Discrete variational calculus and
the discrete maxitum

principle

Perhaps the most useful single fechnique in modern control system theory
is that branch of mathematics known as the calculus of variations. Variational
principles have been applied to physical problems, such as wave propagation,
since the time of Huygens. The Hamiltonian formulation of the variational
problem has existed since the early nineteenth century in the works of
Hamilton, Jacobi, and others. The most significant coniribution in recent
times was made by L. S. Pontryagin. The work of Pontryagin [1, 2] extended
the variational method to include problems wherein the available control and
state vector is bounded, as we have seen in the previous two chapters,

Recently, the maximum principle has been applied to problems involving
discrete-data systems [3, 4]. In reality, the maximum principle is not univer-
sally valid for the case of discrete systems [1]. Due to restrictions on possible
variations of the control signal, the maximum principle must be modified
for the general discrete case. Jordan and Polak [5] discuss the limitations and
derive a modified form of the maximum principle, which is applicable to the
general discrete problem. Pearson and Sridhar [6] investigate the discrete
maximum principle using the framework of nonlinear programming [7].
Further discussion can be found in [8]. The results in [9] represent a par-
ticularly general development of necessary conditions for the discrete time
case.

We begin this chapter by determining a discrete version of the Euler-
Lagrange equations and transversality conditions. The discrete maximum
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principle is then stated and compared with the continuous maximum prin-
ciple. The final section explores the relationship between discrete optimal
control and mathematical programming.

6.1

Derivation of the discrete Euler-Lagrange equations

In our previous work we minimized cost functions which were integrals
of scalar functions. Here we are interested in minimization of cost functions
which are summations of scalar functions. Thus we are concerned with
minimizing (or maximizing) functions such as

k1 kpm i
J == E q’(xk’ Xpts k) == Z Q)k (6.1-1)
F=k, K=k,

where x, = x(t,). For the case of synchronous sampling, or sampling with
an equal time interval between samples, x; = x(kT), where T is the sampling
period.t

It should also be noted that the function @, represents the incremental
cost for one stage of the discrete process. For a cost function equivalent fo
that of an integral for a continuous process, @, will contain, as a multiplying
factor, the sampling period T’ We let X, and X,., take on variations

% = & + M a1 == Rprr M (6.1-2)

where & denotes the solution to the optimization problem. We use the same
procedure as used previously for continuous systems. We substitute the
foregoing values assumed for x(7) and X(t,.,) into the given cost function
J. We compute dJ/d€ and set it equal to zero at € == 0 independent of the
variation n,, and 1,,,.. Thus we obtain

S RO

where the notation <X, ¥ is used to indicate the inner product, or X7¥.

If we use variational notation, Eq. (6.1-3) can be written in a simpler
form as follows. (We remember that the first variation &7 is set equal to 0
to extremize J.)

arot Jo Jo
— TE 2k il N G -
OJ = kgk:, {Sxk 9%, -+ 6x%,1 é'i,,ﬂ} = 0. (6.1-4)
When we manipulate the last term of Eq. (6.1-4) into a more convenient form

by exchanging summation indices (replacing k& by m — 1), and when we

+We will also use T to represent the transpose of a vector or matrix, Clearly, no con-
fusion should result from this.
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drop the ~ superscript, we obtain

Rt 90, & oB[x,,_,, X, m — 1]
12:‘;, () ey m;f;ﬂ oxT 1 - . (6.1-5)

If we rewrite this equation letting k¥ = m and starting the summation at
k ==k, and ending at k, — 1, we get the result

Bt g Ly} ddbx Xy, & — 1]
vy Fo T k13 2py
k;&, O%ie1 0%per ¥, o %, +
gt PXe- 1, % k — 1] (6.1-6)
k k=ky
Therefore, Eq. (0.1-4) becomes
it dB[x;, X kl |, d®x X bk — 1]
T ks At 1y ) 3
kgka 8 { dx; + 1ax*‘; } +
T aq){xk-n Xy, k — 1%
5xT %, e 0. 6.L.7)

For ].Eq. (6.1-7) to be equal to zero for arbitrary variations, the following
vector difference equation, which is necessary for an extremum of the cost
function, Eq. (6.1-1)}, must hold:

(?CI)EX,-C, Xk.;.;, k} 5(13{1(;,«.1,!( ,k — 1}
et Tx, =0

This may be spoken of as the discrete Euler-Lagrange equation. The trans-
versality condition is obtained when we set the last term in Eq. (6.1-7) equal
fo zero:

(6.1-8)

é —
axil’ (D{xk—l‘!;}x{::s k 1} p— O for k p— ka, kf- (6.1'9)

The discussions in Chapters 3 and 4 regarding application of the trans-
versality conditions apply well here. Also, the discussion of the Lagrange
multiplier method to treat equality constraints applies almost without
modification. This will be illustrated by an example.

Examp'ie 6.1-1.  In this example, we will consider asimplescalar problem
jand solve it by very elementary techniques. The cost function to be minimized
is

T=3 3 aih).
k=0
The cost is minimized subject to the equality constraints
xk 4 1) = x(&) + qu(l),  x(0) =1,  x(10) =0,

We adjoin to the original cost function the given constraint via a Lagrange
multiplier. This yields

7= 5 ) + Mk + D=l + 1) + 300 + GOl
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The reader may well question why the stage &k -+ 1 is associated with the
Lagrange multiplier. The reason is simplicity of the final result, as will be
apparent in the next section. For this example, we have

@, = dur(k) + Ak + Di—xCe + 1) + x(k) + on(k)}
acp[xks Ket1y k] s +A(k + 1}’ a(p[xk—ls Xiey k— 1} o —;l,(k)

6-xk 6.76;;
a@[xk, X1y k} — &E(k + :E) -+ H(k), a(pixk-—b Xy k— 1] = (.
dux Juz

Thus the discrete Euler-Lagrange equation (6.1-8) yields
Ay — M+ 1) =0,  u) + &l + 1) =0.
Also, the criginal equation must hold, subject to the stated boundary condi-
tions
2k + 1) = xtk) + dulk), x(0) =1, x(10) = 0.
Solving the last two equations, we obtain
ME) == constant = ¢, u(k) = —ac, x(k+1) = x(ky — &c.

This is the final difference equation to be solved. By solving it stage by stage,

we obtain
x{(1) = x(0) — &%

#2) = x(1) — &?c = x(0) — 20%¢
x(3) = x(2) — &¥c = x(0) — 3%

(k) =.x(0) — koite.
Therefore, to satisfy the boundary conditions, we must have

o _ o Fx(0y 41
x(10) = 0 = x(0) — 10%%¢, ¢ = TEaz = Tog2

Hence the control to be applied to this discrete system is wk) = —1/10¢.
The resulting trajectory is x(k) = 1 — &/10.

Example 6.1-2. We now return to the distributed parameter system
discussed in Example 5.1-3 where we now discretize both in time and space.
We wish to reduce the problem to the form

x(k + 1) = Ax(k) + Bu(k)

where
KXo, & U, k

Xi, k Hi, %

x(k) = ) H u(k) =
X, &. um. k.
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The discrete version of the performance index is approximated as
r o
T=1} fo L {Q@'x%y, ) + Ru*(y, )} dy dt

~} Ay At z K2(OQs(E) + wWORWE)L.

We shall now use the discrete maximum principle to obtain the optimal
control u(k). The Hamiltonian is

HIx(k), ulk), Mk + 1), &1 = } Ay A x20Qxk) + 4 Ay At vl (K)Ru(k) +
Mk + 1)[Ax(K) -+ Bulk)].
If we apply the discrete maximum principle, we need fo solve
X(k 4 1) = Ax(k) + Bulk), 200y = 1 + &iveln, i=1,2,...,n
MEy = ATME + 1) + Ay Ar Qx(k), MEy=10

1
u(k) = — = R71BT.
(k) AyAzR BTA(k -+ 1).
) We shall sptve this problem by generating the closed-loop control and the
d13c§rete matrix Biccati squation, where we assume Mk) = P(k)x(k). The
optimal control is discerned by solution of the difference equations

P(k) = Ay At Q + ATP(k + i}i:A*‘ + ﬁ& A-IBR-BTP(k + 1)]"1,
P(K) = 0
x(k) = [1 + L BROBTPG) | Ax(k ;
Ay At ] (k-1 x0) =1+ oips/n
u(k) = ”Eﬁ RBP4+ Dx(k + 1)
i

e m R—IBTA_T[P(]C) - Q]x(k)'
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Let us consider the following two cases.

Case A t; =10, Ar=10J01
Yy == 4.0, Ay = 1.0
& =], Q=1 K=1
r = Aff(Ap)? = 0.01, B = 0.611.

099 001 © 0 0 31 0000
001 098 001 0 0 01000
A=| 0 001 098 001 0 |, R=Q=|001 0 0
0 0 001 098 001 00010
0 0 0 001 09 0000 %
Case Bty = 1.0, Ar =001
yr =40, Ap=05
% = 1.0, Q=R =1
r = 0.04, B = 0.011.
0.9 004 0 0 0 0 0 0 0
004 092 004 0 0 0O 0 O O
0 004 092 004 0 0 0 0 0
6 0 004 092 004 0 O 0 0O
A=| 0 0 0 004 092 004 0 0 0 |
0 0 0 0 004 092 004 0 O
0 0 0 0 0 004 092 004 O
0 0 0 0 0 0 004 092 004
Lo 0 0 0 0 0 0 004 096
"L 00 0000 0 0
010000000
00 10000O0GCO
000100000
Q=R=[0 00010000
000001000
000000T1O0O0
000000010
10000000 0 %]

As indicated in Fig. 6.1-1, there is a slight difference in the computed
controls for these two cases. A third trial with As = 0.01, Ay = 0.25, and
r = (.16 indicates that the resuit for » == 0.04 is acceptable in that there is no
noticeable change in the controls computed for the two values of r, Again
the number of spatial coordinates required for an accurate model is a fune-
tion of & with only a single coordinate required for @ = 0. Figures 6.1-2 and
6.1-3 iHustrate optimum system behavior for & = 20,

~uly,

r=0.04, y=4.0

r=0.0} ¥ =4.0

r=0,0l, y=3.0

R\ r=0.04, y =3.0

'w@\ r==0.04,0.0l, y==2.0
Y

\-_\
O S

R ¥

Time (sec)

Fig. 6.1-1 Optimal control versus spatial coordinate and time, Example

6.1-2.
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Fig. 6.1-2 Optimal control versus spatial coordinate and time, Example
6.1-2, o = 20,
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Fig. 6.1-3 Optimal state versus spatial coordinate and time, Bxrample
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6.2

The discrete maximum principle

Analogous to the continuous time case, use of tilxe discrete jﬁuier—Lagrange
equations for problems having equality and inequality constraints can bef:g)me
quite cumbersome. We now consider the development of DECessary cogdltxons
using a Hamiltonian approach for discrete problems having equality con-

straints of the form

Xpps = Ko U k), k=Ko nkp 1 (6.2-1)
and inequality constraints of the form
w0, (6.2-2)

where U is a given set in R" and k, and &, are fixed integers. The prob%em
considered is to find an admissible sequence m, k = K,, ..., &k, — 1, L.,
u, € O for all &, in order to minimize the criterion

Ep—1
J = 0(xy, k) [k + k§ (K> Wi K, (6.2-3)

subject to Bq. (6.2-1), with respect to the set of all admissible control se-

quences. We pow state a maximum principle for this problem.
let &, k=k, ..., k,— 1, be an optimal sequence, and let R,

k==k,...,k;, be the state response of i uniquely defined by Eq. (6.2-1).
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Then, under reasonable assumptionst, there exists a nontrivial function )
satisfying

A OHRu b Ry, &)

i, 2 (6.2-4)
N, = [ik, - (g%s)} —0, (6.2-5)
and "
ng, = [ikf — (gz’:ﬂ —0, (6.2-6)
where ’

H(Xp, Uy, D K) = $(Xes U, k) -+ ML oH(X, 1, K) (6.2-7)
such that forallk =k, ..., ky 1,
HRyy U b, k) == min HRy, %, o, £, (6.2-8)

A proof of these necessary conditions can follow analogously to the proof
of the continuous time maximum principle presented in Chapter 4, A more
general discrete problem statement, involving state-space constraints, and
proof of the discrete necessary conditions can be found in [9]. Sufficient
conditions for a related problem are presented in [10].

We note that for the unconstrained case where U = R, Eq. (6.2-8)
implies the necessary condition

GH(ik, ﬁk! a"ké—h k) __ 9
Ju, o

X k=rFy....,k; — L (6.2-9)

A perturbation method can be used to develop necessary conditions for this
case as follows. By means of the Lagrange multiplier A, an equivalent cost
function can be written as

ke—1
Jo= 0(x,, k)|Ezk +k§ (0% W ) — AL, [Xpe, — f(x,u, O]} (6.2-10)

which becomes, upon introduction of the Hamiltonian Eq. (6.2-7),

ko—1
J" == 8(Xk9 k) [}?::.;Z + k;k {Hk - ?\r£+|_x;¢+11- (6.2"E1)
Let
X = R, + €1,

ey = Rpug + EMpyy
W, = i, + ev,.

+These conditions are for each k =Xy, ..., kr — 1, @0, +,k): R"xRm — R is
continuously differentiable (c.d.) in both arguments, (-, k): R* — R is e.d. for k = &y,
ke, fG v, kiRt — Rr is cd for E=1Fk, ..., kr—1 and v& O, and the set
{fx,v,5):ve Ulis convex for K = k,, ..., ks — 1 and x € R», These assumptions are
presented in a substantially weakened form in [9].
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We note that the perturbations at different stages are independent; hence,
Mes Mys1, 20d v, are all mutually independent.
Introducing the perturbations into Eq. (6.2-11), we obtain

J' =GRy, A €Mpp kp) — 0Re, + N, #o)
Eky—1
k;k [H(R, + €M U + €V s k) — Mai[8par -+ €Meeddl
From our previous work, we know that a minimum of J’ requires

%».gi =0, g’g,,’ >0 (6.2-12)

for e == 0, independent of the variations. In this development, we will assume
that the second-derivative requirement is satisfied for all cost functions and
systems of interest. Equating to zero the first derivative in Eq. (6.2-12)

requires that
N7 (90N o OHNT,
(;ﬁ“ﬁ) N, (é'ﬁik) W, + 2 (“a'g—k) Nx

¢ (6.2-13)
k1 k1 aH T
T k —
k;(g AL iMeer + P2y (Tﬁk v, = 0.

Employing the discrete version of integration by parts, we can write the
fourth term of Eq. (6.2-13) as:

k=1 kp Erel
——Ic;k A Moy = _k;k:_nivgﬂk = "_k;k [?*'gﬂkg - li;ﬂk; + l';;onko' (6'2'14’)

Using Eq. (6.2-14) in Eq. (6.2-13), combining terms, and dropping the ~
notation, we obtain

() =32 e — [ () — 20 Jme
kp~1

k=i g H, T r @ T —0
&, [("a“g) — Mty (au) Ve =Y
The necessary conditions Eqs. (6.2-4), (6.2-5), (6.2-6), and (6.2-9) hold due to
the mutual independence of the appropriate variations in Eq. (6.2-15). This
development implies a discrete, two-point boundary value problem of the

form

(6.2-15)

Xpoq = DX Myrss Ky Merr = EEes s ). (6.2-16)

If desired, Eq. (6.2-4) can be used to eliminate M., from the first part of
Eq. (6.2-10). The equations which result from the foregoing are the canonical
equations of the required optimal system. The nonlinear, two-point boundary
value problem represented by these equations must be solved, in general,
by reiterative techniques. Since these reiterative techniques will be used on
a digital computer, the discrete maximum principle provides an optimization
method which is the matural one to use for many comtinuous problems
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after an accurate discrete model has been chosen. We will present several
fnethods for the solution of the resulting two-point boundary value problems
in later chapters. The discrete linear regulator will now be considered, since
(with a quadratic cost function) the two-point boundary value problem can
be easily overcome.

Example 6.2-1. Discrete Linear Regulator We consider a general dis-
crefe system represented by

Xpyy = Axk + Buk: X-(O) = X0, k= O: 1: 23 “ney kf

where A and B may be functions of k. The cost function is

=l 8+ 3 5 Ul o+ i

where the weighting matrices Q and R may be functions of the stage, k. We
thus form the Hamiltonian given by

H, = }x7Qx, + fufRu; + AL, JAx, + Byl
From Eq. {6.2-4) the adjoint vector equation is given by
hie = Qxz + AThgys.

We see that this equation cannot be solved for Az, in terms of A unless
A1 exists, Since A is a state transition matrix,t it will always have an inverse,
And since the terminal state is unspecified, the boundary condition is obtained
from Eq. (6.2-6) as

?b(kf} = SX(kf).
¥rom Eg. (6.2-9) we have

dH
El—;: =0 = RH;, + Br?vk.;.].

T%;ere.fore we have linear difference equations to solve, the solution of which
will yield an optimum open-loop control. These equations are

Xps1 = Axg — BROIBTA,, x(ko) = Xq
by = Qxy + ATy, Ay = Sx(ky).
We now guess a solution for these equations of the form
A = Ppx;
and substitute in order to eliminate A, This yields
Xpe1 = AXp =~ BROIBTP, x4

Prxy = Qx + ATPry1Xpy1.
+We have a linear difference equation, the homogenecus part of which is

B(tra1) = Alfrset, 2% ().
Thus A is clearly a state transition matrix.
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By solving for x;.,; and eliminating it, we obtain
Pixe = Qxp 4+ ATP I -+ BRB P 171 AX,
which will hold for arbitrary x, only if
P, = Q + ATP [l + BRTIBTP;]7'A = Q + AT[Pii, + BRTIBTJIA
with the condition at the final stage obtained as
P;, = 8.

If the matrix Riccati difference equation is solved backward in time from
k = k; to k = 0, certain “gain” functions are obtained which are stored after
they are precomputed and applied to the physical system as it runs forward
in real time. Thus we have designed a closed-loop optimal discrete system,
Most of the remarks in the last chapters on the continuous linear regulator
apply here. It is necessary that Q, R, and S be nonnegative definite in order
for the second variation to be positive. Also, R must be positive definite since
its inverse must exist to compute u. The “gains” precomputed by this method
are called “Kalman gains” and are instrumented as shown in Fig. 6.2-1.
The closed-loop control is obtained from the prestored memory as

u, = —ROIBTATP, - Qlx, = —R™IBT[P;i; + BR™BT] lAx,
which is, of course, very similar to the way in which the closed-loop control
is obtained for the continuous linear regulator.

Uy +< X+ Delay Rk
By {one period}

Ay

Prestored
memory

Fig. 6.2-1 Block diagram of closed-loop controller for discrete linear
regulator, Example 6.2-1.

6.3
Comparison between the discrete and continuous
maximum principle

Having discussed both the continuous and discrete maximum principle,
we shall now inguire about the comparison and interconnections between
the two. It is only natural to expect that both the continuous and discrete
maximum principle will yield very simifar (and perhaps the same) solutions
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to a given problem. We shall see in this section that the two-point discrete
boundary value probiems which we solve are different in each case. For
reasonable sample periods, however, the computational solutions for the
two approaches will be essentially the same. Consider the Lagrange problem
of the variational calculus, We desire to minimize

J = j $(x, u, £) dt (6.3-1)

subject to the equality (vector) constraint
%= fx,u 0 (6.3-2)
X(2,) = X,. (6.3-3)

The TPBVP is obtained from the maximum principle as follows. We
define the Hamiltonian

H{x,u, 4, 1) = (%, u,0) -+ A%, 1, ). (6.3-4)
The optimum control is determined by
aH dd(x, u, ) T (x, u, ¢
H_oHwd [ G ):[i\(r). (6.3-5)
The adjoint equations and associated boundary conditions are
5 dH  dd(x,u, ¢ afT(x, u,r
B R -t YO (6.3-6)
Mg =0, (6.3-7)

‘Thus the continuous TPBVP to be solved is given by Egs. (6.3-2) and (6.3-6),
with the boundary conditions of Egs. (6.3-3) and (6.3-7), and the coupling
equation, Eq. (6.3-5). If a digital computer is used to solve this nonlinear
TPBVP, with the first difference expression being used for % and i., we use
the first difference approximations

iirmkr — xk—?—iT—' Xy _— X(k -+ ITI)" - X(kT) (6.3-8)
i§'=kr _ ?uk-uT— A - Mk -+ IT% — MET) (6.3-9)

" The resulting discrete TPBVP becomes

Xpryp = Xp + TT(Xg, Uy, &) T (6.3-10)
e L O L L) (W CERTY
k

Xy, = X, (6.3-12)
di, = 0 (6.3-13)

OB(x, Wy, K) Gf(x,u,k) _
e +[ 9ot ]x 0. (6.3-14)



