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13. Find the Hamilton-Jacobi equation for the system
Xy = Xz, Fg = =Xy — X7 b U
if the performance index is
H
7={"at+war
14. Show that the solution of the Flamilton-Jacobi equation for the system
% == Ax 4 u, AT A=0, |yl g1
and the cost function
iy
J o= J.g dt =t f
is
Vx) = || x|k

What is the optimal control?

15. Find the optimal control to minimize
i
7= a
for the system
Foomm e b g,

when
M =1, ) =0

fu] < 1+ ix].

Optimum systems
control

examples

In this chapter, we will illustrate some, but certainly not all or even most,
of the optimal control problems for which closed-form analytic solutions
have been obtained. The problems we will solve in this chapter are very
important in their own right and illustrate the use of the maximum principle
for problems in which closed-form analytic solutions may be obtained, Spe-
cifically, we will discuss the linear regulator problem, the first solution of
which was due to Kalman [1, 2, 3, 4], We then discuss the minimum time
problem which has been considered by Pontryagin [5], Bellman [6], LaSalle
{7], and many others [8 through 13].

A characteristic of some minimum time problems is the possibility of
a singular solution. The possibility of singular solutions is well-recognized
in the variational calculus literature and has been extensively discussed for
control problems by Johnson {14, 15, 161 and others. Minimum fuel problems
for linear differential systems are then discussed. A variety of authors, but
notably Athans, have discussed various aspects of minimum fuel problems
including the possibility of singular solutions {17 through 20], Although we
will not consider the minimum time-fuel-energy control of self-adjoint
systems [21] due to its limited practical usefulness, we do note that such
systems admit a particularly thorough analysis. For a survey of many other
problems plus a lengthy bibliography, we refer to the survey papers of Paie-
wonsky {22] and Athans [23].

»7




88 OprivMuM StsTEMs CONTROL EXAMPLES CH. 5

5.1
The linear regulator

We will now study a particular control problem which ha.s as its stolutiog ;
linear feedback control law. It occurs where we have a linear different:

t
R % = AQX + B@u,  x(t) =% (.1-D

and wish to find the control which minimizes the cost function (for ¢, fixed)
7 = SN + 4 | FOQUIXE + wOR@uE dE - (12)

Clearly, there is o loss of generality in assuming Q, R, a:nd S to be. sym-
metric. We may obtain the solution to this problem via the maximum
principle or the Hamilton-Jacobi equation. Here, we will use the former
method. The Hamiltonian is
HIx(), u(f), M), £] = IxTQx + Ju”Ru 4 ATAX + ATBu.  (5.1-3)
Application of the maximum principle requires that, for an optimum
control,

%% = 0 = RQ)u() + BOM) (5.1-4)
and
O 5 = QU + ATOM) (5.1-5)

with the termainal condition

M) = T&% = Sx(t,). (5.1-6)

"Thus we require that

u(f) = —R~ HHOBT(HME), (5.1-7)

and we shall inquire whither we may convert this to a closed-loop control
by assuming that the solution for the adjoint is similar to Eq. (5.1-6)

M) = POx@). (5.1-8)
If we substitute this relation into Eqs. (5.1-1) and (5.1-7), we see that we must

reauie % = A@)x() — BOR OB (OPEOxX(). (5.1-9)

Also, from Egs. (5.1-8) and (5.1-5) we require
b = Px(2) + PO = —Q@x(® — ATOP@XO)- (5.1-10)
By combining Eqs. (5.1-9) and (5.1-10) we have
[P + P(OAQ) + ATOPQ@) — PEBOR- OB (OP() -+ Q0K = 0.
(5.1-11)
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Since this must hold for all nonzero x{z), the term premultiplying x(z)
must be zero. Thus the P matrix, which we see is an # X » symmetric matrix
and which has n{n -+ 1)/2 different terms, must satisfy the matrix Riccati
equation—which, as we shall see later, must be positive definite— ’

kY

= —P(HA{) — AT(OP() + POBEOROBTOPE) — Q) (5.1-12)
with a terminal condition given by Egs. (5.1-6) and (5.1-8)
P@s) = S. (5.1-13)

Thus we may solve the matrix Riccati equation backward in time from
ts to t,, store the matrix

K() = —R™(OBT(OP(). (5.1-14)
and then obtain a closed-loop control from
u(f) == -+-K@x(). (5.1-15)

It is important to note that all components of the state vector must be
accessible. We will remove this restriction in Chapter 8 when we discuss
the ideal observer. A block diagram for accomplishing this solution to the

regulator problem is shown in Fig. 5.1-1. If we corapute the second variation,
we find that

8 = L xS 3x(2)) + 1 [ BXT()Q) 8%() + BuT(R(?) Bu(?)] .
’ (5.1-16)

x(#}

I 3 x{#}

BN

A

K
Fig. 5.1-1 Optimum linear closed-loop regulator,
Thus, Q, R, and 'S must be at least positive semidefinite in order to

establish the sufficient condition for a minimum. In addifion, we know from
Eq. (5.1-7) that R must have an inverse;T therefore, it is sufficient that R be

positive definite and the Q and S be at least positive semidefinite.

+Approaches that allow this assumption to be relaxed can be found in {24] and [25].
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Tn some cases it may turn out that certain elements of the S matrix are
large enough to give computational difficulties. In this case, it is possible and
perhaps desirable to obtain an inverse Riccati differential equation; we let

PP =1, (5.1-17)
and, by differentiating, we obtain
PP-1(r) + PP =0 (5.1-18)

such that we obtain an “inverse” matrix Riccati equation
P-1 = AGOPI() + PTI@AT() — BORT (OB + PoHHQOPT()
(5.1-19)
with P-i(t) =871 . (5.1-20)

In this way, for example, it is possible to solve the Riccati equation such
that S-! = [0], the null matrix, which will require that each and every
component of the state vector approach the origin as the time approaches
the terminal time. The “gains” K(r), or at least some components of them,
become infinite at the terminal time in this case. 1t is also necessary to assume
certain controllability requirements here, as we shall see in Chapter 7.

It is possible to write the nonlinear 7 X 2 matrix Riccati equation with
a terminal condition as a 2» vector linear differential equation with two-point
boundary conditions. We will use this approach, in part, to solve a Riccati
equation associated with a filtering problem in Chapter 8. Our discussion
of the second variation method in Chapter 10 will also make use of a Riccati
transformation.

Example 5.1-1. Consider the scalar system
i= =) +u),  *) =%
with the cost function
I = poxt(e) + § [ (2220 + w2 .

‘The Riccati equation, Eq. (5.1-12), becomes
p=p+p*—2, pl)=>s
which has a solution we may write as either

P& = —0.5 -+ 15 tanh (—1.5¢ + &1)
or
p(f) = —0.5 + 1.5 coth (—1.5¢ + £,)

where &, and &, are adjusted such that Pty ==
For example, if

(@ 5==0,¢tr == 1, then £, == 1,845 radians, which gives
K() = —R1BTP = 0.5 — 1.5 taph (- 1.5¢ 4 1.845).
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Stince s = 0, we are not particularly weighting the state at the final
time, and the “gain” (and control) goes to zero at the final time.

{b) 5= 10, t; == 10, then &; = 15.1425 radians. In this case we are apply-
ing a great weight to the error at r = £, and the gain becomes large
(=10} at the terminal time.

{c) § =00, the Riccati equation cannot be solved directly since it has an
infinite initial condition. The inverse Riccati equation can be solved
with zero terminal condition to give

K1) = 0.25 + 0.75 tanh (—1.5¢ + 1.5¢; — 0.346).

As ¢ becomes infinite, it is easy to show that K{r) becomes unity and, as is
expected, the feedback gain becomes constant. Figure 5.1-2 illustrates K(9),

the ‘fKajman gains” as they are sometimes called, for these three cases for this
particular problem.

tr=t0sec

3 4 5 8 7 8 g 10
Time, seconds

Fig. 5.1-2a (—1) times Kalman gain for controller, s = 0.

Example 5.1-2.  Let us consider the optimum closed-loop control for a
nuclear reactor systern. Specifically, we wish to consider a very simple reactor
model with zero temperature feedback. Only one group of delayed neutrons
will be used.

The reactor kinetics are described by the equations

PO PR L

wht?re the neutron density, n, and the precursor concentration, ¢, are the state
?a‘mables, and the reactivity p is the control variable. The system has the
initial conditions n{0) == n, and (0) = ¢,. f, A and A are constants, the
average fraction of precursors formed, effective meutron lifetime, and pre-
cursor decay constant, ’
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o ef=1sec e /= {Osec

-K{
T

Time, seconds

Fig, 5.1-2b (—1) times Kalman gain for controller, 5 = 10.

iy = 1sec fe= {0 sec
10 f

- K1
F

A VU SR NSNS SRS RN N SO NS S
o1 2773 4 & & ¢ 8 9 10

Time, seconds

Fig. 5.3-2¢ (—1) times Kalman gain for controller, s = 0.

The problem is to increase the power from the initizfstate 7, to a terminal
state dn,, where d is some constant greater than 1.0. The performance index
for the system is

Ji=1 L’ prdr.

The control variable therefore becomes g, and p, in effect, thus becomes a
state variable, The kinetics equations may then be rewritten as
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észftc

p=u
where 1 is the control variable. Chapter 10 on quasilinearization indicates
how the nonlinear two-point boundary value problem resulting from the use

of optimal control theory may be used to obtain the optimum control and
trajectory, which are shown in Fig. 5.1-3, for the following system parameters

A = 0.1 sec? no = 10kW

d=3
A =103 sec B = 0.0064
ty = 0.5 sec.
5.0 T T 7 T
1/
fig
a0k «gx§03 -
3.0+ —
2.0 -
1.Q 1
i | | i i
G Q.1 .2 0.3 0.4 Q.5 0.6
Time (sec)

Fig. 5.1-3 Optimal control (reactivity) and trajectory (flux density) for
Example (5.1-2).

We will now develop a method of feedback control about the optimal trajec-
tory which minimizes a cost function J; ; it will be quadratic in deviation from
the nominal (optimal for J,) trajectory and control.

Having formutlated a model for the nuclear reactor system and determined
the optimal trajectories, we now desire to determine the linearized system
coefficient matrix about the optimal trajectory. The deviations of the state
and control variables about the optimal or nominal trajectories are expressed
by

n = m(t) + An(r), ¢ = o) + Ac(?)

2= p0) + Ap(D),  u=u,t) + Au(®).
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The state vector is
AxT(t) = [An(r), Act), Ap()].
The linearized model becomes

a;:{0) A ans) 0
ac=| B -2 o imw+]o A
0 0 0 1
= A() Ax(#) + b(t) Au(t)

where

b

CZU(Z) — pn(f}\_ ﬁ a, (t) — ”n(f)

To complete our design of the closed-loop controller, we must evaluate
A(2) and b{f) about the optimum or nominal trajectories, select the R, Q, and
S matrices, and solve the associated Riccati equation, The nominal trajectory,
control, and time-varying gains are then stored and used to complete the
closed-loop controller design.

"The choice of the R, Q, and S matrices to minimize

T, = § AT SAR(y) + %f’ [AXT(OQOAXG) + r(OAU] dt

is somewhat arbitrary and can perhaps best be done here by experimentation.
We can accomplish this only after we have obtained a knowledge of possible
disturbances which may drive the system off the nominal frajectory. Let us
assume that we will use

1 0 0
Q= 0 0 Qg i S=G, r = 1.
0 0 104

In Chapter 10 the second variation and neighboring optinal methods of con-
trol-law computation will lead us to a method for choosing the proper weight-
ing matrices for a variety of cases, in particular, for relating J; and J3.

The control, Au(r), is computed from

Au(t) = —RI{OBEOPOAX()
—1p31(t) Ant) + p32(t) Act) + pas(t) Ap())

where it is necessary to solve the 3 % 3 matrix Riccati equation, having six
different first-order differential equations, {o obtain P()s Figure 5.1-4
illustrates the Kalman gains, —K7(¢) = [p31(8), p12(t), pas(®)], for thisexample.
Figure 5.1-5 indicates how the complete closed-loop controller is obtained.
It is interesting to note that, in an actual physical problem, the precursor
concentration is not measurable, and therefore we need to add an “observer”
of this particular state variable. We also need to discuss many more aspects
of this problem such as disturbances and parameter variations, We will
postpone further consideration of these important questions until we establish
some foundation in state and parameter estimation and optimal adaptive

I
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Fig. 5.1-4 Kalman gains for Example (5.1-2).

Optimal state
variable storage
{flux density)

Measurement
noise

Reactivity
disturbances

wit)

A
+

Nuciear
A system

95

2
State estimator X
Pl _— {observer)
1 + Au it .
5 -R'8’P
+
u(f)

Optimai control
variable storage

Fig. 5.1-5 Structure of controller for Example (5.1-2).

control. We have, in this example, illustrated how a basically nonlinear prob-
lem may be linearized, and a linear time-varying closed-loop controller
obtained, if a nominal irajectory is known. Since this can be accomplished
for a variety of problems, we see that the linear regulator problem is indeed

an important one.
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Example 5.1-3, We now cousider the optimal control of a distributed
parameter system. By a spatial discretization technique, we will reduce the
distributed parameter optimal control problem to a form of the linear regula-
tor problem.

Consider the one-dimensional diffusion equation

dx(y, 8) _ 9%x(y, 1) ;
e + u(y, t) (5.1-21)

with initial condition x(p, 1, = 0) = x,(7),

_m.ax = - _m—éx(-" = t w3 P
and 3 0 at y A 3 at y == yr.

We desire to find the control #(y, /} which minimizes the cost function
7= |7 [T10w0,0 + Rt 0] dy de.
[ 4]

We wish to obtain an approximate solution of Eq. (5.1-21) where u(y, 1)
is assumed to be available. We shall establish a spatially discretized model in
which the size of the space increment is Ay == yyfn, where n is an infeger.
Physically, this corresponds to cutting a slab of length ¥, into » slices. We
shall use central difference formulas and obtain a spatially discrete model
that can be described by vector differential equations. Let us use the notation

Q—‘%%’i) = £(f) where i=12,...,n (5.1-?.2)
and then use central difference formulas to obtain
F2x(p, 1) o Xeoa ) — 2x,08) + xp5(8) R
= (Ayy* ©.1-23)

where
@ =xG + Ay, 0, %0 =x0,0, x1) =x(v — Ay, 1)
Therefore, using Eqs. (5.1-22) and (5.1-23) in Eq. (5.1-21), we obtain
R X2 102) — 2x8) + x4(2
p) = T2 ; A;f)z %@ i (5.1-24)
wherei==1,2,...,n
By considering different values of f,i=1,2,...,#, and using Eq.
(5.1-24), we obtain x first-order linear differential equations which approxi-
mate Eq. (5.1-21). These are

20 = bl — 200 + x@] + u)

() = @%;jzixs(t) - 2%08) + O] + wald)

(5.1-25)
Hpor(t) = @—lﬁzxﬁ@ — 201 (@) + @] + s ®)

) = (“"A%a[xnﬂ(ﬂ — 250+ Xae (O] + 10).
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We may use the boundary conditions to obtain x,() and x,,,(). Then, by
using a first difference approximation to the initial boundary condition, we
obtain

X012} — x,8) =0

B for y=0 or,equivalently, i=0. (5.1-26)
We have therefore established the boundary condition
xoft) = x, (). {5.1-27)
In a similar fashion, we may easily show that
X8} = X1 (D). (5.1-28)

If use is made of Eqgs. (5.1-27) and (5.1-28) in the set of ordinary differential -
equations given in Eq. (4.3-28), we obtain

#4(0 = sl — 1@ + 1@
52(0) = G xa® — 2xalt) + 21(0] + s

£5(0) = ogba® — 250 + 2] + 1)
, (5.1-29)

(£ = @A—@W[x,m — 2kpetO) + FopmalO)] F thg-sr(2)

, 1
xn(t} = W[_xn(r) + xn—-l(r)I o+ Hn(r)'
We will now represent this set of ordinary linear differential equations by
the vector differential equation
(1) = AX() + Bu@®),  x(0) =x, (5.1-30)

where: x is an n-dimensional state vector; u is an #~-dimensional control vector;
A is the n ¥ » tridiagonal matrix,

-1 1 0 00 00 0 0]
1 -2 1 00 00 0 0
0 1 -2 10 00 0 O
Aol 0 0 1 -2 1 00 0 0}
AP . . . .. . . .3
0 0 o0 00 01 —2 1
0 0 o 00 00 1 —1]
(5.1-31)

and where B is the idenfity matrix of order #, B = 1. It is an easy task {o
verify that this linear system is always stable.
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A discrete approximate form of the performance function is
tr n=1
7=189 [7 (3 10%20) + RO + HO%(O + @50

4 Ru () -+ Ru, ()]} dt

whete # is the last discretized spatial stage. We may rewrite this as
J=}Ay j;’ XF(OQx() -+ W (HRu] dr.
For this problem, the Hamiltonian is

H(x,u, A, O = 3 AyxTQx -+ § Ayw"Ru -+ MAx + ATBu,

Application of the maximum principle to this problem immediately yields the
two-point boundary value problem.

x = Ax + By, x£0) = 1 + &iysin, i=12,...,n
—) = AyQx(p) + ATA,  A(;) =0
== —EI}R“‘BTL

We shall solve this problem by generating the Riccati equation where, as
before in Sec. 5.1, we assume A(f) = P(#)x(2). Thus, the optimal control is a
linear feedback control determined by solving

P(t) + POA — ﬁ; P(OBR-IBTP(r) + AyQ + ATP(1) =0, P(t;) =0

% = Ax — —A%)BR”BTPX(:), X0 =1 4 aiygfn, F=1,2,...,7
u(f) = AL})R“BTP(:}x(t).

Let us consider the following two cases:

Case A t; = L0, y; =40, B=I @ =R-=1
Ar=001, Ap=10, o =1

1 1 o o0 © 10000
{ —2 t 0 0 01000
Am%— o 1 -2 1 0 ©Q=R=l00100}
0 0 1 —2 1 00010
0 0 0 1 -1 0000}

Case B t; =10, Ar = 0.01, B =1, Q=R =1
yr=40, Ay=05 a=1
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=1 1 ¢ 0 0 0 0 0 07
1 -2 1 0 ¢ 0 0 90 0O
¢ 1 -2 1 O ¢ 0 0 0
¢ 0 t ~2 1 0 0 0 0

A=4, ¢ 0 0 1 =2 1 0 0 0}
¢ 0 0 o0 1 -2 1 0 0
o ¢ ¢ 9 o0 1 -2 1 0
o ¢ ¢ 0o 0o 0 1 =2 1
~ 0 ¢ o0 0 0 ¢ 0 1 -1

"L 0 0 0 0 0 0 0 O]
010000000

0 010000090
000100000
Q=R=|0 06 0 01 0 0 0 0}
0 00001000
000001060
000000010
(00000000 §
x(0)}=1C

4f=00l, dy =1
r =00

- U(.V» f}

1or
o8-
0.6
04
Q.2

! 3 ! ] | ! ]

i Oty &
O OQIC 020 030 040 050 080 C70 080 030 0I0D
Time {sec}

Fig. 5.1-6 Optimal control versus spatial coordinate and time, Example
5.1-3.
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08 .
0.7
06 x{ok=1.0
Ar=0.01, dy=1
r=0.0l

05
th = SUy= Uy =Ug
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i ! | i i ! ! ! ]
0 Qlo 020 030 040 050 060 070 08O G800 10V
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Fig, 5.1-7 Optimal contro} versus time for ¢ = 0, Example 5.1-3.

Solution of the two cases considered viclds essentially the same result.
This indicates that, for the particular initial condition x(y,0) =1+, 2
model with five coordinates yields as good a solution as a model with ten
coordinates. Thus we may safely assume that, for this particular initial condi-
tion, lumping the distributed system into five states is a satisfactory thing to
do. As we change the. initial distribution, x(y, 0) = 1 + ¢y, by changing ¢,
the number of necessary states to provide a good lumped model changes. For
& == 00, where the initial condition is uniform throughout », a single state
suffices for an exact model since d2x(y, 1)/dy* is then always zero, and the dis-
tributed system degenerates to a lumped system for this particular case.

Figure 5.1-6 illustrates a plot of the optimal control versus time and dis-
tance y for & = 1, A plot of the optimal control versus time is shown for the
spatially independent case when & = 0 in Fig. 5.1-7.

5.2

The linear servomechanism

The linear regulator problem considered in the preceding section can be
generalized in several ways. We can assume that we desire to find the control
in such a way as to cause the output to track or follow a desired output
state, 1(7). We may also assume that there is a forcing function {not the con-
trol) for the system differential equations. Therefore, we will consider the mini-
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mization of
7= gl — el + 4 [ 1@ — 20l + lu®[Ral e 5.2-D

for the system which contains a deterministic input or plant “noise™ vector
w(z) :
% = A@OX(?) -+ BOu(t) + w(®),  x(f) =%, (5.2-2)
2{t) = C(Ox(). (5.2-3)
The requirements on the various matrices are the same as in the preceding

section. We proceed in exactly the same fashion as for the regulator problem.
The Hamiltonian is, from Eq. (4.3-34),

H(x, u, 0, 2) = 4lin(®) — COXO 30 + $v@ ko +

MA@ + B(Au@) + w(n)l. (5.2-4)
We employ the maximum principle and set §H/du = 0 to obtain
u(f) = —R{OBTML) (5.2-5)
and
%g = —1 = COQMICEOx() — n()] + A7) (5.2-6)
with the terminal condition
Mep) = CTSICEIxE) — mlEl. (527)
In order to attempt to determine a closed-loop control, we assume
M) = P()x(0) — &) (5.2-8)

We substitute this relation into the canonic equations and determine the
requirements for a solution. By a procedure analogous to that of the preced-
ing section, we easily obtain the following requirements:

P = —P(NA(?) — ATOPQ) +

P@BOR!-(HBTOP() — CT(HQECH) (5.2-9)
P(t,) = C7(1,)SCt;), (5.2-10)

and
£ = —[A(r) — BOR OB OPOTE + POw(E) — CTOQEmM@)  (5.2-11)
&) = CT(tp)8n() (5.2-12)

Thus we sce that the linear servomechanism problem is composed of two
parts: a linear regulator part, plus a prefilter to determine the optimal driving
function from the desired value, n(), of the system output. The optimum
control law is linear and is obtained from Eq. (5.2-5) as

u(t) = —R-{OBNPExE) — &)1 (5.2-13)

Unfortunately, the optimal control is, in practice, often computationally
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unrealizable because it involves £(¢) which must be solved backward from
tf to t, and, therefore, requires a knowledge of m(r) and w(z) for all time
t & [t,, t7]. This is quite often not known at the initial time £,.

Example 5.2-1. Let us consider the minimization of the cost function
T=4 [ 10 =02+ wdr

for the systemn described by
Xy ==X, x4{0) = xqo
kg == U, x5(0) = X20.
We first use Egs. (5.2-9) and (5.2-10) to obtain the Riccati equation for
this example
Pu=rb—1, Puilty) =0
P12 = —Py1 + P1aPra,  Pr2lty) =0
P2z = —2p1a + Pha, Paalty) = O

If we allow 7 to become infinite, we obtain thesolution py; = pa2s =4/ 2,
P12 = 1. Thus we have for the closed-loop control

u=~RIBPx —E]l = —x; — /2% + 3
where we must determine & by solving Egs. (5.2-11) and (5.2-12) which become
for this example
£1=¢'1""f1‘1: St =0
Er= —& + /TE &ty =0,

If 5, = &, a constant, for ¢ greater than zero, we are justified in o_btaim’ng
the equilibrium solution for the § equation if 71, = co by setting &£ =0 to
obtain &, = 0.707E; = 1, = &. If gy == 1 — ¢™, we will then find by a simple
limiting process that for ¢y = co,

_ et e
§2(t)_1+2—‘.—,\/”2_e . f20.

We may realize this solution as shown in Fig. 5.2-1.

Xo Xy

it + u

.3s+1 + 1

Fig, 5.2-1 Block diagram of optimum servomechanism for Example
5.2-1.
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We note that if w(t) = n{t) = 0, or for that matter, any vector constant
in time, the servomechanism problem reduces to a regulator problem except
that it is an “output” regulator problem rather than a “state” regulator
problem because of the presence of the output matrix C(#). It is not necessary
for the system to be controllable in order to find a solution to the regulator
problem. The only exception to this is in the limiting cases where S becomes
infinite or where ¢, becomes infinite, It is, however, necessary that the system
be observable in order for a solution to the output regulator problem to
exist. We will expand considerably on these ideas when we consider control-
lability, observability, and the reachable zone problem in Chapter 7.

5.3

Bang bang control and minimum time problems

Maximum effort control problems have become increasingly important
in a variety of applications. It is natural that we ask under what circumstances
optimal controls will always be maximum effort, or bang bang. To do this,
we will restrict each component of the control vector, u(z), to some bounded
interval. Let us consider the nonlinear differential system where the control
enters in a linear fashion :

% = {[x(0), 1] + G[x(@), uiz). x{)=x, (5.3-1)
a, << u;, < b, Vo Q (5.3-2)

and assume a performance index which likewise contains only linear terms
in the control variable, such that the Hamiltonian will also be linear in u(z).

=00t 1] + [ GO, 1+ WD), @} de (533)

Hx(), a(t), A7), 71 = [x(0), 1] + BT[x(), tJu(?) +
AN (U, 1] + G[x(), Au()}. (5.3-4)

Since the Hamiltonian is linear in the control vector, u(¢), minimization of the
Hamiltonian with respect to u(¢) requires that

{ai if  {WT[x(2), £ + A(OGxE), ¢} > 0
“T i (X A - MG, ) < 0.

rhus we see that when the control vector appears linearly in both the
equation of motion of the differential systern and the performance index, and

if, in addition, each component of the control vector is bounded, the optimal
control is bang bang. The only exception to this occurs in cases where

Wx@), 11 + WOGx®, 1] = 0, (5.3-6)

(5.3-5)



