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DESIGN OF
LINEAR FEEDBACK

SYSTEMS

10-1 INTRODUCTION

The design of linear feedback systems, also called linear
control systems, is certainly an important area of linear
systems since we deal with many control systems in our every-
day lives such as thermostats, automobile automatic speed
controls, machine tool controls, etc.

There are basically two kinds of control systems, cpen-loop
control and feedback (or closed-loop) control. Consider the
functional bliock diagrams of two single-input and single-out-
put cases of Figure 10-1.
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Figure 10-1. Functional Block Diagrams of Control Systems. (a) Open-loop, {b} Closed-loop

The system of Figure 10-la is called an open-loop system

since there is no feedback from the output to the input. The
command input is converted to a reference input which is
directly applied to the system dynamics to produce the output.
1f the desired output should "wander', no restoring action is
possible in this configuration since there is no measurement of
the output. The reader should note that the majority of
systems presented in this book until this chapter have been
open-loop systems. See Figure 3-28 and Figure 4-21 for

block diagrams of the state-space representations of open-
loop systems for continuous-time and discrete-~time systems.
If the feedback loop is closed, then the actuating signal
ig affected by the output signal, and we call these systems
feedback {or ciosed-lcop) control systems as in Figure 10-1b.

A command input is converted to a reference input and compared
with the feedback signal which is & function of the output.
The difference between the reference input and the feedback
signal is applied to the system dynamics, or controllied
element, resulting in the output. The designation feedback
control implies that the action resulting from the comparison
between the output and input quantities is necessary in order
to maintain the output at the desired value.

The design of feedback systems consists of forcing the
closed-loop pole locations to be suitably located. The
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proper polie locations for a "good' or acceptable design
depend upon the design specifications concerning reiative
stability, speed of response, accuracy, and insensitivity to
disturbance inputs. The details of these inter-relationships
and pole locations are outside the scope of this book, and the
interested reader is referred to the excellent texts (1-3).

This chapter considers the design of feedback compensators
for linear, time-invariant, continuous-time systems, although
many of the techniques apply to discrete systems in an analogous
manner. In Section 10-2 we consider the concepts‘of state-
variable feedback and ocutput feedback and derive the closed-
loop matrix descriptions. In Section 10-3 we study the
effects of feedback on controllability, observability, and
stability of the closed-loop systems. Assuming that all the
state variables are accessible for feedback, in Section 10-4
state feedback is utilized teo arbitrarily assign the closed-
loop poles for controllable open~loop system dynamics. When
the controlied element has inaccessible state variables, and
a state feedback system is to be designed, we can derive an
estimate of the state vector to utilize as a feedback signal
‘rather than the true state vector. This state estimate and
final system designs are discussed in Section 10-5.

10-2 STATE FEEDBACK AND QUTPUT FEEDBACK

There are two possible sources of feedback. These sources
help ciassify control systems into the broad categories of
state feedback systems and output feedback systems.

in state feedback the state is fed back into the input; in
output feedback, the output is fed back into the input. Let

us consider the general, time-invariant, continuous-time
system described by Egs. 10-1 and 10-2

(16-1)
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y=Cx+Du (10-2)

where ¥ is the n x 1 state vector, u is the p x 1 control
vector, y is the g x 1 output vector, and A, B, C, D are
constant matrices with order n x n, n x p, g x n, and ¢ % p,

respectively.
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Egs. 10-1 and 10-2 represent the system to be controlled,
sometimes referred to as the system dynamics or plant dynamics,
and therefore, are unalterable. The state variable feedback
system is shown in Figure 10-2, and the cutput feedback system
is shown in Figure 10-3.
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Figure 10-2. State Variable Feedback System
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Figure 10-3. Qutput Feedback System

Thue, for the state feedback system, we have the defining

eguations
x=Ax+Bu (10-1)

{10-2)
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u=v - Kx (10-3)



Design of Feedback Systems 655

where v is the p x 1 reference input vector, and K is the pxn
feedback constant-gain matrix. Bgq. 10-3 is called the control
law. Modern-day optimal control is mainly concerned with how
to physically implement it with real hardware. This solution
for the "best" K is beyond the scope of this book, and the
interested reader should see references (8-14) of Chapter 1.
For the output feedback case, we have the defining equations

of
x=Ax+Bu (10-1)
y=Cx+Du (10~2)
u=yv-Ky (10-4)

where v is the p ¥ 1 reference input vector, and R' is the pxqg
feedback constant-gain matrix.

At this point one might ask why we use the state variable
feedback when some of the state variables may not be availahble
for measurement? There are numerous reasons some of which are:

1. Since the number of state variables is generally greater
than the number of output variables, there is more room
for design alternatives in state feedback than in output
feedback.

2. The state x contains all the pertinent information about
the system, and therefore, we wish to know what can be
accomplished in this ideal case by using feedback.

3. There are cases for which 21l the state variables are
accessible to measurement.

4. BSeveral optimal control algorithms take the form of a
state feedback control, and it is worthwhile to under-
stand the effects of state feedback.

5. There are effective methods for estimating or reconstruct-
ing the state variables from the available inputs and
outputs. (See Section 10-5.)

We can simplify the defining equations in each feedback case

by eliminating u. For the state feedback case, we have
x=[A-BEx+Bv © (10-5)

y=1€-DKlx+Dy (10-6)
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Let éc 4 A - B K, and gc & ¢ - D X. DNotice that Egs. 10-5 ang
10-6 are of the same form as Egs. 10-1 and 10-2. If we are
interested in the qualitative effects of feedback, then the
important matrices are [A - B K], B, [C - D K] and D. Thus,
stability of the state feedback system depends on the eigen-
values of [A - B K]l. Controllability depends on the pair of
matrices {[A - B K], B}. Observability depends on the pair of
matrices {[A - B K], [C - D Kl}.

The cutput feedback system simplifies by substituting Eg. 10-4
into Eg. 10-2. Therefore,

y=Cx+Dv-DEK ¥
or
y= [, +DEI™HC x + Dyl (10-7)

Substituting Ig. 10-7 into Eg. 10-1 yields

]wi

% = {4-BK'[I,+DK']17Clx + B Dy (10-8)

B{I -K'[I +DK’
Once again Egs. 10-7 and 10-8 have the same general form of
Egs. 10-1 and 10-2, and we can make gualitative statements
about the system with output feedback. Thus, stability
depends on the eigenvalues of {A - BK'[I, + gg’]"lg}.
Controllability depends on the pair of matrices {5—-§§'[;q +
Qg’]—lg} and ﬁ{ip - E‘[Eq + Qg'}mlg}. Observability depends
on the pair of matrices {A - BK'[I_ + DK']"*C} and [I_ +
pK']1 tC. CoT T T -
Before considering, in general, the effects of feedback on
system controllability, observability, and stability, let us

consider an example to gain some insight.

Example 10-1 Consider a2 single-input, single-output, two-

dimensional system desc?ibed by

0 1 O
]§ + }a, y = [1 2lx
-1 -2 1 ‘

The system without feedback is controlliable, observable, and
asymptotically stable since p[B, AB] = 2, Q[QT, é?g?} = 2, and

i -
i
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2 + 2)X + 1 = (A%-l)g

producing Al 0 = -1 which are in the left-half complex plane.

the characteristic equation is A(A) = A

Let us now apply different feedback signals.
(a} Introduce a feedback gignal of u = v - [-2 11x. Then,
the system becomes using Eqs. 10-5 and 10-6

] 0 1 0
% = x4+ | |v, yv=1[1 2]x
1 -3 1

The reader can verify that the new system is controllable and
obgservable. The characteristic equation is now &4(XA) = A +
3% - 1 which, from the Routh criteria, has roois with positive
real parts. Thus, the feedback system is unstable. To
summarize, we have preserved controllability and observability
but have "managed' to destabilize by using state feedback.

(b) Introduce a feedback signal of u = v - {1 5/21x%.
Then, the system becomes

, 0 1 0
B
-2 -9/2 1

The new system is controllable, asymptotically stable, and
unobservable. In this case, we have preserved stability and
controllability but have altered the system's observability
by introducing state feedback.

(c} Let us try to choose a K such that controllability
will be altered. Let it be K = [k; k,]T. Then

1 0
ofB, (A - BK)B] = o = 2
o ~Kgy = 2 1

independent of kl or kZ' Thus, for this example, it is
impossible to destroy the system controllability by intro-
ducing state feedback. [k

In Example 10-1 we saw how observability and stability could
be altered by the use of state feedback, but we were unable to

find a K to alter controllability. Ian Section 10-3 we discuss
the more general aspecis of these problems.
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10-3 THE EFFECT OF FEEDBACK ON SYSTEM QUALITATIVE PROPERTIES

When designing a feedback system it is, of course, necessary
to determine for the contemplated design whether it is controlj.
able, cbservable, and stable. Let us assume in this section
that all state variables are available (accessible) to be fea
back.

10-3.1 Controllability

Theorem 10-1 The state feedback system given by Egs. 10-5
and 10-6 is controllable for any feedback gain matrix K if ang
only if the system described by Egs. 10-1 and 10-2 is

controllable.

Proof: The controlled element is controllable if and only
if p[U ] = o[B, 4B, 4%B, ..., A"7*B] = n. The state variable
feedback system is controllable if and only if

olU;] = oiB, (A-BK)B, (é—-@g)zg, Cees (é-—@g)n“lgl = n (10-9)

We need to show that these two ranks are both n. Let us ex-
pand Eq. 10-9 and examine the terms

o[B, 4B - BKB, A°B - ABKB - BKAB + BKBKB, ..., etc.] 2

n

The term BEB has columns which are linear combinations of B
and, thus, are linearily dependent on B. This adds no new
information about rank. Similarily, the columns of ABKB are
linearily dependent on the columns of AB. All other terms,
except B and terms of the type ékg where k = 1,...,n~1, also
do not contribute to the rank since their columns are linear
combinations of terms of the type gkg. Thus,

olB, 4B, ..., "7 '8] = o(B, (4 - BK)B,...,(a - BO"!B] (10-10)

Fa. 10-10 completes the proof since these ranks are equal.
QR.E.D.
Theorem 10-1 also holds for time-varying systems when state
feedback is given as u(t) = w{(t) ~ K(t)x(t). For the system
given by

X(t) = ACE)xR(t) + B{t)u(t)

(10-11)

i

g{t) = C(tHx(t) + D(t)Hu(t)
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this is summarized in Theorem 10-2.

Theorem 10-2 The controllability of the multivariable,
time-varying system of Egq. 10-11 is invariant under any state
feedback of the form u(t) = v(t) - K(t)x(T).

The proof is left as an exercise for the reader.

For controllability of the output feedback system, we must
check the rank of U = n where U  is defined as

y &

and

=

a - BE'(I, +DR'ITIC

==

1 |—‘1
B, £ B(1, - K'[1, + DK'17'D}

1f the rank of {Ep - g*[lq + Qg}”lg} is p, then the ocutput
feedback system is controllable since we can let K in Theorem
10-1 be equal to g*t_z_q + Qg']‘lg. '

Example 10-2 Consider the system

. 0 1 i
A= [ }5 + [ }u, y = [1 0lx
et 2 1

T

(a) Let u(t) = v(t) - [1 tlx. Let Bo =B = [1 1] and
; -t4T
R, = -A R, +dRy/dt = [-1 ~2-e "], Then
1 -1
p[R., Bd=1p = 2 for all t
© : 1 o-et

In Theorem §-8a the open-loop system is controllable for all
t. The state feedback system reduces to

é = X + v, v = [1 Olx

Theorem 10-2 states that this new system is also controllable.
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Let us check it by Thecrem 8-8a where B, =B = [1 117

and

Q{EO, Bl =0 = 2 for all t
1 BPOL I

(b) Let u = v - ky. By using Eg. 10-8 this output feed-
back system reduces to

-k 1 1
X = X+ v, vy = [1 0lx
e Xk 2 1
It is controllable since R = [1 1], and B, = [k-1 -2 +
k-e Y17 Thus, det{R_, R} = -1-e"" which is never zero.

By Theorem 8-8a the output feedback system is controllabie.ll

10-3.2 Observability

We have already shown in Example 10-1 that observability
is not preserved under state feedback. Thus, adding state
feedback can cause a loss of observability. However, output
feedback does preserve observability. The proof is similar to
but more complex than that of Theorem 10-1. (See reference (4)).

10-3.3 Stability

In Example 10-lz we generated zn unstable system by using
state feedback on an asymptotically stable system. In many
design problems we are interested in the opposite effect. We
want to stabilize an unstable system by the use of state or
output feedback. In fact, one of the most important proper-
ties of state feedback is that it can be used to control the
eigenvalues of the closed-loop control system. This control
of the eigenvalues is called pole placement or pole assignment.

Many of the above discussions and theorems apply equally
well to discrete~time systems. Theorems 10-1 and 10-2 can

be applied to discrete-time systems in a straightforward way
because of the similarities in their sftate-space descriptions.
Observability is not preserved under state feedback but is
under output feedback. For stabilization we are interested

in moving the poles of the transfer function {the zeros of

the characteristic equation) inside the unit circle in the
complex plane.
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In summary, state and output feedback both preserve con-
trollability for time-varying, continuous-time and discrete-
time systems. Output feedback preserved observability for
all four types of systems previously mentioned. Stability
is affected by both types of feedback.

10-4 POLE PLACEMENT USING STATE FEEDBACK

The problem of assigning arbitrary closed-loop poles (zmeros
of det{Al ~ (A - BK)! by means of state variable feedback has
been the subject of considerable research gince 1965. It
was first demonstrated by Brockett (5) that, for a single
input, controllable system, there is a simple and unique K
matrix. A controllable, multiple input system, however, has
no unique solution, but arbitrary pole placement is possible
if and only if the system is completely controllable (6).
Since then, many investigators have proposed algorithms for
realizing this closed-iloop pole assigoment. Typically,
these algorithms assume that the open-~loop system has been
transformed to a special form, usually the phase-variable form
also called the controliable-canonical form, by use of a
similarity transformation, @ = E“lgg. Technigues of this

type or slight variations are found in references (7-11)
Recently, techniqgues have been developed for multi-input,
muiti-output systems which do not require this similarity
transformation. References (12, 13, and 4 pages 311-313) are
three of these techniques. We have selected the general tech-
nique of Brogan (4) for presentation since it seems straight-
forward and computationally efficient. But before discussing
the general technique, let us consider an obvious "brute force"
technique as follows:
1. First compute the characteristic polynomial of {4 - BK}
in terms of the unknown np components of the K matrix.
2. If the matrix {A- BK! has a set of eigenvalues {Xi for
i=1,2, ..., n}, its characteristic equation is equal
to




662 Design of Feedback Systems

3. EBquate the coefficients of the powers of s to generate
a set of n eguations to solve for the np components
of K.
For muitiple-inputs this technigue does not yield a unique
solution since there are n equations in np unknown components
in the K matrix. In addition, this set of n equations is
usualiy not linear in the componeants of K. Let us illustrate
these features with two examples.

Example 10-3 Consider the position control of a rotating

part of inertia J with viscous friction B as shown in Figure
10-4.

a Torgue
Motor
T{t} 9{t}
& Tit) 1 B{t)
et = [ - e
s{Js + B}
(b}

Figure 10-4. Inertia and Friction Load

Let us assume that the torque, T(t), is appliedAby 2 DC motor
which converts an electrical input voltage signal, e,, into
an output torque by the relationship T() = KTea' The
differential equation of motion of the part is J& + B& = T(t),
or if we use e, as the input, J8 + B8 = K.e_. The transfer

T a
function is then

8 Ko

5; (s) = s{ds + B)

If we let © & Xy, 8 8 Xo and e, & u, we can obtain a state-
space description of the open-loop control of 8 by e, as

_ 0 1 0
T { x* { }u, y = [1 0lx
o -B/J Kp/d
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The reader c¢an easily verify that the open-loop system is
controllable but unobservable. Notice that A has eigenvalues
of 0 and B/J. The system is, therefore, stable but not
asymptotically stable. It is also not BIBO stable since a
step input in voltage would produce a ramp-type output 6{t).
Thus, i1t is not totally stable. Let us assume that we can

+ utilize state-variable feedback to place the closed~loop poles
in the left-half plane and attempt a stabilization. Figure
10-5 shows a block diagram of this proposed state-feedback
solution., Physically, a tachometer could provide the speed
feedback for kz while a potentiometer might provide the ky
position feedback.

K_/J 2 /s

¥
Y

/s

B/J 1

I Y

Figure 10-8. Position State Variable Feadback System

The state feedback system results in a state-space description
by using Egs. 10-5 and 10-6 of

0 1 0
x = x + v
%y -5 Ko¥p Kp
J 3 J 3
y = [1 0lx

If kl = 0 (i.e., no position feedback), then the system is
still unobservable and not teotally stable. If kl # 0, it is
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controllable and observable. The closed loop transfer is
then, calculated from % (g) = gc(sl - éc)g as

s 1 -1 0
% (s) = {1 0]
o L SR - N koK Kp
5] 3 ] 3
Kz
_ J
K &K
2 B T 187
g7 ¥ s[g + k _~] + 3

By using the Routh-Hurwitz test, this system will be stable

if and only if le?/s > 0 and (B/J + kgKT/J) > 0. Note also
that we can select the poles of the transfer anywhere we desire.
Let B = 0.2, J=2, and KT = 0.25. Let us place the poleg at
-1 -j and -1 + j. Thus, the characteristic equation is s +
16.0 and kz w

9¢ + 2. Matching coefficients, we have kl
15.2.

Example 10-4 Consider the system

-

i
]

1%

o
[rs——
N o
= et

I
=
4
——n
Q =
{
= <o
e
e

i=
i
<

L
g
B
i<

1
I

It is controllable, observable, irreducibie, but unstable
since the elgenvalues of A are A = 1, -2. Let us position
the closed-~loop poles at A = =1, -2. The closed-loop
characteristic equation.is then

AM) = (A + 1)(x + 2) = A r3n+ 2=

A o+ k k4 + 1
det[h§;~(§~—§§)} = det

2+ 2k, + Kk

1t g A+(1+2k2+k4)
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There is no unique solution since there are only two coeffic-
ients of s to match and four K components. If the reader
expands the determinant and matches coefficients, he(she)

can see nonlinear equations. One solution is kl = -3/2, kz =
1/2, k3 =, and k4 = 1. Ancther is ki = .3, kz = 1, k3 = 0,
and k4 = (. B

The remainder of this section follows Brogan (4) in present-
ing the general, state-feedback, pole assignment problem. The
eigenvalues of the closed-~loop state feedback system are roots
of

s d I - @-Bol =0 (10-12)

which can be rewritten as

. _ -1
AT(A) = [ (AL, - ML+ (A1, - A)TBKI|
= . -1 _ . B -1
= 1AL, - Al-II + (I, - &)7 BKl= a0 |1, + (AL - A)7 BK|
(L0~-13)
since we have previously defined A(A) as lkln - él. Note also

that (AL - é)_l has the same form as the state transition
matrix ¢(s). Thus, let us rewrite Eg. 10~13 as

AT(AY = A(N)-

Ip * 2OOBK] = a0+ |1, + K2(MB|  (10-14)
The second form of Eg. 10-14 is possible from the determinant
identity .

|L, + F| = |1, + BE| (10-15)
where F & {(X)B, and H = E. The matrix K must be selected so
that A’(ii) = ) for each Xi representing a desired closed-
loop pole. This will be accomplished by forcing the p x p
determinant lép + K(M)B! to vanish. If any desired Xi is
alsoc a root of A(X), the same procedure holds but a limiting
process 1s necessary. (See Example 10-8). The determinant
of ip + K¢(x)B will be zgero if any column or row is zero.
Let us force a column to zero here. Define the j-th column
of lp as ey and ?efine Q(Ai) = 2(4;)B with the j-th column
being Q.. Then Ai is a root of A'(A) if XK is selected to
satisfy gj + ggj(xi) = 0, since this forces column j to vapish.
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Thus

KR, (A) = e (10-186)
Eg. 10-16 by itself is not sufficient to determine K. However,
if an independent equation of this type can be found for

each desired root A, then K can be determined. Controllability
of (él B) is sufficient to guarantee that rank Q(Ai)A= p for
each Ai reference (11, p. 278). If all the desired Ai's are
distinct, it will always be possible to find n linearily

independent columns {le(ll), sz(k2),...,gjn(kn)} from the
n x np matrix [R(})), 3(22),...,Q(An)]. Then,
K[, (3D, Q. (Aa), ..., 9. (X = fe. , e. ,..., e.

L Gy 2y G 8y (1 = feg . ey g ]

or
~ ~ Al "},
K= -le. , e, ,...,e. 119, (X)), Q. (A),...,8. (A )] (10-17)
317 g B e SR PR iy m

Example 10-5 Consider the system

0 1 0
X = X+ u, v = {1 1llx, u
-5 8 1

and place the closed~loop poles at » = -4 and -2.

i

v - [kl k2]§

Solution: The system is controllable since

G i
olB, AB] = o =2
i -6

Thus, we are guaranteed that the feedback gain matrix K exists
and is unigue. Then,
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:

+ Bx + B

and

QCA) = 2(XM)B =

Then 9(-2) = [~1/3 2/317, and Q(-4) =[-1/3 4/3}17. Note
that 2(-2) and Q(~4) are linearily independent. Then Eq.
10-17 yields )

-1/3 -1/3}“l
= [3 0]

K= -0 u[
2/3 4/3

Example 10-8 Let us reconsider Example 10-3 where

o 1 -
A = and B = {0  0.125]

in light of Eg. 10-17.

Solution:
A+ 0.1 1
-1 0 A
2O = ML~ Al T = ETETD
Since there is only one input {(p = 1), Ejl = gjz = 1. The
desired roots were il = -1 ~ j and iz = -1 + 3. Then

~ _ f0.125 0.1251]
G(r) = §(A)B = Aih + 0.1)

Substituting in Kl and Xz yvields

Ay 0,135 o4 L : _ T
203 )) = gegyy [-0-1 - 1.93 1.8 + 23]

&, _ _0.125 _ LT
2(3,) = geitery (701 + 1.9 -1.8 ~ 2j]
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Applying Eq. 10-17 yields

K=-01 11020, 20170 = (16,0 15.2)

There should be no doubt that in a single~input, single-output
case with desired complex poles, this technique is far more
tedious than the 'brute" force technique.

Example 10-7 Consider the system described by

and the desired roots of X = -1 and X = w.

Solution:

[A ~ 3 1 J
B(A) = (AL - )l = L2 At 1

A9 - 2x - 5
1 Ao~ 3
Ao+l 2 : |
Q(A) = $(A)B = = [8,(X), 8,(0)
= T a2 _gn _ s - w2

and

N ~-1/2 2 . 1/3  -5/3
(A = s R(A,) =
-1/3 2/3

We can choose any two linesrily independent columas such as
8,8y = [-1/2 01T and 9,(%,) = [-573 27317 or a,(3)
and &, (hy) = [1/3 ~1/31% to substitute into Eq. 10-17. Let
us first choose Ql(kl) and Qg(hz). Then, since we have
chosen the first and second columas of 2(A), 311 = [1 0]
and &, = o 11T, K is then calculated from Eq. 10-17 as

10 [wljz -5/3]“1 {2 5 }
2T 0 273)  lo  -s/2

T
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1f we now choose ﬁg(iz) and gl{X2>, then

o 11[ 2 1/3] "1 3 6
_igx_. =
1 0} i1-1 ~-1/3 -1 o
Both feedback gains K give systems with closed-loop poles at

Al = -1 and Kz = -2,

Example 10-8 This is an example to illustrate the limiting

process when one or more of the open-loop poles correspond to
one or more of the desired closed~loop poles. Consider

, 0 1 1
x = x4+ | ju, oy o= [1 0x
-3 -4 2

which is controllable and observable., Find a state feedback
gain K = [k, k,] such that A; = -1 and A, = -8.

Sclution: Inverting (AL - A) yields

A+ 4 1
-3 A

(At (A + 3)

8(r) =

Then
A+ O
2x - 3
2(A) = (VB = Ty v 3
Since Xl = -~1 is a pole of the open loop, §i{(-1) yields an

infinite column., Let us use a limiting process, and assume
that 8 = 1/(1 + A). Then by Bg. 10~17

[1 1102¢-1), 9(-8)17* (1 1] — { °® - }
K = - -1y, a(- = - o =
= - - 1058 | 1788 _17s8

1
T65% [-38 + 1758 4 + 1758]
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Then, if we take the limit as X = -1, B approaches infinity,

and K becomes

K= [5/3 5/3]

When repeated closed-loop poles are desired, the pole
assignment technique may not yield n linearily independent
columns of Qj(kj) for Eq. 10~17; A derivative-type modiiica-
tion is required. Assume that Ai is a desired pole with
multiplicity k where k < n. Then

dTAT (M)
dr’ -

which can be used to generate additional independent columns.
This procedure is analogous to the Cayley-Hamilton technigue
for multiple eigenvalued matrices of Chapter 5. If we
differentiate,Bg. 10-16 with respect fo A and evaluate at

A = Ai’ then we have

K —52 =0 (10-18)

Successive differentiation will produce

a¥ q,
K i =0 fory=20,1, 2,..., k-1 (10-19)
ax

A= A,
1L

Thus, for repeated closed-loop poles, we may need equations
of the type RBq. 10-17 and derivative equations of the type
Eq. 10-19. '

Example 10-9 TFor the system of Example 10-8, design a state

variable feedback system to place the closed-loop poles at

Al = AZ = =g

Solution: We can find only one linearily independent columb
from Q(-2) which is 2(-2) = [-4 7]7. We can generate an
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equation from Eq. 10-18 as

ae () U SE U 2
da Y=o A )52 L4 23 |on - 3 -2

After combining, we can write the two equations as

-4 =1
K = —[1 0]
7 -2

Solving for K yields

K= [2/15 ~1/15]
B m

State feedback poie placement has a number of possible
defects: (1) The compensation is in the feedback loop rather
than in the direct path (cascade mode), and experience has
shown that cascade compensation is usually better. (2) If a
gimilarity transformation technigque is used, the solution
aliows little engineering feeling for the system. (3) The
closed- loop system may be guite sensitive to small variations
in plant (controlled system) parameters. {4) All the state
variables must be available for measurement. This last restric-
tion is commonly encountered in practice because many systems
occur in which only the output or only some components of the
state vector are accessible for feedback purposes. This
presents two possible guestions: (1) Can we not develop
technigues similar to those of this section for pole assign-
ment using output feedback? and (2) Can we reconstruct or
obtain a "good" estimate of the state vector from the available
outputs? The answer to question (1) is ves, and Problem 15
gives an outline of these output feedback results. Question
(2) ig dealt with in Section 10-5.
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10-5 STATE ESTIMATORS AND OBSERVER SYSTEMS

In the previous sections we introduced state feedback assuming
that all the state variables were available to be fed back. In
practice this assumption is not always met either because all
the state variables are not accessible to direct measurement
or because the number of measurement devices is limited,
possibly due to total cost considerations. Thus, in order to
utilize state feedback, we must obtain a "reasonable estimate
of the state vector x(t). In this section we will discuss
varioug techniques to reconstruct the state vector by using the
available inputs and outputs of the system dynamics {plant) to
drive a device called a state estimator.

It is desired to obtain a 'good" estimate of the state x(t)
given a knowledge of the output y(t), the input u(t), and the
system matrices A, B, C, D from Egs. 10~1 and 10-2. 0f course,
the system must be observable. Without loss of generality,
let us assume that D = 0. If D # 0, an equivalent output y' =
y - Du can be used for y in the following discussions. Since
we know the matrices A, B, and C, we can simulate a model
that has an accessible state vector and the same dynamics as
the original system. Letting %* denote the state vector of
the model and y the model output, we drive it with the same
input u. Then,

1pd>
i
fi=
2]
+
o
bs
3>
it
[}
i

Figure 10-8 illustrates this model usually referred to as the
open~loop estimator.

Let X dencte the error in our estimate so that

il

X, = x - % (10-20)

+The circumflex will be used in the section to indicate an
estimate of a aquantity, e.g., % ig an estimate of x. The
reader should not confuse this with the notation used for
equivalent systems in Sections 3-13 and 4-17.



Design of Feedback Systems 673

N i X c ¥
] = P s
1+
A
Systemn
1N X I3 X v
L——x B ;L OB e
{+}
A
Estimator

Figure 10-6. An Open-Loop State Estimator

=% - %= (Bu+ Ax) - (Bu+ Ax) = A(x - ) = Ax,  (10-21)

and the error dynamics are determined by A over which we have
no control., The solution of Eg. 10-21 1is

If we set the initial condition of the model exactly so that
§e(to) = 0, the model will estimate the state exactly with zo

e£€%?:t0§f, however, Ee(to) # 0, then the error varies as
e If A has eigenvalues with negative real parts, then
Bg. 10-21 is asymptotically stable, and the error dies out
exponentially making the estimate better as time progresses.

If A has eigenvalues with positive real parts, then any small
error in our initial guess of %(to) will grow rapidly and
produce an unstable model. This open-loop dependence on the
matrix A generally makes this an unacceptable model.

Let us "close"” the loop around our model for a new improved
estimator. Since both y and ﬁ are available in the open-lcop
estimator, we may compare them and use this difference as a
corrective term.
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Figure 10-7. Asymptotic State Estimator

Figure 10-7 shows such a model usually referred to as the
agymptotic state estimator. The r x g matrix L. is necessary
to convert the difference {y - i) which i ¢ x 1 to an n x 1

matrix in order to sum it with B u and A x. Let us analyze

this new system for errors. The closed loop estimator model
has the eguations

k-afi+Bu+Ly-§, 5-Ck
which can be combined to yield
= lA-LClE+Bu+Ly
If the error is defined by e 4 X - x, we have
X, =k -%=({Ax+Bul - [A -~ LClx -~ [Bu+Ly]

(10-22)

If the eigenvalues of A - LC can be chosen arbitrarily, then
we can control the behavior of X,- TFor example, if all the
eigenvalues of A - IC have negative real parts that are smaller
than -0, then all the components of X will decay to zero at
the rate e~Gt Even if there is a large error between %(to)
and §(to), é will approach ¥ rapidly. Theorem 10~3 shows

that observability of the system dynamics is a necessary and
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sufficient condition for the arbitrary placement of the eigen~
values of the asymptotic estimator.

Theorem 10-3 An asymptotic state estimator, described by

Figure 10-7, can be constructed with arbitrary eigenvalues if
and only if the controlled element (plant)} is observable.

Proof: 1In Section 10-4 we saw that we could arbitrarily
place the poles of the closed-loop system using state feed-
back if and only if the controlled element was controllable.
This required finding a K such that the roots of detinl - (A -
@&)j were anywhere that we desired. Here we are trying to
place the roots of det{hi -~ (A -~ gg)]. Let us try an analogous

a® - c"LNHT which is

il

solution by transposing to [A - LC]
of the form & - B K where

T and E

{2
"
b=
fose
i
1
I
il
e

(10-23)

Since the determinant of any matrix is equal to the determinant
of its transpose, then

deti{dl - (A~ L )] =det[DI - (A-L )17

Fel

)|

= detl(ODT - (A - L T = det»I - (A - B

A K)1
Thus, the eigenvalues of A - L C are exactly those of A - E E.
From Section 10-4 we can solve for K and, therefore, éT if and

only if

plU.] = olB, AB, A%B, ..., A"~ 18] =
But

= 1c¥, A%t T, ..., ahHro1eh

which is our observability matrix V . Thus, we can solve for

L to arbitrarily place the estimaior poles if and only 1if the

controlled system is observable. Q.E.D.
Because of the similarities between estimator pole placement

and state-variable feedback pole placement as pointed out in

the proof of Theorem 10-3, we can apply the techniques of

Section 10-4, particularily Egs. 10-17 and 10-19, to 4, B, and
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E as defined in Eg. 10-23 to place the observed poles. As in
pole placement, the solution for L in the single-input, single-
cutput case is unique but not so in the multiple-input situa-
tion.

Example 10-10 Consider a system described by

_ 0o 1 1
X = X + u, y= {1 o0lx
-1 -2 1

Assume that the state vector x is inaccessible and design an

asymptotic estimator which will decay in 4 seconds or less.

Sclution: The system is observable, and, therefore, a
solution for L is possible. Here L is 2 x 1. Let us assume

-

that the error has decayed to about 5 percent of its original
TOt) 4 = 0.05 yields a o of

about 0.75. Therefore, let us choose Al = —-0.75 and Xz
arbitrarily as -2.0 since is will decay more quickly. And

then

value after 4 seconds. Then e

>l

Q -1 1
=4 - cB=c¢T | | k-1t
1 -2 O
Then
A+ 2 -1
~ 1 1 A
(A = (AL - A) = 5
AT+ 24 + 1
and

r+2 137

Az + 2h + 1

Q(A) = 2(1)B =

yielding from Eq. 10-17

. 1 20 o]t
EK=-1[1 11[8(-0.75), Q(-2)]7" = -1 1]
16 1
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Thus L = gL = 13/4 —l]T. The system equations now become

P
i
i
O
i
] =
| WO ——
e
+
e
=
| B—— )
o
)
i
=
o
|3

=
il
|
| [&v]
ped
oS
i
jv) [w]
E SR
%y
+
pr———
ped b
| S
fod
+
| e —|
s8]
1 —
= s
| SU—
[

Let us now consider the cloged-loop control problem for
an observable system described by x = A x + Bu, y = C x
with a state estimator described by g‘m [A ~ L CIXR +Bu+
L y and feedback u = v - K %. Note that our feedback equa-
tion uses the estimate % rather than x which we are assum-~
ing is inaccessible. Figure 10-8 shows z block diagram of

this configuration.

[
e
fre}
o

Y
R Se—

0>
[

= x>
]

1=

K>

f=1A-LC R +Bu+LyKe=]

Figure 10-8. Closed-Loop Control With Asymptotic State Estimation

The eguations can be combined to yield

i
]
=
W
[
o}
i
fM>
+
o
f<t

34>
i

i
@]

cx+[A-LC-~

jo
7
34>
.
[Rus:
<
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(10-24)
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which can pe written in partitioned form as

. B
{A + ¥ {10-25)
£ B

e
e 13d
| S————
1
prm——
i i
[@]
b=
t
et
Lo
T
o
L=

The 2n closed-loop poles for Eg. 10-25 are roots of

AL - A BEK
Al T o . 0
A (0 2 .

-LC ML, - A+LC + BK

There are now 2n state variables in the feedback system, n
due to the sﬁstem and n due to the estimator.

Two possible questions arise due to the use of this
asymptotic estimator to obtain the signal x which is fed back
to achieve the closed-loop control system. (1) What is the
effect of introducing the state estimator? Will the estimator
eigenvalues appear in the result without change? (2) Does the
estimator change the desired feedback pole locations of the
system if we design K using the real state x?  Let us consider
these questions by applying a linear transformation of variables
P where P is 2n x 2n such that

1
1
IR -] e— = b | e (10-26)
i
]

Theorem §-13 guarantees us that this linear transformation
will not affect the controllability or observability of Eq.
10~-25. The choice of the P matrix or the new variables

~

probably does not appear obvious. Remember that X, = X ~ &
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is the estimator error. Eq. 10-256 reduces to Hg. 10-27 by
the use of Eq. 3-122.

|
i
!
[
[
!
!
|
]
_!,._
I
|
|
!
!
1
i
[
|
+
le ! w
I<

y=1[01 0] |- (10-27)

Since Eg. 10-25 and Eg. 10-27 represent equivalent representa-
tions of the same system, we can see that the eigenvalues of
AC(A} and those of Eg. 10-27 are equal. Let A'(X) = 4A£n -

(A - BK}| and 4,(}) = [AL - (A - LC)| . Then

AC(A) = A'(A)Aa(K) (10-28)

Equation 10-28 is called the separation properiy and allows

us to calculate the feedback gain K and the asymptotic esti-
mator matrix L independently using the techniques of Section
10-4. We are assured that these poles will be unchanged in
the final design.

Example 10~11 Let us design a feedback system for a system

described by the ftransfer function

Y(s) _ s + 2
U(s) (s + 1)(s - 1)

assuming that only the input u(t) and output y(t) are access-
ible.

Solution: The plant is clearly unstable due to the pole at
s = 1. Let us use a Jordan form state-space representation
since

Y(s) _ -1/2 3/2
U{s) s + 1 g - 1
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Figure 10-92 is the simulation diagram.

can write

ult)

[-1/2  3/2] [ 1]
Xg

Design of Feedback Systems

From the diagram we

X

y(t)

u, y =
}h.
x, {8
/s »i 1/2
{--)
(+]
X, (1)
1/s z » 3/2

Figure 10-9. Example 10-11 Simulation Diagram

A quick calculation will show that the plant is controllable

and observable.

feedback system at -1 + j and -1 -j.
property we can calculate K independent of

Let us place the closed-loop poles of the

Due to the separation

the asymptotic

estimator matrix L. Then
1 1
5 + 1 0 ! s + 1
1 1
0 g - 1 1 s - 1
and
-1
L -
d -J
=1k ky]=-01 1] = [-1/2 5/2]
1
-2 + ] -2 - 3
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Letting uw = v - Kx, the feedback system without the estimator
is

= [A-BKlx +Bv, y=Cx

Substituting we obtain a closed-loop law of

. -1/2 ~5/2 1

Em E -+ v, y o= [__1/2 3/2]E
i/2 -3/2 1

But x is ipaccessible, and an asymptotic estimaior is necessary

which also makes u = v - gg. Let us place the poles of the
estimator to the left of -1 + j and -1 - j in the complex plane,

say Xa = -3 and -5. Thus, the error x_ = X - é will decay at
a rate e °F or ¢ 2%, and in 1 time unit will be about 5% of its
original value since e 3 ~ 0.0498. We can calculate L from

the system described by

A=a" B=cT anak=1" (10-23)
Then
-1/a
1 s + 1
- 3w T T
2,00 = 2, (0B = [ir - a"] ¢ -
3/2
5 - 1
Then
~ _ T _}.
k=1 =-[1 1108 (-3), 8,(-5)1"" = {8 8]

Thus, L = (8 81T, and the estimator eguation bhecomes -

W R AR

[ESN
I
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The final system description with state estimation is from
Fg. 10-25

%y -1 0 { 1/2 -5/2 Xq 1
k2 o 1 | 1/2 -5/2 % 1
== = fe e - = = — - + A4
%, -4 12 | T/2  -29/2 ﬁl 1
A ~ | N o
Xq 4 12 | g/2 27/2 Ko

*1

X2
y = [~-1/2 3/2 0 0] |=

X

1
%

It is always possible to design a lower order observer
since information about some of the states 1§ directly obtain-
able from the output y. Reference (11, page 289) discusses the
(n - 1) estimator which eliminates the redundancy due to
information obtained from y. Referencesg {(14) and (15) discuss
the possibility of even lower order systems for some systems,

10-6 SUMMARY — CHAPTER 10

In this chapter we studied the design of linear feedback
systems and the practical implications of controllability and
observability. We showed that if the controlled element is
controllable, we can arbitrarily assign the closed-loop poles
by introducing state variable feedback or output feedback,
When using state variable feedback, all state variables must
be accessible to measurement. If they are not available, then
a state estimator (observer) must be constructed. If the plant
is observable, the poles of the estimator may be arbitrarily
placed. The separation property guarantees that the estimator
matrix, L, and the feedback matrix, ¥, can be designed
independently.

10-7 PROBLEMS — CHAPTER 10

1. Gilven the matrix fesedback system of Figure Pl0-1la, show
that it reduces to Figure PLl0O-1b.
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