy |Jq2 — g ]z <6
{b) The set of points that satisfy |]g® — q(D{l; < 4

Ui

Next, let us define the norm of a function.

DEFINITION 4-6

The norm of a function is a tule of correspondence that assigns to
each function x e Q, defined for 7 € [#,, 7,], a real number. The
norm of x, denoted by || x|, satisfies the following properties:

1. ix]| = 0 and ||x}| = 0 if and only if x(#) = 0 for all

L e ot} (4.1-15a)
2. ffax]] == je[+]|x]] for all real numbers o. (4.1-15b)
3o x| X 4 [ L (4.1-15¢)

To compare the closeness of two functions y and z that are defined for

t € [t 2], let X(£) = ¥(t) — z(1).

Intuitively speaking, the norm of the difference of two functions should
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be zero if the functions are identical, small if the functions are “close,” and
large if the functions are “far apart.”

Example 4.1-6, x is a continuous scalar function of ¢ defined in the
interval [to, #,]. Define an acceptable norm for x. ’

lixll = max {x()1]} (4.1-16)
tositsits

is a suitable norm because it satisfies the three properties given in (4.1-15).

The Increment of a Functional

In order to consider extreme values of a function, we now define the
concept of an increment,

DEFINITION 4-7

If g and g -+ Aq are elements for which the function f is defined,
then the increment of f, denoted by Af, is

Af2a f(q-+ Ag — f(g). (4.1-17)

Notice that A f depends on both g and Aq, in general, so to be more
explicit we would write A f(q, Aq).

Example 4.1-7, Consider the function

(@) = g% + 2q1q, for all real 44, ¢a. (4.1-18)

The increment of fis

Af=flg+ AQ — f(@ =la: +Aq,P
+ 2Ag: + Aqyllgs + Agzl — gt + 2914] 4.1-19)
=2g; Agy HIAGP +2Aq,9;, 2Aq,q, +2Aq, Ag,

In an analogous manner, we next define the increment of a functional.

DEFINITION 4-8

If x and x + Jx are functions for which the functional J is defined,
then the increment of J, denoted by AJ, is

AT & J(x + 0x) — J(%). (4.1-20)

Again, to be more explicit, we would write AJ(x, dx) to emphasize
that the increment depends on the functions x and Jx. Jx is called
the variation of the function x.
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Example 4,1-8. Find the increment of the functional
7 = [ d (4.121)
to

where x is a continuous function of 7.
The increment is

AJ = J(x + 8x) — J(x)
[0 rsora- [0 g
= [* faxtdne + O] .

The Variation of a Functional

The preceding definitions have laid the foundation for considering the
variation of a functional. The variation plays the same role in determining
extreme values of fumetionals as the differential does in finding axima and
minima of functions. As review, we next state the definition of the differential
of a function.

DEFINITION 4-9
The increment of a function of » variables can be written as

Af(q, AQ) = df(g, AQ) + g(g, Ag)-||Aqll,  (4.1-23)

where df is a linear function of Aq. If

lim {g(q, AQ)} =0,

HES et

then fis said to be differentiable at q, and df is the differential of f
at the point q.

If fis a differentiable function of one variable ¢, then the differential can
be written

41, Ae) = f(5) As;

J(¢) is called the derivative of f at 1. Figure 4-3 gives a geometric interpreta-
tion of the increment A f; the differential df, and the derivative f”: f'(¢,) is the
sfope of the line that is tangent to f at the time 7,; f'(z,) Az is a first-order
(linear) approximation to A f {the smaller A¢, the better the approximation).

(4.1-24)

Example 4.1-9. Find the differential of

fo =gt + 2019 (4.1-25)
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fie)

Slope equals £(f))

Figure 4-3 Geometric interpretation of Af, df, f7

In Example 4.1-7 we found that the increment is

Afla, Ag) = 29, + 24,1 Aq, +12¢,] Ag;

4126
+[AqF +2Aq; Ags. “.1-26)

The first two terms are linear in Ag. Letting

[Aqll & VIAG P + [Agsl%, (4.1-27)

we can write the last two terms as
[Agi]* + 2Aq; Ag, AT TE + AT
[Afh]z +[ qz]?‘ [ ql] + [Aﬁh] E} (4'I"'28)

which is of the form g{(q, Ag)-l]Aq||. To show that fis differentiable we
must verify that

[Agi T + 2 Agqy A‘Iz} — 0. (4.1-29)

y
Jaalieo { ~Ag FF + TAg,

It will be left as an exercise for the interested reader to verify that this
limit exists and is zero; hence fis differentiable, and the differential is

df(g, Aq) = [2¢; + 24,1 Aq, + 24,1 Ags. (4.1-30)

Rather than go through all of these steps, we can use Definition 4-9 to
develop a rule for finding the differential of a function. In particular, if f
is a differentiable function of » variables, the differential df is given by

=9 df .
df““a'é:a%“%“—A‘Iz‘*‘ '+6

af
Ag.. -
d‘h gn QH (4 1 SE)

We shall also find it convenient to develop a formal procedure for finding
the variation of a functional rather than starting each time from the defini-
tion which follows.
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DEFINITION 4-10
The increment of a functional can be written as

AJ(x, 6%) = 8J(x, 8%) -+ g(x, 6x)-|0x|,  (4.1-32)
where &/ is linear in dx. If

lim {g(x,dx)} =0,

ligxli~9

then J is said to be differentiable on x and 8J is the variation of J
evaluated for the function x.

Example 4.18. Let x be a continuous scalar function defined for ¢ € {0, 1L
Find the variation of the functional

TG = j : [x2(8) + 2x(0)] . (4.1-33)

First, find the increment of J,

AJ(x, 0x) = J(x + 0x) — J(x)

= [ {{s) + 8= + 2> + 5x0]}
’ (4.1-34)

- j Z [x2(r) + 2x(0)] t.
Expanding, and combining these integrals, we obtain
AT, 5% = [ {[2%0) + 2] 8x(0) + [0} dr.  (4.139)
Separating the terms which are linear in dx, we have
Ad(x, 0x) = j; {[2x() + 2] 80} dr + J: [Ox()]2 dt.  (4.1-36)

Now let us verify that the second integral can be written

j : [Sx()]? dt = g(x, §x)-]| x| @4.1-37)
and that
lim {g(x, 6x)} = O. (4.1-38)
{dxij+0

Since x is a continuous function, let

{|dx]] & max {|dx(} % (4.1-39)
a5l
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Multiplying the left side of (4.1-37) by || éx|/]| 6=} gives

Iiilgj:h [, oo dt =poxyl- [ [i’;@” dt;  (4.1-40)

the right side of Eq. (4.1-40) follows because | dx|] does not depend on £,
Comparing (4.1-40) with (4.1-37), we observe that

3
g(x, %) = f [”’;E’c)é . (4.1-41)
Writing [dx(O]2 as [dx(0)|-| dx(f)| gives
[ lodoliox] 5"(“)6'5 'fx(‘”dzgﬁléx(:}qd;, (4.1-42)

because of the definition of the norm of Jdx, which implies that
[1dx|] = 1dx()| for all ¢ & [0, 1]. Clearly, if || §x|] — 0, |dx{)| — 0 for all
t e [0, 11, and thus

Héxli~0

We have succeeded in verifying that the increment can be written in
the form of Eq. (4.1-32) and that g(x, dx) — 0 as || 6x}| -» 0; therefore,
the variation of J is

870, 6x) = [ {{2x4) + 2] 820} . (4.1-44)

This expression can also be obtained by formally expanding the
integrand of AJ in a Taylor series about x(¢) and retaining only the terms
of first order in dx{£).

It is very important to keep in mind that §J is the linear approximation
to the difference in the functional J caused by two comparison curves. If
the comparison curves are close (|| §x || small), then the variation should be
a good approximation to the increment ; however, 6/ may be a poor approxi-
mation to AJ if the comparison curves are far apart, The analogy in cal-
culus is illustrated in Fig. 4-3, where it is seen that df is a good approximation
to Af for small Az

As with differentials, we would prefer to avoid using the definition each
time the variation of a functional is to be determined; in Section 4.2 we shall
develop a formal procedure for finding variations of functionals.

Maxima and Minima of Functionals

Let us now review the definition of an extreme value of a function.

lim { f :|5x(z)|d:} = 0. (4.1-43)
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DEFINITION 4-11
A function f with domain & has a relative extremum at the point
g* if there is an € > 0 such that for all points q in & that satisfy
llq — g*|| < € the increment of f has the same sign. If

Af=flg) —/(g*) =0, (4.1-45)
F(g¥) is a relative minimum,; if
Af=flg—fg) <0, (4.1-46)

F(a®) is a relative maximum.

If (4.1-45) is satisfied for arbitrarily large €, then f{(qg*) is a global,
or absolute, minimurm. Similarly, if (4.1-46) holds for arbitrarily large
¢, then f(g*) is a global, or absolute, maximum.

Recall the procedure for locating extrema of functions. Generally, one
attempts to find points where the differential vanishes—a necessary con-
dition for an extremurn at an interior point of &. Assuming that there are
sach points and that they can be determined, then one can examine the
behavior of the function in the vicinity of these points.

Example 4.1-11. Consider the function of one variable illustrated in Fig.
4-4, The function is defined for ¢ € [z, £7]. Since the interval is bounded
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Figure 4-4 A function with several extrema

and closed, candidates for extrema are located at points where the
differential vanishes and also at the end points. For this function, the
differential vanishes at 1y, #,, £3, £4, and rs—these are called stationary
points. ¢,, however, is not an extrerse point; it is a horizontal inflection
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point. ¢, and ¢, are relative maxima, and t; and ¢s are relative minima.
Examining the function at the end points, we see that 7, is a relative
minimum and 7, is 2 relative maximum, It is easily shown for 2 function
of one variable that at the Jeft end point

g—{ > 0 implies that ¢, is a relative minimum,

and

:% < ¢ implies that ¢, is a relative maximum,

For the right-hand end point the sense of the inegualities is reversed.
Finally, observe that r, is the absolute or global maximum point and 1,
is the global minimum.

Next, consider a functional J which is defined for all functions x in a
class Q.

DEFINITION 4-12

A functional J with domain 2 has a relative extremum at x* if
there is an € > 0 such that for all functions x in Q which satisfy
i|x -~ x*|| < € the increment of J has the same sign. If

AT = J(x) — J(x*¥) > 0, (4.1-47)
J(x*) is a relative minimum; if
AT = J(x) ~ J(x*¥) < 0, {4,1-48)

J(x*) is a relative maximum.

If (4.1-47) is satisfied for arbitrarily large e, then J(x¥) is a
global, or absolute, minimum. Similarly, if (4.1-48) holds for arbi-
trarily large ¢, then J(x*) is a global, or absolute, maximum. x* is
called an extremal, and J(x*) is referred to as an extremum.

The Fundamental Theorem of the Cafculus of Variations

The fundamental theorem used in finding extreme values of functions
is the necessary condition that the differential vanish at an extreme point
(except extrema at the boundaries of closed regions). In variational prob-
lems, the analogous theorem is that the variation must be zero on an extremal
curve, provided that there are no bounds imposed on the curves. We next
state this theorem and give the proof.

Let x be a vector function of ¢ in the class £, and J(x) be a differentiable
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functional of x. Assume that the functions in £ are not constrained by any
boundaries.
The fundamental theorem of the calculus of variations is

If x* is an extremal, the variation of J must vanish on x*; that is,

oJ(x*, x) == 0 for all admissible dx.T {4.1-49)

b

Proof by contradiction: Assume that x* is an extremal and that
dJ(x*, §x) == 0. Let us show that these assumptions imply that the
increment AJ can be made to change sign in an arbitrarily small
neighborhood of x*.

The increment is

AT(x*, 8%) = J(x* + 3%) — J(c¥)

= 6T(x%, 8%) + gt o[ ox ], D)

where g(x*, §x) — 0 as || dx || — 0; thus, there is a neighborhood,
f|dx[| << €, where g(x*, §x}-||x|| is small enough so that §F domi-
nates the expression for AJ.

Now let us select the variation

dx = adx'V’ (4.1-51)

shown in Fig.4-5 (for a scalar function}, where &t > 0 and [fadx V||
< €. Suppose that -

x(£)

x5+ abx®

~adxt

wbx(®)
Né‘—’m[**__‘,‘ -t

— i ————
e o o T e
fo ff

Yigure 4-5 An exfremal and two neighboring curves

% By admissible §x we mean that x 4 dx must be a member of the class Q; thus, if Q is
the class of continuous functions, x and #x are required to be continuous.
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IJ(x*, adx't’) < O (4.1-52)

Since 4J is a linear functional of dx, the principle of homogeneity
[see Eq. (4.1-8a)] gives

SJ(x*, adx ) == adJ(x¥, oxV) < 0. (4.1-53)
The signs of AJ and §J are the same for {| dx}| < €; thus,
AJ(x*, adx ) < 0. (4.1-54)
Next, we consider the variation
0x = —adx‘V

shown in Fig. 4-5. Clearly, ||adx‘? || < € implies that [| —adx‘*’||
< ¢; therefore, the sign of AJ(x*, —adx‘V’} is the same as the sign
of dJ(x*, —adx ). Again using the principle of homogeneity, we
obtain

OJ(x*¥, —adx7) = —adJ(x*, dx17); (4.1-55)

therefore, since J(x*, adx#?) < 0, §J(x*, —adxV’} > 0, and this
implies
AJ(x*, —adxt’) > 0. (4.1-56)

To recapitulate, we have shown that if J(x*, dx) 3= 0, then in
an arbitrarily small neighborhood of x*

AJ(x*, adx ) < 0 (4.1-57)
and
AJ(x*, —gdx V) > 0, (4.1-58)

thus contradicting the assumption that x* is an extremal (see Defi-
nition 4-12). Therefore, if x* is an exiremal it is necessary that

dJ(x*, o%x) = 0 for arbitrary Jx. (4.1-59)

The assumption that the functions in £ are not bounded guaran-
tees that adx‘? and —adx'"’ are both admissible variations.

Summary

In this section important definitions have been given and the fundamental
theorem of the calculus of variations has been proved. The analogy between

Sec, 4.2 The Caloulus of Variations 123

certain concepts of calculus and the calculus of variations has been exploited.
It is helpful to think in terms of the analogies that exist; by doing so, we can
appeal to familiar geometric ideas from the calculus. At the same time, we
must be careful not to extrapolate results from calculus to the calculus of
variations merely by using “intuitive continuation.” In the next section we
shall apply the fundamental theorem to problems that become progressively
more general; eventually, we shall be able to attack the optimal control
problem.

4.2 FUNCTIONALS OF A SINGLE FUNCTION

In this section we shall use the fundamental theorem to determine extrema
of functionals depending on a single function. To relate our discussion to
“the optimal control problem” posed in Chapter 1 we shall think in terms of
finding state trajectories that minimize performance measures. In control
problems state trajectories are determined by control histories (and initial
conditions); however, to simplify the discussion it will be assumed initially
that there are mo such constraints and that the states can be directly and
independently varied. Subsequently, this assumption will be removed.

The Simplest Variational Problem

Problem 1; Let x be a scalar function in the class of functions with con-
tinuous first derivatives. It is desired to find the function x* for which the
functional

iy

J(x) = f g{x(n), X(1), 1) dt (4.2-1)

has a relative extremum. The notation J(x) means that J is a functional of
the function x; g(x(r), X(¢), £), on the other hand, is a function—g assigns a
real number to the point (x(z), (), ¥). It is assumed that the integrand g
has continuous first and second partial derivatives with respect to all of its
arguments; 7, and ¢, are fixed, and the end points of the curve are specified
as x, and x,.

Curves in the class € which also satisfy the end conditions are called
admissible. Several admissible curves are shown in Fig. 4-6.

We wish to find the curves (if any exist) that extremize J(x). The search
begins by finding the curves that satisfy the fundamental theorem. Let x be
any curve in §, and determine the variation 6J(x, dx) from the increment
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x(t)

Xf ““““““““““““““““““

Xppr————

1
1
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|
[
]
!
i
1

fo il

Figure 4-6 Admissible curves for Problem 1
AF(x, 0x) == Hx -+ 8x) — Hx)
= (560 + 0x(), 30) + 63, 0t (42D)

— [ ety 20, a.
Combining the integrals gives
A, 3) = [ [ax(e) + 8x(2), 1(0) + 53D, 1) — g(x(0), 3(0), O] .
(4.2-3)

Notice that the dependence on % and 8% is not indicated in the argument of
AJ, because x and %, dx and &% are not independent;

() = %[x(z)], 53(1) = m‘?;—[éx(z)].

Eventually, AJ will be expressed entirely in terms of x, % and Jx.

Expanding the integrand of (4.2-3) in a Taylor series about the point
x(6), 2(f) gives

AT = J: {g(x(0), %(6), £y + [gw%(x(t), *(2), ;)] 5x(2)
+ [%(x(r), X, t)] 8i(e)

+ H{[FE 6w, 5w, 0] o0 (4.2-4)
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+ 2[%;%@(::), *(1), t)} Sx(£)d%(t)

N Biﬁ(x(t), (1), r)J [632(:)]2]
+ o[ax(D)], [8x(O]D) — gCx(D), A(0), O} d.

The notation o([6x(A)]?, [64(r)]?) denotes terms in the expansion of order
three and greater in 6x(r) and 8%(¢)—these terms are smaller in magnitude
than [8x()]* and [6#(5)]* as dx(z) and Jx(¢) approach zero. As indicated,
the partial derivatives in Eq. (4.2-4) are evaluated on the trajectory x, X.

Next, we extract the terms in AJ that are linear in Jdx(r} and d3(¢) to
obtain the variation ‘

8305,8%) = [ {[F0x0 29, 0] 0x(0

ta

(4.2-5)
+ [g%(x(z}, ), r)] Jx(z)} dt.
Jx(r) and §x(z) are related by
dx(0) = [ 83(0) di + 9x(to); (4.2-6)

thus, selecting &x uniquely determines 0% We shall regard dx as being the
function that is varied independently. To express (4.2-5) entirely in terms
containing dx, we integrate by parts the term involving §% to obtain
- 192 . ] *“
8J(x, 8x) = [Zﬁ(x(t), 10, 0| 6x0)|
# ([dg .
+ [ {60, x0.0)] 427

_4 [g_i(x(;), #0), t)] } 5x(0) dr.

Since x(¢,) and x(z,) are specified, all admissible curves must pass through
these points; therefore, dx(¢,) = 0, éx(z;) = 0, and the terms outside the
integral vanish.
If we now consider an extremal curve, applying the fundamental theorem
yields
53, 82) = 0 = [ {2820, #4(0.
s WX
4 [0z (4.2-8)
A8, s w5
P [ax(x (2), (), z):!} dx(r) dr.
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Thus, the integral must be zero; does this tell us anything about the integ,raud ?

To answer this question, consider the function Jx; it has cox_xtmuous
derivatives, and must be zero at ¢, and ¢, but aside from t'hese requxren.aents
it is completely arbitrary. The assumptions made regarding t.he £un_ct10n g
guarantee that the term which multiplies dx(¢) in Eq. (4.2-8) is continuous.
It can be shown that if a function % is continuous and

[“weyox dr =0 (4.2-9)

for every function dx that is continuous in the interval [z, £, then h must be
zero everywhere in the interval [, #/]. .
This result, called the fundamental lemma of the calculus of variations, 1s
proved in references [E-1] and [G-1]. The essence of the proof ‘is as fgilows:
Suppose that 4 is not zero everywhere in the interval; then, since his con-
tinuous, there is a neighborhood in [t,, #/] in which k has the same sign
everywhere. Select §x, which is arbitrary, to be positive (or negative) through-
out the neighborhood where A has the same sign, and zero glsewhere. By
selecting &x in this manner the integral in Eq. (4.2-9) will be nonzero; thus,
h must be identically zero for (4.2-9) to be satisfied. _
Figure 4-7 shows a function k that is not identically zero in the interval

R(t)
/\i i t
i
ll‘o ;1 If
i
b
I
i
8x(1} ol
[
i
1
i
] L,
Lty hH 1

Figure 47 A nonzero # and an admissible dx

{to, 1. Selecting dx as shown makes the product 4(¢) ox(0) greater than zero
in the interval [7,, £,], and zero elsewhere. By inspection, the integral of
h(z) 5x(¢) is certainly not zero. Notice that it does not matter what values
k assumes outside of the interval [#}, £,].

An intuitive way of looking at this lemma is the following: Given any
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continuous function % that is not identically zero in the interval [f,, ¢/, a
function dx, with continuous derivatives, can be selected which makes the

integral JW h(t) dx(z) dr = 0.

Applying the fundamental lemma to (4.2-8), we find that a necessary
condition for x* to be an exiremal is

L0, 20,0 ~ [ B0, 0, 9]=0 | @210

for all 7 € [¢,, t,].

Let us now examine Eq. (4.2-10), called the Euler eguation, in more
detail. The presence of dfdt andfor #*(¢) means that this is a differential
equation.

e, 2@, 0]

is, in general, a function of x*(z), £*(r), and ¢; thus, when this function is
differentiated with respect to 7, ¥*(¢) may be present. This means that the
differential equation is generally of second order. There may also be terms
involving products or powers of %*(r), %*(¢), and x*(¢), in which case the
differential equation is nonlinear, and the presence of ¢ in the arguments
indicates that the coefficients may be time-varying. Differential equations of
this type are normally hard to solve analytically. There are, however, certain
special cases (summarized in Appendix 3) in which the Euler equation can
be reduced to a first-order differential equation, or solved by evaluating
integrals.

In summary then, the Euler equation for Problem 1 is generally a
nonlinear, ordinary, time-varying, hard-to-solve, second-order differential
equation.

Since the Euler equation usually cannot be solved analytically, one natu-
rally thinks of using numerical integration. The characteristics of the Euler
equation which make analytical solution difficult do not present serious
difficulties numerically. Unfortunately, there is another factor that prevents
us from simply solving the Euler equation by numerical integration—the
boundary conditions are split. Instead of baving x(¢,) and %{¢,) specified for
x(ts), #(t0)], we know x(¢,) and x(z,). To integrate numerically, we need values
for all of the boundary conditions at one end. Thus, we see that to obtain
the optimal trajectory x*, a nonlinear, two-point boundary-value problem
must be solved. The problem is difficult because of the combination of split

- boundary values and the nonlinearity of the differential equation. Separately,
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either of these difficulties can be surmounted without tremendous effort, but
together they present a formidable challenge. For the moment we shall
consider only problems that can be solved analytically. In Chapter 6 we
shall consider some numerical techniques for solving nonlinear, two-point
boundary-value problems.

It should be emphasized that since the Euler equation is a necessary con-
dition, further investigation is required to ascertain whether a solution x*
is a minimizing curve, a maximizing curve, or neither.

Example 4.2-1. Find an extremal for the functional
LT
J(x) = L [22() — x¥(n)] 4t (4.2-11)

which satisfies the boundary conditions x(0) == 0 and x{z/2) = L.
The Euler eguation is

0 =20, 240,0 - &[S0, 70,9
) (4.2-12)
= 2 ~ SR
or
T + x* () = 0. (4.2-13)

Since Eq. (4.2-13) is linear and has constant coefficients, it can be readily
solved by using classical differential equation theory. Assuming a solution
of the form x*(f) = ke and substituting this in (4.2-13), we obtain

fsiest 4 kest = Q, (4.2-14)
Since (4.2-14) must be satisfied for all ¢,
s241=0 (4.2-15)

The roots of this characteristic equation are s = 1,7 so the solution
has the form

x*(t) = C;Em'jr + sz"‘, (4.2—16)
or
x¥(r) == 03 cos (f) + ¢4 sin (1), “4.2-17}

where the ¢'s are constants of integration.
To determine the constants that satisfy the boundary conditions

Ti& L
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x(0) = 0, x(7/2) == 1, we use the form of the solution in (4.2-17) to obtain

0 = ¢3 cos (0) + ¢, 8in (0) == ¢c; = 0f (4.2-18)

and
0 [ s T
1 = ¢y cos (__zu_) + cq sin (T) ey = L (4.2-19)
Thus, the solution to the Euler equation is

x*(z) = sin (z). (4.2-20}

The problem, as stated, has been solved, but let us investigate the
increment for a neighboring curve 1o see if x* is a minithum. As a com-
parison curve, consider the family

x{t) == sin (¢} + & sin 29

4.2-2
= x*7)} + Jx(1), ¢ b

with ¢ as a real constant. Several curves for various values of & are shown

in Fig. 4-8. Observe that each dx curve goes through zero at ¢ = 0 and

at 7 = nf2; thus x* + Jx satisfies the required boundary conditions.

8x(1)
&

o oy <oy <0 <oy<a

<
e

Figure 4-8 Several admissible 8x curves

Substituting x*() == sin (#) and ¥} = cos () into the integrand
of (4.2-11), we find that J(x*} = 0. If x{) = sin () + o« sin (2f) and
X(t) = cos () + 2a cos {21} are substituted into (4.2-11) and the inte-
gration performed, the result is

J(x* + %) = [37”] az. (4.222)

1 == depotes “implies that.”
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Since J(x* -+ dx) > 0 for all & == 0, we conclude that
Jx* o+ 8x) > J(x*) for a = 0. (4.2-23)

What does this mean? It certainly indicates that x* is not a maximizing
curve, because we have just constructed a family of neighboring curves that
gives larger values of J. Is x* a minimizing curve? Our evidence is not
conclusive, but it looks very much as if x* does minimize J. We could
try other neighboring curves to reinforce our suspicions, or else test x*
to see if it satisfies sufficient conditions for a minimum, Sufficient con-
ditions for minima are beyond the scope of this book, so we shall content
ourselves with investigating a few neighboring curves to ascertain whether
a curve is maximal, minimal, or neither.

Now let us consider problems having end points that are not fixed. We
shall consider only free end conditions at the final time; problems with
unspecified boundary conditions at the initial time can be treated in a similar
manner.

Final Time Specified, x(t;) Free

Problem 2: Find a necessary condition for a function to be an extremal
for the functional

) = | e(x(D), #(6), ) dt; (4.2-24)

to» X(t,), and ¢, are specified, and x(z,) is free. The admissible curves all begin
at the same point and terminate on a vertical line, as, for example, is the case
in Fig. 4-9. To use the fundamental theorem, we first find the variation as
in Problem I. After integrating by parts, we bave [see Eq. (4.2-7)]

x(1)

3

Figure 4-9 Several admissibie curves for Problem 2
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8J(x, O0x) = [g% (x(£), #(0), t}:l 8x(t) : o 'f: {[«% (x(©), D), r}]

(4.2-25)
m }% [g%{x(t), x(t), :}] } ax(f) dr.

Now dx(z,) == 0 for all admissible curves, but dx(z,) is arbitrary.

For an extremal x*, we know that dJ(x*, §x) must be zero. Let us next
show that the integral in (4.2-25) must be zero on an extremal. Suppose that
the curve x* shown in Fig. 4-10 is an extremal for the free end point problem.

x(¢)

- ¢

Figure 4-10 An extremal for a free end point problem

The value of x*(¢,) is x,. Now consider a fixed end point problem with the
same functional, the same initial and final times, and with specified end points
x(t,) == x, and x(¢;) = x, that are the same as for the extremal x* in the
free end point problem. The curve x* in Fig. 4-10 must be an extremal for
this fixed end point problem; therefore, x* must be a solution of the Euler
equation (4.2-10), and the integral term must be zero on an extremal. In
other words, an extremal for a free end point problem is also an extremal for
the fixed end point problem with the same end points, and the same func-
tional; thus, regardless of the boundary conditions, the Euler equation must be
satisfied.

Since

BG83 =0, and G0, #10) ) — £| Fol ), @, 9] = 0
for all ¢ € [t,, ¢,], from Eq. (4.2-25) we have

[g%(x*(z,), 24(2,), xf)] 5x(z,) = 0. (4.2-26)
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But since x(z,) is free, dx(z;) is arbitrary; therefore, it is necessary that

%(X*(tf), e te) =0 (4.2-27)

The Euler equation is second order, and Eqg. (4.2-27) provides the second
required boundary condition [x(z,) == x, is the other boundary condition]. We
shall call Eq. (4.2-27) the natural boundary condition; notice that again we
are confronted by a problem with split boundary values.

Example 4.2-2. Determine the smooth curve of smallest length connecting
the point x{(0) = 1 to the line £ == 5.

Tt can be shown that the length of a curve lying in the 1 — x{z) plane,
with ¢ty == Oand ¢, = 5, is

7@ = [ {1 + @] . 4.2-28)
The Huler equation
S [ ) S ¥
reduces to
X)) =0, {4.2-30)
which has the solution
XM =1t + ¢y (4.2-31)

where ¢, and ¢, are constants of integration. x*({0) = 1, so from (4.2-31)
we have ¢, = 1. From Eq. (4.2-27),

[Tf””;:i?ﬁ“j?ﬁ =0, (4.2-32)
which implies that 2*(5) = 0. Substituting %*(5) = 0 into the equation

) = ¢y, (4.2-33)

obtained by differentiating (4.2-31), gives ¢; = 0. The solation then is

Cx¥ ) =1, 4.2-34)

a straight line parallel to the ¢ axis.
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Example 4.2-3. Determine an exiremal for the functional

J(x) = j [ + 25030 + 401 ds; (4.2-35)
x(®) = 1, and x(2) is free.
From (4.2-10) the Euler equation is
—&HD) + 4xt() = 0. {4.2-36)
The solution has the form
X*() = ¢ €74 4 c €%, (4.2-37)

To evaluate the constants of integration, use the boundary condition
x(0) = 1, and the natural boundary condition

%(x*(z), XH2) = 0. {4.2-38)
Equation (4.2-38) gives
Q) + x*2) =0, (4.2-39)
and from Eq. (4.2-37) we find that
ZH(E) = w20 €72 o Doy€2, (4.2-40)
Evaluating (4.2-37) and (4.2-40) with # = 2 and substituting in Eq. (4.2-39)
we obtain
—c €74 4 3c,€t = 0. (4.2-41)
The boundary value x(0) = 1 provides the equation
¢+ oy =1, (4.2-42)

Solving these simultaneous algebraic equations for ¢; and ¢, yields

Jet €4

ey sy e ) nd e e T
Q=T B G = e T 36t

The final time was fixed in Problems I and 2; consequently, the vari-
ations of the functionals involved two integrals having the same limits of

" integration. If the final time is free, however, this is no longer the case;

therefore, let us now generalize the results of our previous discussion. This
is accomplished by separating the total variation of a functional info two
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partial variations: the variation resulting from the difference dx(¢} in the
interval [z,, 2,] and the variation resulting from the difference in end points
of two curves. The sum of these two variations is called the general variation
of a functional. First, let us consider the case where x(z,) is specified.

Final Time Free, x{t;) Specified

In Problem 2 we considered the situation where x(¢,)} was free, but the
final time ¢, was specified. Let us now investigate problems in which x(z,)
is specified, but ¢, is free.

Problem 3: Find a necessary condition that must be satisfied by an
extremal of the functional

J(x) = f’ g(x(2), X(0), 1) dt; (4.2-43)

to» X(to) = X, and x(¢;) = x, are specified, and 7, is free.
The admissible curves, several of which are shown in Fig. 4-11, all begin
at the point (x,, ¢,) and terminate on the horizontal line with ordinate x,.
x(8)

X'f mmmmmmm

Xa o e

Figure 4-11 Several admissible curves for Problem 3

Because of the free final time, the development in Problem 2 must be
modified. In Fig. 4-12 an extremal curve x*, terminating at the point (x, ),
and a neighboring comparison curve x, terminating at the point (x, t, + Gte
are shown.

From Fig. 4-12 it is apparent that dx(¢) = [x(r) — x*(¢)] has meaning
only in the interval [r,, /], since x* is not defined for ¢ € (¢, t, + d1,]1

t t € {tg, by + Stsl means #p < =iy + Oty
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Figure 4-12 An extremal, x*, and a neighboring comparisoncurve, x

First, we form the increment

AJ = j::*éfr g(x(t), J‘C(z), ,:) dt — j‘:’ g(x*(i‘), J&*(z‘), t} dr
= J: {g(x(t), j(f), f) —_ g{x*(t), J&*(f), t)} dt (4.2_44)
-+ J.:m g(x(8), (), £y dt,
or
AJ = j: {g(x*(t) + 0x(2), *¥(r) + 0x(1), 9)

— g™, ¥5(0), )} dt (4.2-45)
[ et 30, 0

The first integrand can be expanded about x*(7), #*(¢) in a Taylor series to
give

AT= -f : {[g%(x*(t), o) !)] dx(t)
+ [g%(x*(r), X*(2), :)] 55:(1)} dt (4.2-46)
+ 0(5x(t), JJ.C(f)) -} f:j+6tj g(x(z), J';(t), t) dr.t

1 o(6x(t), 4(2)) denotes terms of higher than first order in dx(¢) and d2(r); subsequently
we will write simply o(+).
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The second integral can be written

[ " gCe(0), 30, ) dt = [gCe(ty), 22, 1] Oty + 0(Bt,).  (4.2:47)

Integrating by parts the term in Eq. (4.2-46) containing §%(z), and substitut-
ing (4.2-47), we obtain

o P60 84009500 + T 360,13,
+ | {g—i&*(a, (2, 1)

— ‘%[g%(x*(t), f*(l'), I):l} 5};(5) dr + 0(.)’

(4.2-48)

where we have also used the fact that dx{#,) = 0. Next, we shall express
g(x(t;), x(t,), 1) in terms of g(x*(t,), #*(t,), t,) by the expansion

g(x(t,), x(ts)s ty) = g(x*(tf)a j*(gf), 1)
+ [§0et ), 270, 1) | 362,) (4.2-49)
+ [ e, #7001 | 536 + o),
Substituting this expression in Eq. (4,.2-48) yields

AJ = [g%(x*(tf), (), tf}:l x(ty) + [g(x* (), (2,0, 1] 01,

+ | {g—%(x*(:), (), 1) (4.2-50)

_ %[gg%,c(x*(:), (), :)}} Ix(t) dt + o(-).

x(¢,), which is neither zero nor free, depends on &t,. The variation of
J, &J, consists of the first-order terms in the increment AJ; therefore, the
dependence of dx(¢,) on dz, must be linearly approximated. By inspection of
Fig. 4-12 we have
Ox(t,) -+ x*(t;) 61, == Ot (4.2-51)
or
0x(z,) == —X*(t,) 0t {4.2-52)

T = means “equal to first order.”
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Substituting (4.2-52) into Eq. (4.2-50), and retaining only first-order terms,
we have the variation

83e%, 8%) = 0 = { [~ B eete, #%(ep, 1] 2
+ G, B 1)} 0t
+ ["{Eeo 0.0

_ % [%(x*(t), #4(0), :)}} Sx(t) dt.

(4.2-53)

Notice that the integral term represents the partial variation of J caused by
8x(t), t € [t t,], and the term involving d¢, is the partial variation of J
caused by the difference in end points; together, these partial variations
make up the general (or total) variation,

As in Problem 2, we argue that the extremal for this free end point
problem is also an extremal for a particular fixed end point problem; there-
fore, the Euler equation

e, 20,0 — F{Borw. 0.0 =0 @259

must be satisfied, and the integral is zero. dt, is arbitrary, so its coefficient
must be zero, and the required boundary condition at £, s

glxH(t,), 752, 1) — [%(x*(z,), #(t,), :,)] w2 =0, (4.2:55)

The following example illustrates the procedure for solving a problem
with x(z,) specified and ¢, free.

Example 4.2-4. Find an extremal for the functional

76 = [ [2x0) + 0] a3 42:5)

the boundary conditions are x(1) = 4, x(t;) = 4, and ¢, > 1 is free.
The Euler equation

=2 4.2-5T)
has the solution

X¥() = 12 + ¢ -+ 0. (4.2-38)
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¢ is unspecified, so the relationship
0 = () 7, 1) — [P, 2 1) |44
oz (4.2-59)

i 2x*(tf) -— -éJ‘C*z(If)

must be satisfied. From (4.2-59) and the specified values of x(1) and =)

we obtain
D =4=1+4+c¢;+cg,0rc,+ ¢ =3 (4.2-60a})
M) =4 =17+ ety + oy (4.2-60b)
25%(t) — L) = 0 = 20, — G- (4.2-600)
Solving Eqs. (4.2-60) for ¢;, ¢;, and ¢, gives the extremal
x*¥p) =2 — 6t +9, and rp =5, {4.2-61)

Problems with Both the Final Time ty and x(t;) Free

We are now ready to consider problems having both ¢, and x(¢,) unspeci-
fied. Not surprisingly, we shall find that the necessary conditions of Problems
2 and 3 are included as special cases.

Problem 4: Find a necessary condition that must be satisfied by an
extremal for a functional of the form

1) = [ g0, 30, ) s (4.2-62)

t, and x(z,) == x, are specified, and ¢, and x(z,) are free.
Figure 4-13 shows an extremal x* and an admissible comparison curve x.

x{t)

xf o e e T s

Xo

Figure 4-13 An extremal and a neighboring comparisont curve for
Problem 4
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Notice that dx(z,} is the difference in ordinates at ¢ = ¢, and Jx, is the dif-
ference in ordinates of the end points of the two curves. It is important to
keep in mind that, in general, dx{z,) %= dx;.

To use the fundamental theorem, we must first determine the variation
by forming the increment. This is accomplished in exactly the same manner
as in Problem 3 as far as the equation

AT = [98GH ), 51, 19| 83(ep) + [8Ge*(ep), 2¥Ge 1] Ot

+ {7 {% G, 50, 1) (4.2-50)
-4 [g%(x*(t), (), :)}} Sx(t) dt + o).
Next, we must relate dx(z,) to d¢; and dx,. From Fig. 4-13 we have

Sx, == 8x(z,) + X*(t,) 3t (4.2-63)

or

dx(t,) = 0x, — X%(,) 6t (4.2-64)

Substituting this in Eq. (4.2-50) and collecting terms, we obtain as the varia-
tion

83(x*, 63) = 0 = [EGer(e), £t 1) | O,
+ [g6 . 24 1
- [g%(x*(tf), (e, tf)]fc*(tf)] oty
+ [ {Eeo.20.0

— d_‘i [g%{x*(t), X*(1), t)]} dx{r) dt.

(4.2-65)

As before, we argue that the Euler equation must be satisfied; therefore, the
integral is zero. There may be a variety of end point conditions in practice;
however, for the moment we shall consider only two possibilities:

1. , and x(¢,) unrelated. In this case éx, and ¢, are independent of one
another and arbitrary, so their coefficients must each be zero. From
Eq. (4.2-65), then,

9 (xX(t )y 34t ) 1) = O, (4.2-66)
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and
8O, 40, 1) — |G, 2 1) |4e) = 0, (42:67)
which together imply that

gGe*e,), £, 1) =0, (4.2-68)

2. 1, and x(z,) related. For example, the final value of x may be con-
strained to Hie on a specified moving point, #(2); that is,

x(t,) = 0(,)- (4.2-69)

In this case the difference in end points dx; is related to Jz, by
Gx, = ‘;_f(zf) St,. (4.2-70)

The geometric interpretation of this relationship is shown in Fig.
4-14. The distance « is a linear approximation to dx;; that is,

@ = [.‘g(;fﬂ 5t,. (4.2-71)

x(t)

Xppo————— ——— — =

X ! !

8(z), the |
Tangent __7/ (), the locus
at point &

of admissible

g values for x{fp)

4

|
|
f+5:f= t

.
<
- ———

Figure 4-14 x(77) and #¢ free, but related

Substituting (4.2-70) into Eq. (4.2-65) and collecting terms gives

[g%(x*(t")’ #oh tf)] [%(’f) - x*(;f)} 4.2-712)
+ g0 (ep), $¥5(t)s 1) = 0

See, 4.2 The Caleulus of Variations 141

because Jt, is arbitrary. This equation is called the transversality
condition.

In either of the two cases considered, integrating the Euler equation gives
a solution x*(c,, c,, t), where ¢, and ¢, are constants of integration. ¢, ¢,,
and the unknown value of ¢, can then be determined from x*(¢,, ¢,, 1) = %,
and Eqs. (4.2-66) and (4.2-68) if x(¢,) and 7, are unrelated, or Egs. (4.2-69)
and (4.2-72) if x(t,) and ¢, are related. Let us illustrate the use of these equa-
tions with the following examples. '

Example 4.2-5. Find an extremal curve for the functional
tr
Jx) = f [1 + #*OF 7 dr; (4.2-73)
fo

the boundary conditions 7, = 0, x(0) = 0 are specified, ¢, and x(¢;) are
free, but x(t;) is required to lie on the line

B(y = —5¢ -+ 15, 4.2-74)

The functiopal J(x) is the length of the curve x; thus, the function
that minimizes J is the shortest curve from the origin to the specified line.
The Euler equation is

il eore) =° 6279
Performing the differentiation with respect to‘time and simplifying, we
obtain .
¥} = 0, {(4.2-76)
which has the solution
) = gt + eq. {4.2-17)

We know that x*(0) = 0, so ¢, = 0. To evaluate the other constant of
integration, we use the transversality condition. From Eq. (4.2-72), since
x(r and 1, are related,

M’ﬁ_%}ﬁ =5 — # )] + [1 -+ B = 0. (42-78)

Simplifying, we have

—58%¢) + 1 =0, (4.2-79)

from which, using Eq. (4.2-77), we obtain ¢, == }, The value of tg,
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found from
*, =
x*(tp) = 0(tp) 4.2:80)
—éff = —"‘Sf_f -+ 15,
is
- 4.2.81
tp owm 7%= 2.88. . )
Thus, the solution is
x*(7) = it (4.2-82)

Figure 4-15 shows what we koew all along: the shortest path is along
the perpendicular to the line that passes through the origin.

x(t)]

4
§53

8(r), the locus of
admissible values
forx (1

13 1

Figare 4-15 The extremal curve for Example 4.2-5

Example 4.2-6. Find an extremal for the functional in Eq. (4.2-73) which
begins at the origin and terminates on the curve

() = 30t — 5P — 4 (4.2-83)

The Euler equation and its solution are the same as in the previous
example, and since x*(0) = 0 we again have ¢, = 0. From Eq. (4.2-72)
the transversality condition is

TP T = 5 = #0) + [+ £ =0, (4289

Simplifying, and substituting 3*{¢;) = ¢;, we obtain

eylty =51+ 1=0. (4.2-85)
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Equating x*(¢,) and 8(¢,) vields
ey = ity — 5P — 4. (4.2-86)

Solving the simultancous equations (4.2-85) and (4.2-86), we find that
¢; = } and ¢; = 3, so the solution is

x¥)y = 4t 4.2-8D

Summary

We have now progressed from “the simplest variational problem” to
problems having rather general boundary conditions. The key equation is
(4.2-65), because from it we can deduce all of the results we have obtained
so far. We have found that regardless of the boundary conditions, the Euler
equation must be satisfied; thus, the integral term of (4.2-65) will be zero.
If ¢, and x(r,) are specified (Problem 1), then dr, = 0 and Jx, == dx(z)
= in Eq. (4.2-65). To obtain the boundary condition equations for
Problem 2 [t, specified, x(z,) free], simply let ¢, == 0 and Jx, == dx(¢;) in
(4.2-65). Similarly, to obtain the equations of Problem 3, substitute dx, = 0
in Eg. (4.2-65).

Since the equations obtained for Problems I through 3 can be obtained
as special cases of Eq. (4.2-65), we suggest that the reader now consider the
results of Problem 4 as the starting point for solving problems of any of the
foregoing types.

4.3 FUNCTIONALS INVOLVING SEVERAL
INDEPENDENT FUNCTIONS

So far, the functionals considered have contained only a single function
and its first derivative. We now wish to generalize our discussion to include
functionals that may contain several independent functions and their first
derivatives. We shall draw heavily on the results of Section 4.2—in fact, our
terminal point will be the matrix version of Eq. (4.2-65).

Problems with Fixed End Points

Problem 1a: Consider the functional

5 X oo %) = j gD - -y XA %, (0), -, Bl), D dt, (4.3-1)
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where x,, x,, . . . , X, are independent functions with continuous first deriva-

tives, and g has continuous first and second partial derivatives with respect
to all of its arguments. ¢, and ¢ are specified, and the boundary conditionsare

x{t) = Xy} x{tp) = X,
xLl0) = Xl X (1) = X

We wish to use the fundamental theorem to determine a necessary condition
for the functions x¥, x¥, ..., x¥ to be extremal.

To begin, we find the variation of J by introducing variations in
X5 ..., X, determining the increment, and retaining only the first-order
terms:

AT = [ {gle, () + 35,0, .o 20 + Sx,0),

() + 0%,(8), ..., 2L} + 0%, D (4.3-2)
— (% ()y « . s XD T (D), Lo, 22, O} dt

Expanding in a Taylor series about x,(f), . .., X,(1), %,(8), .. ., X,(0) gives

dg . . ] .
m= [ (B[ E . 0050, 2000|0500
+ 2 ([ O 202 0,0]50] @3
o} i [terms of higher order in dx,(1), 55:,.(1‘)]} dr.
fo=1
The variation &7 is determined by retaining only the terms that are linear

in dx, and &%, To eliminate the dependence of dJ on 8%, we integrate by
parts the terms containing §, to obtain

=3 [{68 ERO X RN A()) f)} 5}5"@)]‘:

+['{& [[;;m G40, -

I:@g O TOR YO 1O z)] 5x£(t)]} ar.

x50, ...,

T drid

Since the boundary conditions for all of the x;'s are fixed at ¢, and ¢, §x,(¢o)
=0 and dx(t) =0 (i=1,.
vanish. On an extremal [add*’s to the arguments in (4.3-4)], the variation

40, t)] (4.34)

,n), and the terms outside the integral
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must be zero. The dx;’s are independent; let us select all of the dx,’s except
dx, to be zero. Then

5F = owj {"g(xﬁz),

— 2B,

But dx, can assume arbitrary values as long as it is zero at the end points
t, and z,; therefore, the fundamental lemma applies, and the coefficient of
ox, (¢) must be zero everywhere in the interval [z,, ¢,]. Repeating this argument
for each of the dx,’s in turn gives

X8, X7(0),

e XL D
25D, :)}} x,(f) dt.

(4.3-5)
x5 (@), X105 - . .,

o2 LI O (CR O G

-7 [g%(x’{‘(t), s XED B, L X, t)} (4.3-6)

=0 forallrefty, ] and i=1,...,n

We now have z Euler equations. Notice that the same adjectives apply to
these equations as in Problem I; that is, each equation is, in general, a
noplinear, ordinary, hard-to-solve, second-order differential equation with
split boundary values. The situation is further complicated by the fact that
these differential equations are simultancous-—e¢ach differential equation
generally contains terms involving all of the functions and their first and
second derivatives.

Throughout the preceding development we have painfully (very!) written
out each of the arguments. It is much more convenient and compact to use
matrix notation; in the future we shall do so. To gain familiarity with the
notation, let us re-derive the preceding equations using vector-matrix nota-
tion. Starting with the problem statement, we have

Jo) = | , g(x(2), X(0), £) dt (4.3-12)

- and the boundary conditions x{¢,) = X, x(¢,) = X,, where

L
%,(0) P (0

xHal | ad 2@al -
%) _di‘;-x,.(t)




146 The Calculus of Varistions and Pontryagin’s Minimum Principle Sec. 4.3

The expression for the increment becomes

AT = [ {gx(0) + 8%, X() + 03(1), ) — g(x(0), X(), O} dr, (43-22)

which after expansion is
AT = j [[58 (x(t), XD, r)] 5x(6) + ["5’ (), 2(0), :)} 5%(2)
(4.3-33)
+ [terms of higher order in &x(), 53(;)]} dt,

where
% 0, 50, ) 2 [ FE 60 x0.0, 9L x(0) 30,0 ||

(an n X 1 column matrix), and similarly for dg/d%. Discarding terms that
are ponlinear in 6x(7) and &%(f) and integrating by parts, we have

¢
83%, 6%) = | st Xt )| 540ty

1]
_ [g%(x(ta), x(2,), tg)]r }5{(;9)

+ [ {Bew, x0.0
190,20, 0| ox( .

(4.3-4a)

0is an » X I matrix of zeros. Finally, the matrix representation of the Euler
equations is

08 (xv(0), 120, 0) — & [;;%(x*(:), 250, r)].= (4.3-62)

Notice that Eq. (4.2-10), obtained previously, is the special case that results
when x is a scalar.

Example 4.3-1. Find the Euler equations for the functional
J®) = j FORE + 25O - HOHOld @3

the end points #o, 17, X1{fe), X5{te), %1{t7), and x,(¢s) are specified.
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The Euler equations are given in Eq. (4.3-6a); writing out the indicated
derivatives gives

0= JE 000, 140, — 2| JE 0, 10,0

= 2x¥ )25 — —[2;2_7;*(;) — x22()] (4.3-8)
= ZEOR5E) — ) — 2021 + HFORHE),
and
0= gxg;(x*(f)s x*(), 1) — — [gg ZE (x*(1), %*(), t)}
(4.3-9)

= x2) — S[~250510)]
= X0 + 2O + 25OHO).

These differential equations are nonlinear and have time-varying coef-
ficients.,

Example 4.3-2. Find an extremal curve for the functional

7@ = | ’;“ [%30) + 430) + H(OO]dt (4.3-10)
which satisfies the boundary conditions
w-[1]) m ) [3]
The Euler equations, found from (4.3-6a),
2x3() — X =0 (4.3-11a)
BxHi) — M) =0, (4.3-11b)

are linear, time-invariant, and homogeneous. Sclving these equations by
classical methods (or Laplace transforms) gives
x¥t) = €% + ;67 4¢3 co8 2t -+ ¢4 8in 2, {4.3-12)

where ¢;, ¢,, ¢3, and ¢, are constants of integration. Differentiating x¥{(r}
twice and substituting into Eq. (4.3-11b) gives

XF() = 3, €% + bo67% — legcos 2t — feysin2e. (4.3-13)
Putting ¢ = 0 and ¢/ = /4 in (4.3-12} and (4.3-13), we obtain four equa-
tions and four unknowns; that is,

O =0;  xHO) =1;
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Solving these equations for the constants of integration yields

_2_+€ %

% _ 6:':]'2 _ 1
emnwE 6::!2’ -

oy = Cg == = — e,,/z; €3 = "‘1;

Probiems with Free End Points

Problem 4a: Consider the functional

Jx) = f 2(x(2), X(1), ) dt, (4.3-14)

where x and g satisfy the continuity and differentiability requirements of _‘-

Problem 1a. x(t,) and 1, are specified; x(¢,) and ¢, are fre€. Find a necessary
condition that must be satisfied by an extremal.

To obtain the generalized variation, we proceed in exactly the same
manner as in Problem 4 of Section 4.2. The only change is that now we are
dealing with vector functions. Forming the increment, integrating by parts
the term involving 8%(z), retaining terms of first order, and relating x(z,)
to dx, and dt, [see Fig. 4-13and Eq. (4.2-64)] by

Ox(t,) = dx, — X*(,) Ot
we obtain for the variation
ax, 5%) = 0 = | Bixee), %2617 | 0%,
+ (g x4, 1)
~ [ e ] 26y
+ [ {500

(4.3-16)

_ E[ﬁm(x*@’ (1), t}] }T ox(s) dt.

As before, we argue that an extremal for this free end point problem must :
also be an extremal for a certain fixed end point problem; therefore, x*

must be a solution of the Euler equations

"g TE (o), 150, 1) — | (0, %0, 9] = 0

4315

(4.3-17)
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The boundary conditions at the final time are then specified by the relation-
ship

SI(x*,6x) = 0 = | & %8 (x*(2,), 14(t) zf)]raxf

X
+ [g(x*(rf) (1), 1,) (4.3-18)

e 17,10 X0 | oty

Equations (4.3-17) and (4.3-18) are the key equations, because they summarize
necessary conditions that must be satisfied by an extremal curve. The bound-
ary condition equations are obtained by making the appropriate substitutions
in Eq. (4.3-18). The equations obtained by making these substitutions, which
are contained in Table 4-1, are simply the vector analogs of the equations
derived in Section 4.2. Notice that regardless of the problem specifications
the boundary conditions are always split; thus, to find an optimal trajec-

tory, in general, a nonlinear, two-point boundary-value problem must be
solved.

Situations not included in Table 4-1 may arise; however, these can be
handled by returning to Eq. (4.3-18). For example, suppose that ¢, is fixed,
x{ts)y i=1,2,...,r are specified, and x,(z,),j=r+1,...,n are free.
In this case, the appropriate substitutions are

Jt,
6x,(t;) = 0,
dx {t,) arbitrary,

i=1,2,...,r;
j=r+1...,n

Let us now consider several examples that illustrate the use of Table
4-1 and the key equations {(4.3-17) and (4.3-18).

Example 4.3-3. Find an extremal for the functional
n/4 . .
Jo0 = f IR + 30k + O] (4.3-19)

The functions x; and x, are independent, and the boundary conditions are

NE
32 () free.

x(0) = 1;

' 3
x50 = 5;
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The extremal curve is, then,
X¥{f) = cos 2¢ + 2 sin 21
! (4.3-27)

x¥t) = —4cos 2t —sin 2t 4 2.

Example 4.3-4. Find the Euler equations for the functional
70 = [ [0 + #10) + 240 20 + 1@ 0], (4.329)

and determine the relationships required to evaluate the constants of
integration. The specified boundary conditions are

X(©) = [ﬂ xttp=[ 7,

and ¢, is free. The functions x; and x, are independent.
From Eq. (4.3-17} the Buler equations are

3T A+ 2xF() + x5 - 230 =0

(4.3-29)
2¥Ox3 () — 285() = 0.

The solution of these two nonlinear second-order differential equations,
x*(cy, €2, €4, Co, 1}, Will contain the four conmsiants of integration,
¢y, €1, C3, C5. From the specified boundary conditions we have

X?(C;, Cgy €15 Cay O} == 2
x¥(cy, €y, C3, €4, 0) = 1
£(1, €20 @3, €4, 0) €330
x§(er, 35 €3y Cas 1) = —1
x;‘f(e;, €35 €25 €4y tf) == 4’
but since ¢ is unspecified, there are five unknowns. The other relation-
ship that must be satisfied is obtained from Eq. (4.3-18) with Ox; = 01

AF3(t ) -+ B ) — 2R DRFU ) -+ xF@OxFAp) == 0. (4.3-31)

Thus, to determine ¢y, ¢y, €3, ¢4, and ¢, the (nonlinear) algebraic equations
(4.3-30} and (4.3-31) would have to be solved.

Example 4.3-5. Find the equation of the curve that is an extremal for the
functional

J(x) = J a [t2() + 22(D]dr (s> 0) (4.3-32)

for the boundary conditions specified below.
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From (4.3-17) the Eulef equation is
d ,
5l + 25%()] = 0, (4.3-33
or
14 28%() = 0. (4.3-34)
The solution of this equation is
X¥(t) = —31% + eyt + ¢ (4.3-35)

(a) What is the extremal if the boundary conditions are ¢, == 1, x(0) = 1,

(1) = 2757
*0) =1 =
) “ (4.3-36)
x5(1) = 2.75 = —025 + ¢; + ¢, and ¢ =2,
50
W) = —M7 42 1 (4.3-37)

(b) Find the extremal curve if x(0) = 1, #; = 2, and x(2) is free.
Again we have

0 =1, s0 ¢ =1
From entry 2 of Table 4-1,

ty 4 255t =0

(4.3-38)
2+2—32) + el =0;

therefore, ¢; = 0, so
XXy = —Mt 4+ 1. {4.3-39)

{¢) Find the extremal curve if x(0)} = 1, x{z;) = 3, and ¢, is free.
As before, x*(0) == 1 implies that ¢, = 1. From entry 3 of Table

4-1
tZ* D] + 222 — [tr + 255 =0 {4.3-40)
or
[ty + 2% — £ — 22¥(@ )} s) = 0, (4.3-41)
which implies that £*(t;} = 0, s0
—3ty +e =0, (4.3-42)
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and

5 = "““’%-I% + ety + 1, (4.3-43)

since ¢, = 1. Solving these equations simultaneously gives ty =4
and ¢, = 2; therefore,

¥y = —42 F 2+ L (4.3-44)

Summary

In Sections 4.2 and 4.3 we have progressed from the very restricted
problem of a functional of one function with fixed end points to a rather
general problem in which there can be several (independent) functions and
free end points. Equations (4.3-17) and (4.3-18) are the important equations,
because from them we can obtain the necessary conditions derived for more
restricted problems.

To recapitulate, we have found that:

1. Regardiess of the boundary conditions, the Euler equations
0g ey d [‘?j % 5% ] i .
32 (), X5, 0 — 713z% @, %), D=0  (4.3-17)

must be satisfied.
2. The required boundary condition equations are found from the equa-

tion

[g;% (x¥(2), R, ¢ f)]T &x; + [g(X*(tf)! x*(t,)s 1) 43-18)

 Bonsion i selon o

by making the appropriate substitutions for x, and Jz,.

4.4 PIECEWISE-SMOOTH EXTREMALS

In the preceding sections we have derived necessary conditions that must
be satisfied by extremal curves. The admissible curves were assumed to be
continuous and to have continuous first derivatives; that is, the admissible
curves were smooth. This is a very restrictive requirement for many practical
problems. For example, if a control signal is the output of a relay, we know
that this signal will contain discontinuities and that when such a control
discontinuity occurs, one or more of the components of x(z) will be discontin-
uous. Thus, we wish to enlarge the class of admissible curves to include
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functions that have only piecewise-continuous first derivatives; that is, X
will be continuous except at a finite number of times in the interval (¢,, ¢,).1
At a time when % is discontinuous, X is said to have a corner. Let us begin
by considering functionals involving only a single function.

The problem is to find a necessary condition that must be satisfied by ex-
trema of the functional

(%) = j g(x(2), %), 1) dt. (4.4-1)

It is assumed that g has continuous first and second partial derivatives with
respect to all of its arguments, and that #,, ¢,, x(z,), and x(¢,) are specified.
# is a piecewise-continuous function (or we say that x is a piecewise-smooth
curve). Assume that x has a discontinuity at some point £, € (¢, £7); 4,
is not fixed, nor is it usually known in advance.

Let us first express the functional J as

1) = [ gGx, 20 0 e + [ 5x0), 300, 0
A (x) A+ Tufx).

We assert that if x* is a minimizing extremal for J, then x¥(s), ¢ € [tg, 2,], is
an extremal for J, and x*(¢), ¢ € [t,, £,], is an extremal for J,. To show this,
assume that the final segment of an extremal for J is known; that is, we know
x¥(r), t € [#,, t;1. Then to minimize J, we seek a curve defined in the interval
[t,, #,] which minimizes J,; this curve is, by definition, an extremal of J;.
Similarly, if x*(¢), t € [t,, £,), is known, to minimize J we seek a curve that
minimizes J,—an extremal for J,.

Figure 4-16 shows an extremal curve x* and a neighboring comparison

x()

(4.4-2)

Xok ——

f

i
i
H
]
1
I
H

p +8y [

Figure 4-16 A piecewise-smooth extremal and 2 neighboring com-
parison curve

't The notation ¢ € (fo,2r) means fo < <#y.
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curve x. 8z, and dx, are free, and from the fundamental theorem we know
it is necessary that 8J(x*, §x) = 0. Since the coordinates of the corner point
are free, we can use the results of Problem 4 in Section 4.2 [see Eq. (4.2-65)]
to obtain

83(c*, 83) = 0 = | SE(¥(en), 342, )| 03, -+ {200, 34 £9)
— [ %), 240, | ) o,
+ [ {0200
_ % [g_;ﬁ; (M), 40, z)]} Sx(r) dt
—[Eoren, . ] ox, (44-3)
— {eteren), e
~ [BEeran, 2. | #en) on
+ [{Eeoan
— A% 60, 40, 0 |} 30 .

dx, is the difference x(r, + &¢,) — x*(z,), and 7 and ¢] denote the times
just before and just after the discontinuity -of ¥ The terms that multiply
&¢, and 8x, are due to the presence of ¢, as the upper limit of the first integral
and as the lower limit of the second integral. We have shown that x* is an
extremal in both of the intervals [z,, £,], and [¢,, ¢/]; thus the Euler equation
must be satisfied, and the integral terms are zero. In order that dJ(x¥, dx)
be zero, it is then necessary that

(92 (ove), 34, 1) — 26, 2400, 1) | o,

%
+ g, #4601 — [Fora, #6026 (444
— (), #50D, 1) + | E G, 2D, )| 1D on = 01

If ¢, and x(z,) are unrelated, dx, and dz, are independently arbitrary, so their
coefficients must each be zero and we have

+ Notice that we have retained the ¢7, #7 notation only where the distinction needs fo
be made.
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08 (ev(e), #4) 1) = BGH), #°01)1), (4450)

and
SO, 241, 1) — | JE0), #7601 |#e)
(4.4-5b)
= g (1), #4011 — | JEH e, 24D, 1) [#D).

These two equations, called the Weierstrass-Erdmann corner conditions, are
necessary conditions for an extremsl. If there are several times ¢,, ¢,, ..., ¢,
when corners exist, then at cach such time these corner conditions must be
satisfied.

It may be that x(¢,) and ¢, are related by x(z,) == 8(z,). If so, dx, and
dt, in Eq. (4.4-4) are not independently arbitrary; they are related by

Sx, == fl_f(tl) §t,.% (4.4-6)

Substituting (4.4-6) into (4.4-4) and equating the coefficient of d¢, equal to
zero {since J¢, is arbitrary), we obtain

|G, 1760, )] [ G0 — 260 | + 2, 56 1)
, (4.4-7)
= [0, 13, 1| [ 9200 — 24| + 8GR, 24, 1),

The extension of the Weierstrass-Erdmann corner conditions to the case
where J involves several functions is straightforward. The reader can show
that

98 (exe 400, 1) = ), KD 1), (4B
and
* T dg % PR T oo
SO, KK 1) ~ | 60, %50, 1) | 226D
. (4.4-8b)
= g(3(r), K1), 1) — [ B G, %D, 1| 1)

are the appropriate equations when x represents » independent functions and

- x(¢t,) and ¢, are not constrained by any relationship.

+ For a geometric interpretation of this relationship, refer to Problem 4, Fig. 4-14.
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To illustrate the role of the corner conditions, let us consider the following
examples.

Example 4.4-1. Find a piecewise-smooth curve that begins at the point
x(0) = 0, ends at the point x(2) = 1, and minimizes the functional

I = J' : #O[1 — 2O dr. (4.4-9)

The integrand g depends only on #(r); therefore, the solution of the
Euler equation is (see Appendix 3, Case 1)

M) = ¢yt -+ cy. (4.4-10)
The Weierstrass-Erdmann corner conditions are

2241 — 224G — #2¢7)]

4.4-11
— 2Dt — 2weplt — ] P

and

#2001 — DB — 13 (4.4-11b)
= 22D — OB — 11 '
Equation (4.4-11a) is satisfied by **(t7) =0, 4,1 and £*¢}) =0,4,1
in any combinations. Equation (4.4-11b} is satisfied by #*¢7) =0,1,%
and #*(f¥) =0, 1, 4 in any combinations. Together these requirements
give

27y =0 and x*(¢f) =1,
or
) =1 and ) =0

as the only nontrivial possibilities.

The curves labeled a, b, c in Fig. 4-17 are ali extremals for this example.
By inspection of the functional we see that each of these curves makes
J ==, Notice that if the admissible curves had been required to have
continuous derivatives, the extremal would have been the straight line
joining the points x(0) = 0 and x(2) = 1 (curve 4 in Fig. 4-17). The reader
can verify that this curve makes J = 0,125,

Example 4.4-2, Find an extremal for the functional
I = | :’ ) — (0] dt (4.4-12)

with x(0) = 0 and x(x/2) == 1. Assume that % may have corners.
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0.5

L H Ty

0 L 2

Figure 4-17 Extremal curves for Example 4.4-1

This problemn was previously solved (see Example 4.2-1) under the
assumption that x was required to be a smooth curve. The Euler equation

) 4 x5(t) = 0 (4.4-13)
has a solution of the form
@) =c o081+ ¢, sin s 4.4-14)
The Weierstrass-Erdmann corner conditions are
Fexe) = B, (44-152)
and

FRIQT) — x*2(,) — REFEDIRMNCD

4.4-15b
i) — ) — ROl

From Eq. (4.4-15) we see that there can be no corners, because X*(17)
must equal %*(r7). So the extremal is, as in Example 4.2-1,
x*¥(f) = sin 2. (4.4-16)

Let us now consider an example in which the coordinates of the corner
are constrained.

Example 4.4-3. Find the shortest piecewise-smooth curve joining the
points x(0) = 1.5 and x(1.5) = 0 which intersects the line x(f) = —¢ + 2
at ope point.

The functional to be minimized is (see Example 4.2-2)

J(x) = j:s [1 -+ #2(O]/2 dt, (4.4-1T)
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The solutions of the Euler equation are of the form

x*¥t) = ¢\t + ¢z, (4.4-18)

In this case the corner condition of Eq. (4.4-7) becomes

Tt ]+ [ S

i L5V
= {1 + )-C*z(:-{-)]l.«’z

(4.4-19)
[—1 —&*p] -+ 1+ Ry
Putting both sides over common denominators and reducing, we obtain

1 — 2*¢7)
El e x*z&]—)]uz

R )

TR (4420

The extremal subarcs have the form given by Eq. (4.4-18), but the con-
stants of integration will generally be different on the two sides of the
corner, so let

for # € [0, 4]
for ¢  [r;, 1.51

(4.4-21a)
4.4-210)

xF@) = 0 f ey

x*¥{1) == caf + ¢4

Substituting the derivatives of Egs. (4.4-21) into (4.4-20) yields

1—¢ . 1 — ¢y .
[T+l 1+ ci]? (4.4-22)

The extremals must also satisfy the boundary conditions x(0) = 1.5 and
x(1.5) == 0, s0

-0+ ¢y w= [ 5==>cy =15 (4.4-23)
1.5¢; -+ ¢4 = 0. (4.4-24)
At a corner, it must also be true that x{r,} = ~r; - 2; therefore, we

have the additional equations

City ey = —t 42
Caly +C4 == —fy +2.

(4.4-23)
4.4-26)
Equations (4.4-22) through {4.4-26) are a set of five nonlinear algebraic
equations in the five unknowns ¢,, ¢, 1, Cq, and #1. These equations can
be solved by using (4.4-23) through (4.4-26) to express ¢; and ¢; solely
in terms of 7,, substituting these expressions in Eq. (4.4-22), and solving
for ¢,. Doing this gives

x*(t)y = —0.5t 4+ 1.5,

x*) = —2f -+ 3,

t e [0, 1.0]

4.4-27
f € [1.0,1.5] 427
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and ¢, = 1.0. This solution is shown in Fig, 4-18. The reader can show
that we have found the shortest path to be the one whose angle of incidence
8, equals its angle of reflection §,. For further generalizations see refer-
ence [E-1], Chapter 2.

-

0 1. 7.

Figure 4-18 An extremal with a reflection

4.5 CONSTRAINED EXTREMA

So far, we have discussed functionals involving x and %, and we have
derived necessary conditions for extremals assuming that the components of
x are independent. In control problems the situation is more complicated,
because the state trajectory is determined by the control u; thus, we wish to
consider functionals of » < m functions, x and u, but only m of the func-
tions are independent—the controls. Let us now extend the necessary con-
ditions we have derived to include problems with constraints.

To begin, we shall review the analogous problem from the calculus, and
introduce some new variables—the Lagrange multipliers—that will be
required for our subsequent discussion.

Constrained Minimization of Functions

Example 4.5-1. Find the point on the line y; + y; = 5 that is nearest
the origin.

To solve this problem we need only apply elementary plane geometry
to Fig. 4-19 to obtain the result that the minimum distance is 5/a/ 2,
and the extreme point is p¥ == 2.5, y¥ = 2.5,
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+ Only interior points of bounded regions are considered.
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F1

Figure 4-19 Geometrical interpretation of Example 4.5-1

Most problems cannot be solved by inspection, so let us consider
alternative methods of solving this simple example.

The Elimination Method, If y* is an exireme point of a function, it is
necessary that the differential of the function, evaluated at y*, be zero.t
In our example, the function

f(ri, 72) = y¥ + ¥%  (the square of the distance) (4.5-1)
is to be minimized subject to the constraint

¥ Fy =35 (4.5-2)

The differential is

A ys) = [;7{(3'1,321)] Ay, + [gf;m,yz)] Ays (453

and if (%, y¥) is an extreme poind,
G010 = [2L 010 b+ [fLot | Ar =0 @54
Y1 Y2 s

If 3, and y, were independent, then Ay, and Ay, could be selected arbi-
trarily and Eq. (4.5-4) would imply that the partial derivatives must both
be zero. In this example, however, ¥, and y, are constrained to lie on
the specified line, so Ay, and Ay, are not independent. Solving Eq. (4.5-2)
for y, and substituting into (4,5-1), we obtain
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fr) =[5 —»P + ¥

(4.5-5)
=25 — 10y, + 2y
The differential of £ at the point y¥ is then
df (#5) = [—10 + 4pf1Ay, =0, - (4.5-6)

s0 y§ = 2.5, From (4.5-2) we then find that p§ = 2.5. The minimum
value of the function is 2%, and the minimum distance is 5/a/ 2 .T

The Lagrange Multiplier Method. Consider the augmented function

oLy Ayt + v+l by -5 4.5-7)

with p a variable {the Lagrange multiplier) whose value is yet {o be
determined. For values of ¥, and y, that satisfy the constraining relation
(4.5-2) (these are the only values of interest), the augmented function
[f. equals f regardless of the value of p—we have simply added zero to
f to obtain f,. By satisfying the constraint and minimizing f., the con-
strained extreme point of f can be found. To find an extreme point of £,
we use the necessary condition

df, (yik,yg’p) =0 = [2}/‘?‘ + 7l Ay1 -+ [2}’% + pl Ay?- (4.5-8)
+ ¥ + 3% —51Ap. '

Since only points that satisfy the constraining relation are acceptable,

but this is the coefficient of Ap. The remaining two terms must add to
zero, but Ay, and Ay, are not independent—i{ Ay, is selected Ay, is
determined, and vice versa; however, p comes to the rescue. Since the
constraint must be satisfied, p can be any value, so we make a convenient
choice—we select p so that the coefficient of Ay, (or Ay} is zero, and
we denote this value of p by p*. Then we have

2y¥ +p* =0 (4.5-10)

Ay, can assume arbitrary values; for each value of Ay, there is an
associated dependent value of Ay,, but this does not matter, because p
was selected to make the coefficient of Ay, equal to zero. Since df, must
be zerc and Ay, is arbitrary, the coefficient of Ay, must be zero; therefore,

2%+ pt = 0, (4.5-11}

1 Alternatively, we could reach the same final result by substituting y1 = 5 -~ y; and
Ayy = Ayp into Eq. (4.5-4), setting the coefficient of Ay, to zero, and solving for 5.
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Solving (4.5-9), (4.5-10), and (4.5-11) simultaneously gives

¥F = 2.5, yE = 2.5 p* = —35. (4.5-12)

The reasoning that led to Eqgs. (4.5-9), (4.5-10}, and (4.5-11) is very

important; we shall use it again shortly, Notice, however, that the same

equations are obtained by forming f.(yi,¥:, 7)) and then treating the
three variables as if they were independent.

Let us now consider the “elimination method” and the method of La-
grange multipliers as they are applied in a general problem.

The problem is to find the extreme values for a function of (n + m)
variables, y,, ..., ¥,..- 1he function that is to be extremized is given by
J(F1s P25+« o s Vuem)- There are r constraints among the variables of the form

ai(yl’ .. -,y,,+,,,) = 0
(4.5-13)
arl(yls .. -ay;..”,,) = 0;

thus, only (» + m) — n = m of the variables are independent. Using the
elimination method, we solve Eq. (4.5-13) for # of the variables in terms of
the remaining m variables. For example, solving for the first # variables gives

V1= (Fni1s -+ s Voum)
{4.5-14)

yn ﬂen(yn+i’ L '5yn+m)'

Substituting these relations into f, we obtain a function of m independent

variables, f(3,,15 . - - s Vpem)- 10 find the minimum value of this function,
we solve the equations
U (ox x Y
ayn+1(yn+1: .- -5yn-i~m) - 0
(4.5-15)
&

(yf’:k+§! . -53’;?4-";) == )

yni»m

for y¥.,,...,¥% .., and substitute these values in (4.5-14) to obtain y¥,
., ¥¥. The extreme value of f can then also be obtained. This procedure is
conceptually straightforward; the principal difficulty is in obtaining the
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relations (4.5-14). The solution of (4.5-15) may also be difficult, but this
problem is also present in the method of Lagrange multipliers.
Now let us consider the method of Lagrange multipliers. First, we form

the augmented function

f‘a(ylﬁ - -~syn+m’p11 .. '9.pn) %f(yli L "yn+m)

4.5-16
+p1[ai(y13 --'=yn+m)]+ e +pn[an(y19 --'}yn+m)]' ( )
Then -
_ 9. R e o 9
dfa - ayl Ayi + _ii_ 6},"@"’ Ayn+m + 6),01 Apl + + dpn Apn
ﬁgiaAyl + o +aaf; Ayﬁ+m+a§Api + - +anApn'
1 n+m
(4.5-17)

If the constraints are satisfied, the coefficients of Ap,,..., Ap, are zero.
We then select the n p’s so that the coefficients of Ay, (i = 1, ..., n) are zero.
The remaining m Ay,'s are independent, and for df, to equal zero their
coefficients must vanish. The result is that the extreme point y§,...,Vin
is found by solving the equations

a!(y?’-”sy;:m):ﬂ, 531,2,...,?1 2n+m
%(y’f, e VPP =0, j=1,2, .., n+m) STHRHORS
! (4.5-18)

We shall now conclude our consideration of the calculus problem with
another illustrative example.

Example 4.5-2 [H-1]. Find the point in three-dimensional Euclidean space
that is nearest the origin and lies on the intersection of the surfaces

Y3 =11V (4.5-19)
»+y =1L
The function to be minimized is
fOu YLy =¥+ + 0 (4.5-20)

The elimination method is left as an exercise for the reader. To use the
‘method involving Lagrange multipliers, first form the augmented function

FF1s Y2 73, 21 P2} =¥+ 3 + 94+ palyiye £ 5 — il
+palye + ¥y ¥ — 1k {4.5-21)
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Using the same reasoning as before, we find that the equations corre-
sponding to (4.5-18) are
YVEyE 4y —1=0
Vi +5—ar=0
2yF +piyvf +pf =0 4.5-22)
f + Pt rf =
Wt —pt +pf =0

Solving these five equations gives

(2: ""29 i)
O 509 = or (4.5-23)
(W"Z: 2) 1)

and f,... = 9, so the distance is 3,

Constrained Minimization of Functionals

We are now ready to consider the presence of constraints in variational
problems. To simplify the variational equations, it will be assumed that the
admissible curves are smooth.

Point Constraints. Let us determine a set of necessary conditions for a func-
tion w* to be an extremal for a functional of the form

(7
Iy = [ gwle), w(o), 1 dt; “.5-24)
w is an (n +m) x | vector of functions (#, m > 1) that is required to
satisfy » relationships of the form

Jlw(e), ) =0,

which are called point constraints. Constraints of this type would be present
if, for example, the admissible trajectories were required to lie on a specified
surface in the n - m + 1-dimensional w(r) — f space. The presence of these
n constraining relations means that only m of the # -+ m components of w
are independent.

‘We have previously found that the Euler equations must be satisfied
regardless of the boundary conditions, so we will ignore, temporarily, terms
that enter only into the determination of boundary conditions.,

One way to attack this problem might be to solve Egs. (4.5-25) for »

f==1,2,,..,n,

(4.5-25)
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of the components of w(z) in terms of the remaining m components—which
can then be regarded as m independent functions—and use these equations
to eliminate the » dependent components of w(z) and w(z) from J. If this
can be done, then the equations of Sections 4.2 and 4.3 apply. Unfortunately,
the constraining equations (4.5-25) are generally nonlinear algebraic equa-
tions, which may be quite difficult to solve.

As an alternative approach we can use Lagrange multipliers. The first
step is to form the augmented functional by adjoining the constraining rela-
tions to J, which yields

J(w, p) = f {g(@), WD), &) + p (DL 1), D]
1 P OLAMD, O] + - -+ + 2 OUA, O]} di - (4.5-26)
= J: {g(w (@), W(2), & + p* (O (), D]} dt.

Since the constraints must be satisfied for all ¢ € [t,, t/], the Lagrange multi-
pliers p,, ..., p, are assumed to be functions of time. This allows us the
flexibility of multiplying the constraining relations by a different real number
for each value of f; the reason for desiring this flexibility will become clear
as we proceed.

Notice that if the consiraints are satisfied, J, = J for any function p.
The variation of the functional J,,

57,0, w3, 1) = | {[ % weo), w0, ) + 90| w00, 0] | oweo)

f hid
T [%(w(z), w(z), z)] OW(z) + [£7(w(0), 1)] ép(t}} dt,
(4.5-27)

is found in the usual manner by introducing variations in the functions w,
W, and p. df/dw denotes the # X (r - m) matrix

cofy L. 8
dw, W, p
_6W1 awn+m_

Integrating by parts the term containing §w and retaining only the terms
inside the integral, we obtain
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57.0m 5w, m, 60) = | {2 (w0, W), ) + O] G w0, 9

19

B 2‘5‘ [%%T (w2, W(o), f)ﬂ ow(®) (4.5-28)

+ [ (w(e), D] 5p(t)} dr.

On an extremal, the variation must be zero; that is, d/,(w*, p) = 0. In addi-
tion, the point constraints must also be satisfied by an extremal; therefore,

flw*{£), 1) == 0, t € [fa, 1yl (4.5-29)
and the coefficient of &p(r) in Eq. (4.5-28) is zero. Since the constraints are
satisfied, we can select the » Lagrange multipliers arbitrarily—let us choose
the p's so that the coefficients of # of the components of dw(f) are zero through-
out the interval [z, z,]. The remaining (n + m) — n = m components of
dw are then independent; hence, the coefficients of these components of
dw(s) must be zero. The final result is that, in addition to Eq. (4.5-29), the
equations

g—%(w*(t), wX(r), ¢) -+ [g—f.,(""*(‘) ’ ;)]Tp*(r} (4.5-30)

- %[a%(w*(fl W), :}] =0

must be satisfied.
If we define the qugmented integrand function as

20, W(D), p(D), £) & g(wW(D), W(2), ) + PT(O[w(D), )], (4.5-31)

then Eq. (4.5-30) can be written

%%(W*(I), Y"V*(t), p*(!)’ I)
(4.5-30a)
- %[%%(“*(fl W), P2, t)] = 0

Equations (4.5-30a) are a set of n -+ m second-order differential equations,
and the constraining relations (4.5-29) are a set of » algebraic equations.
Together, these 2# + m equations constitute a set of necessary conditions
for w* to be an extremal.

The reader may have already noticed that Eqs. (4.5-29) and (4.5-30a) are
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the same as if the results from Problem Ia had been applied to the functional
1f
T = [ g.m(e), %), p0), 1) dt (4.5-32)

with the assumption that the functions w and p are independent. It should be
emphasized that, although the results are the same, the reasoning used is
guite different.

Example 4.5-3. Find necessary conditions that must be satisfled by the
curve of smallest length which lies on the sphere wi{r) + wi(t) + 12 = R?,

for t < [to, 2], and joins the specified points wy, £, and wy, ¢5.
The functional to be minimized is

7o = | R HORR0) L (4.5-33)

so the augmented integrand function is

g.w(2), W(@), p2), 1)

= [1 + %3 + wiO]* + pO[wi) + wi) + 12 — R?2]. (4.5-34)

Performing the operations indicated by Eq, (4.5-30a) gives

) — 2 W) -
2HOP) — = {{1 T +wz‘2®}m} =0 (4.5-35)
d bE
2wE@OP*(E) — 5{{1 T w(?,fg)w;z(z)}t ,,2} =0. (4.5-35b)

In addition, of course, it is necessary that the constraining relation
w¥(t) + wif) + 12 = R2 (4.5-35¢)
be satisfied.

Differential Equation Constraints. Let us now find necessary conditions for
a function w* to be an extremal for a functional

Hw) = j g(w(r), Wb, 1) dt. (4.5-36)

wis an (n +m) X 1 vector of functions (#, m > 1) which must satisfy the
n differential equations

fw(@®), %(2), 1) = 0,

Because of the »n differential equation constraints, only m of the n +m

i=1,2...,n (4.5-37)
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components of w are independent. Constraints of this type may represent
the state equation comstraints in optimal control problems where w corre-
sponds to the n -+ m vector [xiuf’,

As with point constraints, it is generally not feasible to eliminate n
dependent functions and their derivatives from the functional J, so we shall
again use the method of Lagrange multipliers. The derivation proceeds along
the same lines as for problems with point constraints; that is, we first form
the augmented functional

7w ) = [ {g W) WD) ) + P OLAM), W), 0]

+ Pz(f)[fz{w(t), ?""(f}, N+ - 4.538)
+ O, W(B), O]} dt

- J :f {g(w (), W(D), 1) + pT(O[E(w(e), W), )]} dr.

Again notice that if the constraints are satisfied, J, = J for any p(s). The
variation of the functional J,,

87,4, 6w, 89) = [ {[‘* (D, (D), D
+ DO v, 90, 0| | w)
A [ﬁgi(w(t), w(t), 1) (4.5-39)
+ B0 v, W, B | 67
+ [ (o), w0, 0] 9p(0)} de

is found in the usual manner by introducing variations in the functions w,
W, and p. The notation of/dWw means

9h .. 94
awl aw}ﬂ-m
9% ... I

_aﬁﬁ awrﬁm_

Integrating by parts the terms containing W and retaining only the terms
inside the integral, we obtain
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a1.0m, 5,09 = [ {| S ent w00, )
+ 7O [ (o), W0, )
— A% 0, w0, 9 (4.5-40)
+ 70 [F 0, 50,9]]| w0
+ [ Gv), (o), 5] Sp(0) | .

On an extremal, the variation must be zero, that is, 67 (w*, p) == 0, and the
differential equation constraints must also be satisfied; therefore,

oW (r), WH(0), 1) == 0, (4.5-41)

and the coefficient of dp(r) in Eq. (4.5-40} is zero. Since the constraints are
satisfied, we can choose the n Lagrange multipliers arbitrarily—let us select
the p’s so that the coefficients of n of the components of dw{s) are zero
throughout the interval [#,, ¢,]. The remaining (n + m) — 7 = m components
of dw are then independent; hence, the coefficients of these components of

dw(r) must be zero. The final result is that, in addition to Eq. (4.5-41), the
equations

Lo 0. 70,0 + [0, w0, 0] 10

. (4.5-42)
- 2 {FE o000 + [0, 70,0 o) =
must be satisfied.
If we define the augmented integrand function as
gw(z), %(2), p(e), )
= g((@), W2, D + PO, W), 9] (34
then Eq. (4.5-42) can be written
e w70 10,0 — £ [ Frr 0, w0010, 0] = 0. | 45420

Equations (4.5-41) and (4.5-42a) comprise a set of (2n - m) second-order
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differential equations. We shall see in Chapter 5 that in optimal control
problems m of these equations are algebraic, and the remaining 2n differential

equations are first order. _
Equations (4.5-41) and (4.5-42a) are the same as if the results of Problem
Ia had been applied to the functional
if .
Ty = [ 2w, (0, 00, ) (4.5-44)
with the assumption that the functions w and p are independent. Again we

emphasize that although the results are the same, the reasoning is quite
different!

Example 4.5-4. Find the equations that must be satisfied by an extremal
for the functional

s = [ 4[wi + whe ds (4.5-45)
where the functions w; and w, are related by
W (7} = wy(e). {4.5-46)
There is one constraint, so the function f in Eq. (4.5-41) is
SO(@), w(E) = wy(t) — w10, (4.5-4T)

and one Lagrange multiplier p(f) is required. The function g, in Eq.
(4.5-43) is

£.w(), W(t), p(0)) == 3wi(t) + wi) + p(Owa(6) — ph(r). (4.5-48)
From Eq. (4.5-42a) we have

W) + pHE) =0

{4.5-49)
wi(t) +p¥@) =0,
and satisfaction of {(4.5-46} requires that
W = wi(n), {4.5-46a)

Equations (4.5-49) and (4.5-46a) are necessary conditions for w* to be
an extremal.

Example 4.5-5. Suppose that the system

Z1{8) = x() — x,()

4.5-50)
Fpt) = —2x,(6) — 3x,(0) + ()
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is to be controlled to minimize the performance measure
tr
J(X, 1) = f " A¥O + X0 + wO]dr, (4.5-51)
L3

Find a set of necessary conditions for optimal control.

If we define x; & w,, x; & w,, and u & w;, the problem statement
and solution, using the notation of this section, are the following.

Find the equations that must be satisfled for a function w* to be
an extremal for the functional

700 = {7 4w + Wi + wi©) d 4.5:52)

where the function w must satisfy the differential equation constraints

Wilt) = wy(t) — wi(®)

(4.5-53)
W) = —2w; () — 3w, (1) + walz).
The function f is
L), WD) = wy() — wil)) — w6} = 0 (4.5-54)
L2 (w(), W)y = —2w () — 3w, (1) + wal(t) —al) = 0,
and g, is given by
LW, W(e), pe)y = Fwi(e) + $wi(D) + $wi()
+ pr( w2} — w1 (e} — W (D] (4.5-55)
+ pa(t) 2w, (1) — 3w, (1) + wa () — W (]
From Eq. (4.5-42a), we obtain the differential equations
D) = —wi({) + pH) + 1pF@ (@.5-56)
EHEO = —wi() — pF(} + 3p5(),
and the algebraic equation (since W, does not appear in g,),
wi(r) + pF@) = 0. 4.5-57)

The two additional equations that must be satisfied by an extremal are
the constraints
W) = wi(t) — wi)

(4.5-58)
WEQE) = — 2w — 3wF() -+ wi().

Isoperimetric Constraints. Queen Dido’s land transaction was perhaps the
original problem with an isoperimetric constraint—she attempted to find the
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curve having a fixed length which enclosed the maximum area. Today, we
say that any constraints of the form

(i = 13 2: RS | r} (4'5-59)

tr
[ ewinn, w(en vy de = <.

e
are isoperimetric constraints. The ¢s are specified constants. In control
problems such constraints often enter in the form of total fuel or energy

available to perform a required task.
Suppose that it is desired to find necessary conditions for w* to be an

extremal for

Jon) = | gn(e), w(e), 1) &t (4.5-60)

subject to the isoperimetric constraints given in Eq. (4.5-59).
These constraints can be put into the form of differential equation con-
straints by defining the new variables

i=1,2,..,rt  (4561)

20 & [ efm(o), (o), 1) db

The required boundary conditions for these additional variables are z{ts)
= 0 and z(t,) = ¢, Differentiating Eq. (4.5-61) with respect to time gives

2{0) = ew(t), W(2), 1), (4.5-62)

or, in vector notation,

f==1,2,...,0,
1) = e(w(z), W(z), 7). (4.5-62a)

Equation (4.5-62a) is a set of r differential equation constraints which we
treat, as before, by forming the augmented function

g.(w(t), W), p(e), &), 1) & g(w(z), W(£), O
+ pr(O)elw(n), W(), O — K1)}

Corresponding to Eq. (4.5-42a), we now have the set of n -+ m equations

(4.5-63)

(), W90, B0 2 1) — 2| T (0, W0, 20, 50, D] = 0,

(4.5-64)

and the set of r equations
98 e, W), B0 20, 1) — | (0, e (0,070, 90, 0 =0,
(4.5-05)

+ Notice that the upper limit on the integral is £, nof ¢r.
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a total of {r + m +r) equations involving (# + m -+ r -+ r) functions
{w*, p*, z%). The additional r equations required are

() = e(w (1), W), 1)

whose solution must satisfy the boundary conditions z}(¢;) = ¢, i=1,..., .
Notice that g, does not contain z(#), so dg,/dz = 0. In addition, dg,/dZ
== —p*(¢); therefore, Eq. (4.5-65) always gives

P =0,

which implies that the Lagrange multipliers are constants.

To summarize, for problems with isoperimetric constraints, the necessary
conditions for an extremal are given by Egs. (4.5-64), (4.5-60), and (4.5-67).
The following examples illustrate the use of these equations.

(4.5-66)

(4.5-67)

Example 4.5-6. Find necessary conditions for w* to be an extremal of the

functional
J@w) = f:,}{w%(t) Fowhe) b DO d (4.5-68)
subject to the constraint
"ty "
f " wiodt = c; (4.5-69)
¢ is a specified constant.
Let 2(s) A wi{f); then
£:w(0), W(2), p(D), 2(t)) == $wi() + $wi(e) + Wi (O (1) (4.5-70)
+ pO[WI — 20}, -
From (4.5-54), .
win) — w0 =0 4571
W) + 2wF@)p*() — wHE) =0, @70
and Eq. (4.5-65) gives
) =0. 4.5-72)
In addition, the solution of the differential equation
O = wi(), M)y =0 (4.5-73)
must satisfy the boundary condition
) =c. (4.5-74)
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In control problems, there are always state differential equation con-
straints, in addition to any isoperimetric constraints. Let us now consider
an example having both types of constraints.

Example 4.5-7. The system with state equations

21 = —x{0) + x,0) - w(®)

(4.5-75)
X,(8) = —2x,(2) — 3, (6} + )

is to be controlled {0 minimize the performance measure

sex, ) = [ 3540 + x50 . (4.5-76)

The total control energy to be expended is

J" W) dt = c, (4.5-77)

where ¢ is a specified constant. Find a set of necessary conditions for
optimal control.

If we define x; & wy, X, & w,, and z & w,, then the problem stated
in the notation of this section is as follows.

Find necessary conditions that must be satisfied by an extremal for
the functional

Iy = [74[wi0 + wio] (4.5-78)

The constraining relations are

W) = —wi(t) + wae) + wi(2)

(4.5-79)
Wity = —2w, (1) — 3wa(2) -+ walp)

and
tr
j wi(r) dt = c.
ig
First, we form the function

2w, % (), p(0), 2020y = 1w + Iwi()
+ PO —wi®) + wo() + wi() — 1 (1)]
+ po ()] 2w {6y — 3w, (2) + wile) — Wa(0)]
+ pa(Owi) — 2O}

The required equations are

(4.5-80)
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b PEO) = @) + 2030 — wHD)

' PO = —pE@ + IO — wEO
PEE + pEy + 2wHOpHD =0
=0

WHE = —wi) + wF) + wi)
WEE) = —2wi() ~ 3w + Wi
) = wii(s), z*(t) =0.

(4.5-81)

The boundary condition z*(z;) = ¢ roust also be satisfied.

To recapitulate, the important result of this section is that a necessary
condition for problems with differential equation constraints, or point con-
straints, is

g%(“’*(t)s W), P, D
(4.5-42a)
- %[%{W*(‘)’ W (2), PH(0), r)} =0,

where

g.w(0), W(1), p(0), 1) & g(w(e), %(2), )
-+ FOIRwQ), W), n}:
This means that to determine the necessary conditions for an extremal we

simply form the function g, and write the Euler equations as if there were
no constraints among the functions w. Naturally, the constraining relations

(4.5-43)

(w*(z), W), £} = 0 #(4.5-41)

must also be satisfied.

4.6 SUMMARY

In this chapter, some basic ideas of the calculus of variations have been
introduced. The analogy between familiar results of the calculus and corre-
sponding results in the calculus of variations has been established and

1 Xf wiz) does not appear explicitly in f, then we have point constraints.
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exploited. First, some basic definitions were stated, and used to prove the
fundamental theorem of the calculus of variations. The fundamental theorem
was then applied to determine necessary conditions to be satisfied by an ex-
tremal. Initially, the problems considered were assumed to have trajectories
with fixed end points; subsequently, problems with free end points were
considered. We found that regardless of the boundary conditions, the funda-
mental theorem yields a set of differential equations (the Euler equations)
that are the same for a specified functional. Furthermore, we observed that
the Euler equations are generally nonlinear differential equations with split
boundary values; these two characteristics combine to make the solution of
optimal control problems a challenging task.

In control problems the system trajectory is determined by the applied
control—we say that the optimization problem is constrained by the dynamics
of the process. In the concluding section of this chapter we considered con-
strained problems and introduced the method of Lagrange multipliers.

With this background material, we are at last ready to tackle “the optimal
control problem.” )
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PROBLEMS

41. fis a differentiable function of n variables defined on the domain 2. If ¢*
is an interior point of @ and f(g*) is a relative extremum, prove that the
differential of f must be zero at the point g*.

Problems The Calcufus of Varia::‘ions 179

4-2, Prove the fundamental lemma; that is, show that if A(¥) is continuous for
t € [to, t5), and if

j‘ ) Sx(6) dt =0

for every function dx(¢) that is continuous in the interval [fo, 1/} with
Ox(t;) = dx(t ;) = 0, then k(f) must be identically zero in the interval fzq, /1.

4.3, Using the definition, find the differentials of the following functions:
() f{£) =483 + 51, t > 0.
(b) £(g:,92) = 543, + 69.q9; + 243.
© f =gt + 9} + 59:19.95 -+ 2q14; + 3g;.
Compare your answers with the resulis obtained by using formal procedures
for determining the differential.

4-4. Determine the variations of the functionals:

@) J(x) = j: [¥3() — x2(O%()] dt.
®) 7@ = [ [0 + 1000 + 0 + 200)] dt

© J@ = [T e ar
H]
Assume that the end points are specified.

4.5, C_onsider Problem 1 of Section 4.2 and let 57 be a specified continuously
differentiable function that is arbitrary in the interval [z, r,] except at the
end points, where 7(to) = #(t;) = 0. If € is an arbitrary real parameter,

then x* -+ en represents a family of curves. Evaluating the functional

¥

T = f : g0(e), 20, 1) it

on the family x* + € makes J a function of €, and if x* is an extremal this
function must have a relative extremum at the point € = 0.

Show that the Euler equation (4.2-10) is obtained from the necessary
condition

dJ(x* 4 €n)
de

= 0.

&=
4-6, Euler derived necessary conditions to be satisfied by an extremal using finite

diﬁ'e‘rences. The first step in the finite-difference approach to Problem 1 of
Section 4.2 is to approximate the functional

I = [ g, 20, 1y

by the summation

L~E g6, 30,0 Ar,
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