Routing in Ad Hoc Networks: A Theoretical Framework with Practical Implications

Nianjun Zhou and Hussein Abouzeid

Networks Research Group
Electrical, Computer and Systems Engineering (ECSE)
Rensselaer Polytechnic Institute
Troy NY
Objective: Basic Limits on Routing Overhead

- Considering a variable topology network, such as for example a mobile ad hoc network;
 - can we characterize the variability of a network topology?
 - and relate it to the (minimum) routing overhead?
 - and hence discover some basic limits on routing?
 - ...and maybe these limits could be used as reference curves (similar to Shannon’s Capacity for error free communication)
Related work: Theory of Computing

- In TOC, routing typically refers to building distributed memory message passing multiprocessor systems for computing applications, where the interest primarily is in finding the computational cost (complexity) of a certain message passing i.e. routing algorithm (e.g. [1]).

- The hypercube is one of the most popular (and robust) topologies used for building and studying routing in this context (e.g. [2]).

Related work: Optimization

- Saha-Mukherjee [3] proposes an optimization approach to find the optimal number of clusters that minimize the total route computation cost, assuming the route computation cost per hierarchical level is some known constant α_i, and a fixed traffic matrix.

- Kleinrock-Kamoun [4] proposes an optimization approach for finding the number of clusters that minimize the size of the routing table in a variable network topology.

Gallager [5] proposes an information theoretic approach to find basic limits on protocol overhead for maintaining the start and stop time of messages between pairs or nodes in a communication network.

In this set-up, the network is the “source” and the protocol is thus merely a “source encoder”.

Proposed Information-Theoretic Framework

- Analyze the changes of topology as random process
 - Define the topology itself as random variable

- Apply information-theoretic principles to quantify the minimum amount of overhead:
 - **Routing message** overhead (bits / unit time).
 - **Routing memory** overhead (bits)
Theoretical Framework (Cont’d)

- Minimum amount of information needed to describe a change in the network topology? *Entropy; Minimum Expected Codeword Length (MCL)*

- Minimum amount of overhead needed to inform the cluster head of that change? *Send the MCL over the shortest paths to cluster heads*

- Memory is needed to support the information exchange? *Topology + topology change info*
Hierarchical Proactive Routing Protocol Model

- Bounded area; N nodes; M sub-regions; Connected network.
- Each node maintains link status info by periodic hello messages at periodic intervals τ_i;
- regular nodes inform cluster head about link changes.
- Whenever there is a change, a regular node receives the new path information from the cluster head.
- Whenever cluster membership changes, the cluster head announces this change to all other clusters at periodic intervals τ_e.
Mobility and Link Status models

State transition diagram of node movement between clusters. \(q_0 \) is the probability that a node stays in the same cluster.

State transition diagram of the status of an arbitrary link; \(P_{00} \) (\(P_{11} \)) is the probability that a link is down (up) at next time step if the link was down (up) at previous time step.
Analysis Outline

- Topology Granularities
 - Global Ownership Topology
 - Local Ownership Topology
 - Local Detailed Topology

- Analysis – for each topology level
 - MCL based on Cardinality (i.e. all topologies equally likely)
 - MCL based on Topology Stationary Probability Distribution
 - MCL on Prediction Using Previous Topology Knowledge (given a certain mobility and link status change models)
Summary of Results

- **Routing Overhead**
 - R_e: Exterior Routing Overhead (exchanging local ownership topologies)
 - R_i: Interior Routing Overhead
 - R_h: overhead associated with hello messages
 - R_d: Notification of link status change to cluster head
 - R_p: Notification of new path to the regular node

- **Memory Requirement**
 - **Cluster Head**: M_c
 - Global Ownership Topology: M_{cg}
 - Local Detailed Topology: M_{cd}
 - **Regular Node**: M_r
 - Shortest path to cluster head
Application of the results: Network Scaling

- Given the various expressions for routing overhead, there are different methods for scaling the network (increasing N)
 - **Model1**: Increase N but keep g constant (hence decrease d_0, the coverage radius of each node)
 - **Model2**: Increase N but keep $g = \Theta(\log N)$ at the critical value needed for connectivity
 - **Model3**: Increase N while keeping d_0 constant (hence g increases)

Note1: These methods keep other parameters such as A (area) and M (number of clusters) constant

- Also derived the scaling laws with M
Scaling Laws

- **Scaling with N**

<table>
<thead>
<tr>
<th>Overhead</th>
<th>M1: g const</th>
<th>M2: g_c</th>
<th>M3: d_0 const</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_e</td>
<td>$\frac{3}{N^2}$</td>
<td>$\frac{3}{\sqrt{\log N}}$</td>
<td>N</td>
</tr>
<tr>
<td>R_h</td>
<td>$N \log N$</td>
<td>$N \log N$</td>
<td>$N \log N$</td>
</tr>
<tr>
<td>R_d</td>
<td>$\frac{5}{N^2}$</td>
<td>$\frac{5}{\sqrt{\log N}}$</td>
<td>N^2</td>
</tr>
<tr>
<td>R_p</td>
<td>$N^2 \log N$</td>
<td>$\frac{5}{\sqrt{\log N}}$</td>
<td>$N \log N$</td>
</tr>
</tbody>
</table>
Other Practical Implications

- M_{optm} minimizing memory requirement of cluster heads
 \[M_{\text{optm}} = \sqrt{(\ln 2)N} \]

- M_{ratio} minimizing the ratio of the memories of regular vs. cluster-head node
 \[2M_{\text{ratio}}^2(1 + \ln M_{\text{ratio}}) = (\ln 2)N \]

- M_{optr} minimizing the total routing overhead in a large network (Model1)
 \[M_{\text{optr}} = \frac{\tau_e(2N + (1 - p_{11})\beta^2 N \log N)}{4\tau_i} \]
Summary of the analysis
Conclusion

- Developed an information theoretic framework for quantifying hierarchical proactive routing overhead
- Derived expressions for the overhead
- Analyzed these expressions to derive scalability results
- Applied these expressions to find the cluster size that asymptotically optimize several different objectives
Future Work

- Reactive routing overhead (by conditioning on the traffic matrix)
- Tradeoffs between routing overhead and topology accuracy
- Extend the results to multiple hierarchies
- Dynamic cluster formation and elimination
Questions
Backup slides
Memory Requirement
Key Aspects of Hierarchical Routing

- Communication
 - Intra-cluster
 - Inter-cluster

- Maintain the topology
 - Cluster head maintains the detailed connectivity relationships (local detailed topology) within a group of nodes
 - Cluster head also maintains aggregate global information (global ownership topology) for routing beyond the limits of the cluster (i.e. inter-cluster routing)
 - Regular node maintains a path (shortest) to its cluster head
p_I – steady state probability that a direct link between two arbitrary nodes exists.
Mobility and Topology Changes

- Mobility induces topology changes
 - Ownership change (nodes move between clusters) → 1) Update local ownership topology; 2) Update global ownership topology

- Connectivity change (links up/down) → 1) Update local detailed topology; 2) Possible need to update shortest path from a regular node to its cluster head