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Abstract— In this paper, we propose an “in-network” diversity
combining scheme for image transport in wireless sensor net-
works. We consider a wireless sensor network with both wireless
link impairments and node failures. We investigate two perfor-
mance metrics of the proposed image transport scheme: energy
consumption and received image quality distortion. Simulation
results show that the proposed image transport scheme improves
the robustness to network errors at the expense of low energy
overhead. This improvement is more noticeable in case of high
node failure probability and long distance between the source
and the destination. Our work also helps in understanding the
tradeoffs between image quality distortion and energy consump-
tion with different network parameters such as the number of
hops between the source and the destination, the average channel
error rate, and the average node failure rate.

I. INTRODUCTION

Recently, with the advance in image sensors [1], [2], there
has been a growing interest in visual wireless sensors networks
for a variety of applications, including active monitoring, target
tracking and remote surveillance [3]. However, wireless sensor
networks pose a great challenge to image transport. The wire-
less links between nodes are susceptible to fading phenomenon
that causes channel errors. Unlike cellular networks or wireless
local area networks (WLANs), the path between the source and
the destination in wireless sensor networks normally contains
multiple wireless links. Thus, transmission errors in wireless
sensor networks are more frequent and severe than those in
wireless networks with single hop routes between nodes. In
addition, node failures are very common to sensor networks.
The nature of wireless sensor networks makes the problem
of image transport far more challenging when compared to
image transport in a more predictable wired or even wireless
networks with single hop path. The goal of this paper is to
present an image transport scheme that is able to improve the
robustness of image quality in spite of the wireless channel
impairments and sensor node failures.

To protect the data against transmission errors, redundancy
is commonly used. Redundancy takes two forms; spatial and
temporal. Spatial redundancy replicates the data in a system.
Transport over multiple paths through a network and the use of
forward error correction (FEC) codes are examples of spatial
redundancy. Automatic repeat request (ARQ) is an example
of temporal redundancy. Unlike delay tolerant applications,
image surveillance may not benefit from retransmission-based
error recovery due to the additional delay incurred. Therefore,

we focus on spatial redundancy for visual sensor networks in
this paper.

Several methods have been proposed to improve the ro-
bustness of image transport in the literature. Forward error
correction based methods for image transmission have received
wide interest for their efficiency in combating wireless channel
errors. However, FEC based methods do not address node
failures where the whole packet is lost. Multipath transport
that utilizes independent (or highly uncorrelated) transmission
paths has also been explored for fault-tolerance. Recently, sev-
eral interesting proposals on delivering image and video over
multihop wireless networks using multiple paths have been
introduced in [4], [5]. However, these methods are not very
practical for resource constrained sensor networks, since these
methods require setting up multiple paths between the source
and the destination a priori and continuously monitoring and
reporting path information to the source node. Further, the
effect of node failures is not considered in [4], [5], nor is the
energy consumption discussed.

In this work, we present an image transport scheme that is
able to provide an image of acceptable perceptual quality at the
receiver in spite of the channel impairments and node failures.
Specifically, we propose an “in-network” diversity combining
scheme which takes advantage of path diversity to achieve
better performance. When sending a packet, multiple relaying
nodes are chosen to provide redundancy against random node
failures. Multiple copies of coded image coefficients from
different relaying nodes are combined along the path in order
to reduce the bit errors caused by wireless link errors. In
addition, forward error correction code is also applied on
packets. The performance metrics of the proposed scheme
we investigate in this work are the received image quality
and the energy consumption of the image transport scheme.
Through simulations, we show that there is indeed a robustness
improvement compared to other schemes. This improvement
is more noticeable in case of high node failure probability
and long distance between the source and the destination.
Some performance related factors (the number of hops, the
average channel error rate, and the average node failure rate
in the underlying network) for our proposed scheme are also
discussed.

The main contribution of this work is the design and
simulated evaluation of a new image transport scheme that
is suitable for wireless sensor networks. The key features of



this scheme are:
• The proposed scheme applies the concept of “in-network

processing” [6]. Error robustness to network errors is
improved by combining the image data as it flows through
the nodes. Compared with previous multipath transport
approaches [5], [7] which split data at the source and
combine data from different paths only at the final
destination, in our scheme, the cluster heads on the paths
are able to recover lost packets and further correct bit
errors by combining packets. There is a noticeable image
quality improvement when compared against state-of-
the-art image transport schemes (detailed in Section V).
Furthermore, the improvements are attained at low energy
consumption.

• When compared with other state-of-the-art image trans-
port schemes, our diversity scheme is simple and can
be implemented with limited additional complexity by
extending existing multipath routing and clustering pro-
tocols [8]–[10].

The rest of the paper is organized as follows. In Section II,
we discuss related issues and prior work in more detail.
The model and assumptions are described in Section III.
Section IV introduces the error robust image transport scheme.
Simulations of the proposed scheme as well as other compared
schemes are presented in Section V. We conclude the paper
and discuss future research directions in Section VI.

II. RELATED WORK

Up to our knowledge, there has been little work on the
design of reliable image transport for wireless sensor networks.
Although there is considerable amount of research on reliable
transport in wireless sensor networks, the current approaches
of reliable transport may not be suitable for images. PSFQ [11]
and RMST [12] are two known reliable transport protocols for
wireless sensor networks. Both of them are based on NACK
and utilize ARQ for reliable data transport. As mentioned
earlier, visual sensor networks may not benefit from the long
time delay caused by retransmission. Furthermore, while the
possible outcomes of receiving a data packet is limited, in the
sense that the packet is either successfully received or not, the
characteristics of image offer a wide continuum of solutions
in terms of improving the received image quality.

Error protection in image transport is well understood in
conventional networks (e.g. Internet and cellular networks).
Several methods have been proposed to improve the error
robustness of image transport. These techniques essentially
trade-off energy versus quality; either through error correction
coding or multiple path transport.

Forward error correction allows recovery from error by
incorporating controlled redundant data. FEC-based unequal
error protection (UEP) for image transport has achieved wide
interests for its efficiency in combating wireless link errors
[13]–[16]. In [14], given the packet loss rate, the algorithms
use FEC to protect an image bitstream against packet erasures
by applying different FEC codes according to the importance
of the bits to be protected. The multiple description coding

(MDC) combined with UEP is proposed in [15] which is based
on a rate-distortion optimization technique using Lagrange
multipliers. To transmit JPEG2000 coded images over binary
symmetric channels, the authors in [16] proposed an UEP
algorithm for layered source coding based on Lagrangian opti-
mization. These algorithms attempt to find the best FEC codes
that maximize the expected reconstructed picture quality at the
receiver. Obviously, the usage of FEC alone can not address
the problem of node failures where the whole packet is lost.
Furthermore, the performance of these error control methods
in terms of energy consumption and received image quality in
a multihop wireless network, has not been investigated yet.

Multipath transport has been studied in the past in both
wired and wireless networks. It has mainly been used to
increase aggregate capacity, load balancing and fault-tolerance.
Recently, several interesting proposals on delivering image
and video over wireless networks using multiple paths have
been introduced. In [17], a wavelet domain diversity combin-
ing method is proposed to combat link errors during image
transmission over wireless channels. The work in [17] does
not consider multihop scenario since it considers a wireless
network with only one hop between the source and the
destination.

Multipath transport for images has also been investigated,
although less extensively for multihop wireless networks. The
work in [7] applied multipath transmission in combination
with UEP for progressive image coding. The problem of
allocating packets to multiple paths is investigated to minimize
the power consumption and end-to-end image distortion. The
authors in [7] focused on how to allocate traffic to multiple
end-to-end routes. The performance of such transport scheme
is not discussed. A similar approach using multipath routing
and MDC is proposed in [4] to enhance the network robust-
ness to wireless link errors. However, it requires continuous
monitoring of path quality at each hop and reporting this
information to the source node which makes it hard to be
utilized in sensor networks. A system of transporting video
over multihop networks using multipath transport and multiple
stream coding is investigated in [5]. Although it provided some
very useful insights, all schemes (feedback based reference
picture selection scheme, layered coding with selective ARQ
scheme and multiple description motion compensation coding
scheme) considered there are based on the motion compen-
sated prediction technique which is only applicable to video,
and consequently are not suitable for still images.

We believe it is necessary to discuss why the multipath
transport schemes mentioned above are not suitable for sensor
networks. First, in previous works, multipath transport is
mainly used to combat wireless link errors through path
diversity. Node failures, which may be common in sensor
networks, are not considered. Second, previous multipath
transport schemes which use end-to-end error control, typically
split data at the source and combine data from different
paths at the destination. However, the intermediate nodes are
unaware of errors inside packets. Thus, the errors accumulate
as the packet travels towards the destination (i.e., error propa-



gation). Our scheme utilizes “in-network processing” principle
by in-network diversity combining. Third, current multipath
transport schemes [4], [5], [7] for multihop wireless networks
require setting up multiple paths between the source and the
destination a priori. Further, these methods also assume con-
tinuously monitoring the paths with a set of quality of service
parameters (e.g., bandwidth, loss probabilities) and informing
the source node. While such assumption is reasonable for the
routing layer in the networks investigated in prior work, it is
not appropriate to have such requirement on the routing layer
in wireless sensor networks due to the prohibitive energy cost.
Fourth, in previous works, special image coding schemes are
required at the source node (e.g., multiple description coding
[4], multiple stream coding [5] or unequal error protection
coding [7]).

Our previous work [18] considered algorithms for dis-
tributed image compression as a means to overcome the
computation and/or energy limitation of individual nodes by
sharing the processing of tasks. Error robustness algorithms
for the transport of images, which is the focus of this paper,
was not studied in [18].

III. MODELING

In this section, we describe the assumptions, the scenarios
considered in this paper, the performance metrics of interest
and the system model: the wireless channel error model, the
node failure model, the error correction code and the energy
consumption model.

A. Scenarios and Assumptions
We consider a densely deployed wireless sensor network

which consists of camera-equipped nodes. Every camera-
equipped node can respond to an image query by generating
a raw image (e.g. a snapshot of its sensing area) and com-
pressing the raw image using an image compression algorithm
before transmitting this image to the destination (sink). When
sending an image query, the destination node specifies the
desired image quality.

We make the following assumptions:
• All nodes have the same radio range d.
• Each node can estimate its channel error probability.
• Each node switches between on and off state indepen-

dently. No dynamic node failure detection service is
available in the network1.

• The communication environment is assumed to be
contention-free (e.g., a media access scheme such as time
division media access (TDMA) may be assumed). The
transmission of packets is assumed to occur in discrete
time. A node receives all packets heading to it during
receiving interval unless the sender node is in “off” state2.

1Although there are some failure detection methods, the large overhead
and long execution time are not suitable to visual monitoring and surveil-
lance, which normally have low delay requirement. For example, periodical
broadcast is used in a cluster to acquire the status of every node and a node
failure is detected after the analysis of the replies to the broadcast from all
nodes [19].

2In practice, a timeout mechanism can be applied. A node waits some time
before processing and forwarding the packets.

• A cluster based routing mechanism is assumed to be
in place. Since our proposed image transport scheme
interacts closely with routing layer, we briefly describe
the basic functions of a cluster-based routing protocol as
follows. A more detailed description of clustering and
cluster-based routing can be found in [10], [20]. Nodes
are organized into one-hop clusters. A cluster head is
selected in each cluster and maintains a membership list
of its cluster. Every node knows its cluster head. Every
cluster head knows the path(s) to its neighboring clusters
as well as the path(s) to the sink. When a node becomes
the source, it asks its cluster head for the relaying nodes.

We choose the wavelet-based image compression method
as the source coding scheme in this study since it is more
robust to transmission and decoding errors, and also facilitates
progressive transmission of images. Typically, wavelet-based
image compression involves computing the two-dimensional
wavelet decomposition of the source image to get low and
high frequency subbands. The wavelet coefficients are then
quantized and coded to transmit as a bit stream. More details
of wavelet image compression can be found in [21].

B. Performance Metrics

The first performance metric in this paper is the energy
consumption of the transport scheme. Particularly, the energy
consumed in FEC encoding and decoding as well as the energy
consumed in sending and receiving packets is considered.
In this paper, we do not consider the energy consumed in
generating and compressing images at the source node which
is not the focus of this paper. We do take into account the
energy cost of the combining algorithm in our scheme. Clearly,
the total energy consumption is proportional to the number of
nodes on the path(s) from the source to the destination. For
this reason, we normalize the total energy consumption of the
proposed image transport scheme with respect to the number
of nodes on the paths from the source to the destination in
order to meaningfully measure the energy cost.

The second performance metric is the image quality dis-
tortion. The image quality is measured as the Mean-Squared-
Error (MSE) which is defined as

MSE =
1

N2

∑
i

∑
j

[x(i, j)− x̂(i, j)]2

for an N × N image where x(i, j) is the pixel value of
the reconstructed image from the output of the source node’s
image encoder, x̂(i, j) is the pixel value of the reconstructed
image at the destination. Since Peak Signal-To-Noise Ratio
(PSNR) is a measure more common in the image coding
community, we also use

PSNR = 10 log10

(2b − 1)2

MSE
(1)

to illustrate simulation results for a b-bits per pixel image.
The traditional approaches for measuring image quality

distortion compare the input image of the source’s encoder
against the output image of the destination’s decoder. Here,
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Fig. 1. A Markov chain model for transitions between “0” and “1” states.
qi,j denotes the transition probability from state i to state j, i, j ∈ {0, 1}.
The stationary probability of being in the state “0” is given as P (0) =
q1,0/(q1,0 + q0,1).

we measure image quality distortion based on the output
image of the source’s encoder and the output image of the
destination’s decoder. The reason is as follows. Clearly, the
overall image quality distortion depends on the image source
codec, and the transport network. The overall MSE is actually
a superposition of two distortion types; the distortion caused
by signal compression at the codec and the distortion caused
by the errors in the network. Our scheme’s main objective
is reduction of errors in the network and hence we do not
consider the distortion caused at the source.

C. Wireless Channel Error Model

The channel in every hop is modeled as an independent
and identically distributed (IID) random bit error channel.
Here, we employ a simple channel model, a two-state Markov
channel model [22] as in Fig. 1. The two states of the model
are denoted “1” (good) and “0” (bad). While in the good
state, the bits are received incorrectly with probability Pg; and
while in the bad state, the bits are received incorrectly with
probability Pb. For this model it is assumed that Pg � Pb.
Let α = q1,0 and β = q0,1 denote transition probabilities
between the good and bad states, and vice versa, respectively.
The stationary probability of a channel being in the bad state is
P (bad) = α/(α + β). Thus, the average bit error probability
of the channel is Pe = PbP (bad) + Pg(1 − P (bad)). For
our simulations, we used this model to independently generate
error patterns for all links between nodes. In this paper, we
interchangeably use a wireless channel and wireless link.

D. Node Failure Model

We also use a Markov model to model the node state. The
off state is denoted “0” and the on state is denoted “1”, as
illustrated in Fig. 1. The stationary probability of a node being
in the “off” state is given by Poff = λ/(λ+µ), where λ = q1,0

and µ = q0,1 denote transition probabilities between on and
off states, and vice versa, respectively. In the “off” state, all
packets sent to the node are lost regardless of the wireless
channel state. It is also assumed that the node does not change
state in the middle of the transmission of a packet.

We believe that a discussion of using the Markov node
failure model is necessary. There are two reasons. In one
scenario, sensor nodes are placed into sleep or off mode during
idle periods to save energy consumption [23]. Thus, each

sensor is characterized by two operational states: active and
sleep. In the active state the node is fully working and is able
to transmit/receive data, while in sleep state it cannot take part
in the network activity. Another scenario is that when a node
runs out of its battery, the node goes into recharge mode and
eventually it comes back. A similar model is also used in [24].

We assume that the cluster heads on the path are reliable
during the transmission. A discussion of this assumption is
necessary. There are two intuitive reasons: 1) cluster heads
are more reliable than other nodes in some sensor network
designs proposed in the literature. For instance, in a battlefield,
low-powered sensors may be deployed in the field, with high-
powered, reliable, and secure nodes located in tanks or large
vehicles. For example, in [25], reliable nodes are deployed to
construct a reliable routing path. Those reliable nodes usually
are chosen as cluster heads due to their higher capabilities.
2) in case of homogeneous nodes, the clustering algorithm
generally replaces a cluster head when its energy is depleted or
it is not capable to be a cluster head anymore. Thus, the cluster
heads are less likely to be unreliable under the circumstances
we considered in this paper.

E. Error Correction Code

Error correction coding is required to provide reliable trans-
mission given the possibility of channel errors. In this research,
we use Reed-Solomon (RS) error correction code, which is
widely used for image communication. The error correction
capability of an RS code depends on the coding redundancy.
Let RS(n, k) be the code under consideration, where n is the
block size in number of symbols and k < n is the number
of information symbols. Let m be the number of bits in each
symbol. Any combination of tc = b(n− k)/2c symbol errors
out of n can be corrected. Then the probability of a correctable
packet transmission over one hop, Pcor, is given by

Pcor =
tc∑

i=0

(
n

i

)
P i

s(1− Ps)n−i, (2)

where the symbol error probability Ps is related to the bit error
probability Pe by

Ps = 1− (1− Pe)m. (3)

A more general and detailed description of the RS code can
be found in [26].

F. Energy Consumption Model

In this study, we use a transceiver energy dissipation model
similar to the one proposed in [27]. The energy consumed in
transmission per bit is

ETX = εe + εad2 (4)

and the energy consumed in reception per bit is

ERX = εe (5)

where εa is the energy dissipated in Joules per bit per m2,
εe is energy consumed by the circuit per bit, d is the distance
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Fig. 2. Example of “in-network” diversity combining. The cluster head
c2 combines the packets from two nodes (p12 and p13) using the diversity
combining method. When forwarding a packet, c2 sends it into multiple nodes
(2 in this figure). The data sending to p22 and p23 is the same. Thus, a copy
of packet can be received even node p22 fails.

between a wireless transmitter and a receiver, and 2 is the path
loss parameter. We use the energy consumption model of RS
codec proposed in [28]. The energy consumed in RS encoding
is

ERSE = η (6)

and the energy consumed in RS decoding is

ERSD = θ (7)

where η and θ are the energy dissipated for RS encoding and
decoding per information bit, respectively. The energy spent
in combining two packets (detail in Section IV) per bit is
estimated by [29]

ECOM = δ. (8)

IV. IMAGE TRANSPORT SCHEME

In this section, we describe how the proposed image trans-
port scheme provides resilience to errors that may occur on
the paths from the source to the destination. Our proposed
image transport scheme has two main components: (i) diversity
by using multiple relaying nodes and (ii) FEC code in each
packet. Both provide spatial redundancy though at different
level: replicating packets is at packet level while FEC is at
bit level. The main operations of our proposed scheme are
described in more detail in the following sub-sections.

A. In-network Diversity Combining

In “in-network” diversity combining, multiple copies of the
same packet are generated in the network. They are forwarded
through different paths, and at certain intermediate nodes
(cluster heads), multiple copies are combined, processed, and
then multiple copies of the result are retransmitted. For ease of
illustration, we describe these operations in more detail using
an example as shown in Fig. 2.

After the captured image data is wavelet transformed, the
source s queries its cluster head c1 for the route to the
destination. c1 selects multiple nodes (p12 and p13) in the
cluster as the relaying nodes then informs s. s computes
RS code for the data and generates two copies of a packet,
then transmits them to relaying nodes (p12 and p13). Those
nodes run RS decoding algorithm on their received packets
to correct bit/symbol errors. Then those nodes also run RS
encoding algorithm to re-generate the packets and send to the
next cluster head c2. After receiving the packets, c2 runs RS
decoding algorithm to get multiple copies of image coefficients
and combines them to get a new copy of image coefficients.
c2 also runs RS encoding algorithm on the combined results
and sends multiple copies of the packet to selected relaying
nodes (p22 and p23). In case of node failure (p22), a copy
of the packet can still be received at cluster head c3. This
procedure may continue on c3 and its following clusters until
the final image reaches the destination (sink) node t. The
relaying nodes on the paths are not merely “relaying” (i.e.,
store-and-forward), but also processing the data (i.e., store-
process-forward).3

The proposed path diversity algorithm randomly chooses
the relaying nodes within a cluster. At a given cluster head c,
let N(c) denote the set of member nodes of c. When a packet
reaches the cluster head c, f nodes are randomly chosen from
N(c) where f ≥ 1, and the packet is forwarded to those nodes.

We use a combining method that is similar to one of
the methods proposed in [17].4 The method is described
here for completeness. When the data containing the wavelet
transformed coefficients are received after RS decoding, a
decision is made as to whether to take the data from the
first node, the second node, or from a combination of both.
Depending upon the state of the two channels, through which
the two copies of data are received, the data may contain the
same values for many of the coefficients. The coefficients from
the two copies are compared. If the received coefficient values
are the same, it assumes that the value is correct and selects the
coefficient from either node. Usually, the values of data within
a small block do not vary significantly based on the assumption
that a small block of an image is generally smooth. Thus, for
data of low-frequency subbands, if the coefficient values at
position (i, j) are different, the cluster head compares a 3× 3
block of coefficients surrounding (i, j) from both nodes. The
coefficients from the two blocks are grouped into a total of 18
values. Then the median value is chosen as the coefficient to be
placed at that location (i, j). While for subbands in the high-
frequency, where most of the coefficients have magnitudes
close to zero, the coefficient with the minimum absolute value
is chosen and placed in the final combined result in case of
receiving different coefficients. We demonstrated here using

3It should be noted that, as shown in Fig. 2, the route from the source to
the destination is a single path at the cluster head level. This is because we
assume that the cluster heads do not fail. Diversity at the cluster head level
may be required if the assumption is not true.

4The diversity combining method is for wavelet transformed coefficients
without entropy coding.



two nodes. In case of more than two nodes, in this paper, the
combining method is used recursively, e.g. combining the first
two packets, then combine the results of first two with the
third packet, and so on.

B. FEC coding

Although combining packets can improve the image quality,
the combining results may become worse when multiple
packets are received with errors in case of high channel error
probability Pe. Furthermore, the multiple hops on the path
also make the situation worse by accumulating errors. Thus,
our scheme employs FEC-based error protection.5

The determination of the error correction capability of an
RS code is described as follows. It is assumed that each node
computes a set of RS codes and stores this code table that
will be used for error protection. Let C = {k1, k2, . . . , ku}
be the set of RS codes with k1 > k2 > . . . > ku > 0. For
the estimated channel error probability Pe, the node chooses
the largest ki such that ‖Pcor(n, ki) − 1‖ ≤ ν where ν is a
determined value.

At each node, the FEC coding is applied. The data in every
packet is encoded with RS code before transmission and each
packet is RS decoded when received. For a regular node (not
cluster head), the FEC coding procedure has two steps: RS
decoding a packet to correct bit errors then RS encoding the
data to form a new packet to be forwarded. While at a cluster
head, “in-network” diversity combining as described in the
previous section is inserted between those two steps. Once
again, the principle of “in-network processing” is applied.
Unlike previous approaches, in our scheme, the function of
FEC coding is placed at each node instead of only at the
source and the destination. It is also worth mentioning that a
packet is not discarded and still be combined even when the
RS decoder can not fully correct all bit errors.

V. SIMULATIONS

In this section, we perform extensive simulations to measure
the performance of our proposed image transport scheme. We
describe our experimental methodology and list the parame-
ters. Finally, we present and discuss the simulation results.

A. Simulation Parameters and Methodology

To evaluate the performance of our proposed scheme and
compare with previous schemes, four transport schemes are
simulated; (A) no error protection, (B) multiple relaying nodes
with FEC coding but without combining, (C) multiple relaying
nodes with combining but without FEC coding, and (D) our
proposed image transport scheme. RS code is applied in
schemes (B) and (D) as in Section IV. Multiple relaying
nodes in each cluster are included in scheme (B), (C) and
(D). In scheme (B), in case of receiving multiple packets, the
cluster head just chooses one of them to mimic the behavior
of previous multipath transport such as [4], [5]. Diversity

5The “in-network” diversity combining can be applied without FEC coding,
which complements the image transport scheme. The effect of FEC coding is
shown in Section V-B.
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Fig. 3. An example of routes for four schemes. The difference between
scheme (B) and (D) is that no diversity combining is conducted at the cluster
heads in scheme (B). The difference between scheme (C) and (D) is that no
FEC coding is conducted in scheme (C).

combining is included in scheme (C) and (D). In scheme
(C), redundant packets are directly combined, while they are
combined after RS decoding in scheme (D).

The parameters we varied, in order to assess their impact on
the performance of the transport schemes, are: the number of
hops h between the source and the destination, the average
channel error probability Pe and the average node failure
probability Poff . In each run, a source and a destination which
are h hops apart are randomly chosen and one test image is
sent from the source to the destination. Then a route is chosen
for the source-destination pair which is used in scheme (A).
A slightly different (randomly chosen relaying nodes between
adjacent cluster heads) route is used in scheme (B), (C) and
(D). An example of the routes for the four schemes is shown
in Fig. 3. A fair comparison with previous multipath transport
schemes [4], [5] is difficult because the multiple paths selected
may not be the same. The multiple paths selected by previous
schemes were assumed not have common nodes along the
route. While in our proposed transport scheme, common nodes
along multiple paths are required. The same route is still
used for all “multipath transport” schemes to facilitate the
comparison. The source, the destination and the cluster heads
on the paths are in the “on” state in each run. For the multiple
relaying nodes scheme (B), (C) and (D), f is chosen to be 2 if
not specified. Each data point in the figures presented below
represents an average of 10 runs with identical choice of h,
Pe and Poff , but different source-destination pair.

The simulation is done on test image Lena of size 512×512
pixels with 8 bits per pixel. The source images are decomposed
to one level using the wavelet transform. Then the wavelet
coefficients are uniformly quantized to 8 bits per pixel. Similar
trends are observed for other values not reported here (for
space considerations).

The parameters for channel coding and wireless channel
model are chosen as follows. We use RS code with m = 8
bits per symbol. We fix n = 255 and choose k = 223 with
the assumption that the channel error probability estimation
at each node is 1 × 10−3. To fairly compare schemes, the
packet size is also chosen to be 255 for scheme (A) and (C)
without RS coding. It is worth noting that the simulation is
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Fig. 4. Normalized total energy dissipation per pixel of four schemes versus
distance between the source and the destination. Pe = 1×10−3, Poff = 0.1.

not intended to investigate the performance of FEC code over
wireless channels, which itself has an extensive literature. For
simplicity, in the simulation, we choose Pg = 0 and Pb = 1.
We fix β = 1/8 and vary α to get different channel error
probabilities Pe.

The network parameters are selected as follows. We con-
sider a network with 1000 nodes randomly placed in an area
of 160×160 meters. After the deployment, the nodes organized
into clusters according to the clustering algorithm [10]. The
node communication radius d is fixed to be 10 m. In the node
failure model in Section III-D, we fix the transition probability
µ = 0.1 and vary the value of the transition probability λ to
have different stationary probabilities of a node in “off” state
Poff .

The values of the energy model parameters are chosen
as follows. The values of the parameters of the wireless
communication energy model (4) and (5) are the typical values
εa = 100×10−12Joule/bit/m2 and εe = 50×10−9Joule/bit
as in [27]. The values of the parameters of the RS encoding
and decoding energy model (6) and (7) are computed for
RS(255, 223) code based on the models as in [28]. The
value of η is 0.08 × 10−9Joule/bit and the value of θ is
0.21 × 10−9Joule/bit. The energy consumption of diversity
combining in scheme (C) and (D) is estimated by JouleTrack
[29]. The experiment data in terms of energy expended by
a StrongARM SA -1100 processor at 206Mhz is measured
when running our combining algorithm on test image Lena.
From the experiment, the value of δ in (8) is estimated to be
1× 10−9Joule/bit.

B. Results

1) Energy Consumption: The comparisons between the
normalized total energy dissipation of the four schemes are
shown in Fig. 4. We examine the energy consumption with
respect to the distance between the source and the destination
for a given Poff (similar trends are observed for other values
of Poff ). As mentioned in Section V-A, we normalize the total
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energy consumption with respect to the number of nodes on
the paths. For ease of presentation, we also normalize it with
respect to the number of pixels of the image. It is observed
that the difference between scheme (B) and (D) in terms of
the normalized total energy consumption is very small. Thus,
the effect of diversity combining itself on the total energy
consumption is small compared to sending multiple copies of
data and using FEC code. The energy cost of FEC coding is
about 15% mainly because we use (255,223) RS code. The
normalized total energy consumption of the proposed scheme
is about 60% more than scheme (A) for moderate and long
distance between the source and the destination (≥ 8 hops).
The proposed scheme provides much better image quality as
described in the next simulation results. To show the effect
of f on the total energy consumption, we plot the simulation
results of scheme (D) for different value of f in Fig. 5.

2) Received Image Quality: The received image quality in
terms of PSNR of four schemes under different values of h, Pe

and Poff are shown in Fig. 6, Fig. 7 and Fig. 8, respectively.



10
−4

10
−3

5

10

15

20

25

Average wireless channel error rate P
e

P
S

N
R

 o
f r

ec
ei

ve
d 

im
ag

e 
(d

B
)

h=2, P
off

=0.15

Scheme (A)
Scheme (B)
Scheme (C)
Scheme (D)

Fig. 7. Received image quality versus the average wireless channel error
probability Pe. h = 2, Poff = 0.15.

0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

Average node failure rate P
off

PS
N

R
 o

f 
re

ce
iv

ed
 im

ag
e 

(d
B

)

h=8, P
e
=0.001

Scheme (A)
Scheme (B)
Scheme (C)
Scheme (D),f=2
Scheme (D),f=3

Fig. 8. Received image quality versus the average node failure probability
Poff . Pe = 1× 10−3, h = 8.

It is shown in these figures that scheme (A) is the most
susceptible to network errors (link and node) and multiple
hops. Imperfect channels and node failures will dramatically
worsen the received image quality. Fig. 6 also shows that the
path diversity and combining are effective to reduce the errors
incurred by multiple hops.

Fig. 7 shows that scheme (D) provides up to 3dB im-
provement over scheme (C) for large Pe, due to the use of
RS coding. The effect of combining can also be observed in
Fig. 7. About 1dB improvement is observed for large Pe when
comparing scheme (B) with scheme (D).

In case of node failure (Fig. 8), the multiple copies of
packets and combining are effective to provide up to 10dB
better image quality compared with scheme (A). We also show
the effect of f on the received image quality in Fig. 8. The
quality improvement of f = 3 compared to the case of f = 2
is more noticeable for large Poff . It is observed that the image
quality of f = 3 is lower than the results of f = 2 for
small Poff . An intuitive reason is that we recursively apply

combining method on packets which in some case may worsen
the results. Other combining rules will be investigated for
future work.

We observed that the impact of node failure on received
image quality is more severe than the impact of wireless
channel error. Thus, the path diversity is more important than
FEC coding in wireless sensor networks with node failures.
The FEC coding and diversity combining are more effective
for high wireless channel error rate. From these figures, we
observe that our proposed image transport scheme is more
robust to network errors compared to other schemes. Further-
more, performance degradation is also hardly influenced by
the distance between the source and the destination. It is worth
nothing that interleaving and error concealment are not applied
in this paper, which can further improve both the perceptual
image quality and PSNR value.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of image transport in
error prone wireless sensor networks. The design and evalua-
tion of an error robust image transport scheme is presented. We
use a combination of forward error correction coding, multiple
relaying nodes, and in-network diversity combining to achieve
robustness to both link errors and node failures. The combining
method proposed here exploits some of the properties of the
wavelet transform to improve the perceptual quality of the
received image. The proposed scheme is simple and easy to
implement. Performance evaluation shows that this scheme can
greatly improve image quality at the destination in case of link
impairments and node failures.

To the best of our knowledge, this is the first work to
consider error robust image transport in wireless sensor net-
works. The results obtained in this research may have several
practical applications. An application for the case of error
redundant protocol design could be the selection of the amount
of the redundancy such that the energy cost is bounded by
some given constant for a required quality. We believe that
the work of image transport in wireless sensor networks is
at early stage and many issues such as theoretical analysis
of received image quality and energy consumption require
further investigation. Several aspects of our future research are
combining methods for entropy coded coefficients and unequal
error protection, which may be integrated to further improve
the received image quality. We also plan to take into account
scenarios where the wireless link error rates vary widely with
time. In such environment, adaptive FEC selection algorithm
may be needed.
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