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ABSTRACT
Mobile sensors cover more area over a period of time than the same
number of stationary sensors. However, the quality of coverage
achieved by mobile sensors depends on the velocity, mobility pat-
tern, number of mobile sensors deployed and the dynamics of the
phenomenon being sensed. The gains attained by mobile sensors
over static sensors and the optimal motion strategies for mobile sen-
sors are not well understood. In this paper we consider the problem
of event capture using mobile sensors. The events of interest ar-
rive at certain points in the sensor field and fade away according
to arrival and departure time distributions. An event is said to be
captured if it is sensed by one of the mobile sensors before it fades
away. For this scenario we analyze how the quality of coverage
scales with the velocity, path and number of mobile sensors. We
characterize the cases where the deployment of mobile sensors has
no advantage over static sensors and find the optimal velocity pat-
tern that a mobile sensor should adopt.

We also present algorithms for two motion planning problems:
(i) for a single sensor, what is the minimum speed and sensor trajec-
tory required to satisfy a bound on event loss probability and (ii) for
sensors with fixed speed, what is the minimum number of sensors
required to satisfy a bound on event loss probability. When events
occur only along a line or a closed curve our algorithms return opti-
mal velocity for the minimum velocity problem. For the minimum
sensor problem, the number of sensors used is within a factor two
of the optimal solution. For the case where the events occur at ar-
bitrary points on a plane we present heuristic algorithms for the
above motion planning problems and bound their performance with
respect to the optimal. The results of this paper have wide range of
applications in areas like surveillance, wildlife monitoring, hybrid
sensor networks and under-water sensor networks.
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1. INTRODUCTION
A wide range of applications have been proposed for wireless

sensor networks, which include surveillance, environmental moni-
toring, eco-system monitoring, forest fire response, health care etc
[16, 28], [21, 31], [1, 23], [13, 27], [18, 37]. In traditional wireless
sensor networks, static sensor nodes are randomly scattered over
the sensor field with high density so that most of the sensor field is
covered and the sensor network remains connected. However this
approach has several disadvantages. The positions of the sensors
are fixed after deployment therefore points that are not covered by
the initial deployment are never covered. In a surveillance network,
if an adversary gains knowledge about the positions of the sensors
it can take advantage of it and thus render the sensor network use-
less. Failure of a few sensors may lead to disconnected components
of nodes although sensor density may be high in some areas. Static
sensor networks are also not able to cope with dynamic environ-
ments where new obstructions may appear after initial deployment,
thus hindering proper sensing and communication operations. In
short, static sensor networks require a large number of redundant
nodes in order to maintain coverage and connectivity for a long pe-
riod of time. Deploying a dense network may often be infeasible,
due to financial constraints, or undesirable, due to the negative ef-
fects a dense network may have on the sensor field.

Recent advances in robotics and low power embedded systems
have made mobile sensors [6,9,24,30] a viable choice for the sens-
ing applications mentioned above. Mobile sensors are able to mit-
igate most of the problems faced by static sensors and have been
successfully deployed for sensing large and formidable sensor fields
[1]. Since mobile sensors can move, a small number of mobile sen-
sors may be deployed to ensure that all points would eventually
be covered. A randomized motion strategy would make it diffi-
cult for the adversary to come up with ways to remain undetected
by the sensors. Being mobile the sensors can exchange information
with each other and the sink whenever they come within each others
transmission ranges, thus keeping the network connected for a long



time. However mobile sensors have certain drawbacks. Although
a mobile sensor is able to cover more area than a stationary sensor
over a period of time, the instantaneous area covered by both are
the same. So without proper motion planning, a substantial portion
of the sensor field may not be covered by the mobile sensors for a
long time period. The sensors may therefore miss a lot of events
that may occur at these uncovered locations, which may lead to an
unacceptable quality of coverage. This problem may be severe if
the phenomenon being covered is highly dynamic (either spatially
or temporally) in nature.

In this paper we investigate how the quality of coverage in mobile
sensor networks depends on parameters such as sensor speed, event
dynamics and number of sensors deployed. We also present optimal
and heuristic path planning algorithms for satisfying the required
coverage quality of the sensor network.

We consider a scenario where events appear and disappear at cer-
tain points within a sensor field and the events have to be captured
using mobile sensors. An event is said to be captured if a mobile
sensor senses it before it disappears. If the event fades away with-
out being captured by any of the mobile sensors then the event is
said to be lost. The points where the event may occur are known a
priori and are referred to as Points of Interest (PoIs). The distribu-
tions of arrival and departure times of the events at a PoI are also
completely known. The goal is to plan the motion of the mobile
sensors such that the required quality of coverage (QoC) metric is
satisfied for event capture. The two QoC metrics considered in this
paper are (i) fraction of events captured and (ii) probability that an
event is lost.

The contributions of this paper may be classified into analysis
and algorithms. First we perform a detailed analysis of how the ex-
pected fraction of events captured by mobile sensors vary with the
number and velocity of the mobile sensors and the event dynamics.
We characterize the cases where the QoC obtained by static sensors
would be better than that achieved by the same number of mobile
sensors. We also investigate what is the minimum number of mo-
bile sensors (this number obviously depends on event dynamics and
velocity) after which no substantial gain in coverage is achieved by
deploying more mobile sensors. Furthermore, for a mobile sensor
that is free to vary its velocity along the course of its path we inves-
tigate what velocities should it adopt in order to maximize the frac-
tion of events captured. Second, we present algorithms for bounded
event loss probability (BELP) problem. As the name suggests, the
goal of BELP problem is to plan sensor motion such that the proba-
bility that an event is lost is bounded from above. We consider two
versions of BELP: (i) What is the minimum velocity with which a
single mobile sensor can solve BELP (MV-BELP) and (ii) Given
a fixed velocity, what is the minimum number of mobile sensors
required to solve BELP (MS-BELP). For the case where the PoIs
are scattered over a plane and the sensors are free to move in an
unconstrained manner, we show that both versions of BELP cannot
be solved optimally in polynomial time. However we present op-
timal and approximate algorithms for the cases where the sensors
are only constrained to move along certain paths. This may occur
in scenarios where mobile sensors should move along only trusted
paths in order to avoid being damaged or getting stuck. We also
present heuristic algorithms for the general planar case and bound
the performance of the heuristic algorithm with respect to the opti-
mal.

The results presented in this paper may be applied to wide range
of areas that involve arrival of events at spatially distributed points
which have to be sensed/served within a critical time, otherwise the
events disappear or the service is worthless, e.g. surveillance, mon-
itoring, underwater sensor networks and supply chain management.

Here we briefly discuss the example of underwater sensor network.
In underwater sensor networks, acoustic communication is the only
viable means of communication for large distances. Acoustic com-
munication consumes large amount of power and allows only small
data rates due to the large multipath fading effect. Traditionally the
underwater sensors are deployed on the ocean or river bed and the
data is collected by retrieving them from the bed once their lifetime
is over. Recently there has been considerable success in design-
ing and deploying underwater autonomous vehicles (UAVs) [2,33].
Such UAVs may be used to harvest data from the underwater sen-
sors. Here the underwater sensors correspond to the PoIs and UAVs
correspond to mobile sensors. The generation of new information
at the sensors corresponds to arrival of event. The rate depends on
the nature of phenomenon being sensed. The sensed information
must be retrieved within a finite time in order to avoid overflow of
sensor memory and to keep the delay in relaying information to the
source low. The time interval within which the information must be
retrieved corresponds to the event departure.

1.1 Contributions

1. We provide analytical results on how the quality of cover-
age in mobile sensor networks scale with the number of mo-
bile sensors, their velocity, velocity pattern and event dynam-
ics. In this paper we analyze the case where the PoIs are
located on a simple closed curve and the sensors move along
the curve. However, the methodology used for the analysis
may be easily extended to any general case, where the loca-
tions of PoIs and the trajectory of mobile sensors are known.
These results may serve as guidelines for deploying a mobile
sensor network.

2. We formulate the bounded event loss probability (BELP) prob-
lem to satisfy the quality of coverage at PoIs. We consider
two versions of BELP: (i) minimum velocity BELP (MV-
BELP) and (ii) minimum sensors BELP (MS-BELP).

3. For special cases where the sensors move only along the line
or simple closed curve on which the PoIs are located, we
present optimal algorithms for solving the MV-BELP prob-
lem.

4. For MS-BELP problem, we present approximate algorithms
for the above-mentioned special cases. The number of sen-
sors used by approximate algorithms is shown to be within
factor 2 of the optimal solution.

5. Although the general BELP problem (where PoIs are arbi-
trarily placed on a plane and mobile sensors may move in
unrestricted fashion) is still under study, we present heuris-
tic algorithms for MS-BELP and MV-BELP problems and
investigate their deviation from the optimal solutions.

1.2 Paper Outline
In the next section we present a brief overview of the related

work. The analysis of how the fraction of events captured vary with
the parameters of the network and event dynamics is presented in
Section 3. The BELP problem is presented and discussed in detail
in Section 4. The algorithms for the BELP problem, in three scenar-
ios with increasing order of difficulty, are presented in Sections 5-7.
We summarize our results and discuss the future work in Section 8.

2. RELATED WORK
Considerable research effort has been invested recently in study-

ing coverage properties of static sensor networks [15, 26, 35, 36]



and path planning for mobile robots [19, 20]. However the effects
of mobility on coverage and the trade-offs involved have not been
sufficiently studied. In [26], the authors study the coverage prob-
lem by using computational geometry and graph theoretic tech-
niques, and propose optimal polynomial time worst case and av-
erage case algorithms for calculating coverage. In [29], the au-
thors study unreliable sensor grids and derive necessary and suf-
ficient condition on the probability of sensor failure and the sens-
ing area that ensures coverage along with maintaining connectiv-
ity. Energy efficient coverage in wireless sensor networks is studied
in [11, 17, 32, 38] and references therein. The principles of cover-
age are applied to develop mechanisms for exposing the path of a
moving target in [8, 25].

In recent years there has been interest in understanding how the
coverage properties of a sensor network may be improved by in-
troducing mobility to the sensor devices. In [14] and [39], the au-
thors propose virtual force based algorithms in order to guide sen-
sor movements for improving the coverage properties after random
deployment. In [34], the authors propose algorithms to detect the
vacancies in a sensor field and use them to guide sensor motion in
order to increase coverage. The average area covered by mobile
sensors over a period of time has been characterized in [22]. It is
shown that for a mobile sensor network with density λ, with each
sensor moving according to a mobility model similar to random
walk with expected velocity E[Vs], the expected area covered in
time interval (0, t) is given by 1 − exp (−λ(πr2 + 2rE[Vs]t)).

Online algorithms for allocating tasks to mobile sensors in a hy-
brid sensor network, consisting of mobile and static sensors, is stud-
ied in [3–5]. The tasks to be served by mobile sensors appear at
random location within the sensor field. The static sensors become
aware of the arrival of the task and they guide the mobile sensors to
the position where the task occurs. However, in our system model,
the mobile sensors only have information about the stochastic na-
ture of the arrival of events. Also we do not have any “guides” that
know the global system state. In this paper we consider path plan-
ning without help of any guides and based only on the stochastic
nature of the events being sensed.

3. FRACTIONS OF EVENTS CAPTURED
In this section we present an analysis of coverage quality of mo-

bile sensor networks, in terms of the fraction of events captured
by the mobile sensors, for a simplistic scenario. This analysis may
serve as guideline to differentiate the cases where mobility is help-
ful from the cases where it is not. We consider a PoIs, numbered
1 through a, scattered along a simple closed curve C of length D.
The mobile sensors are allowed to move along the curve C only,
e.g. the closed curve may be a circular corridor and the PoI may
be doors that open into the corridor. The analysis presented in this
section may be easily extended to arbitrary location of PoIs, pro-
vided the locations and the path traversed by the sensors is known.
We present results for the closed curve case because they are easier
to understand and interpret. The sensor motion strategy considered
in this section is continuous traversal of C in counter-clockwise di-
rection. The mobile sensors can sense the event at a PoI (the PoI is
visible to the sensor) if the distance between the sensor and the PoI
along C is less than r. This scenario is illustrated in Figure 1.

The state of each PoI alternates between 0 and 1. State 1 corre-
sponds to a event being present at a PoI while state 0 corresponds
to no event. The times spent by a PoI i in state 0 and 1 are exponen-
tially distributed with means 1

λi
and 1

µi
respectively. Thus (λi, µi)

characterize the event dynamics at PoI i. For the analysis in this
section we assume that λi = λ and µi = µ ∀ i.

We consider three different types of sensor deployments for this

2r

Points 
of Interest (PoIs)

Mobile
Sensor

Figure 1: Analytical model
scenario:

1. Single sensor moving with constant velocity: For this case
we determine the expected fraction of events captured as a
function of event dynamics (λ, µ) and sensor parameters (r,
v). We characterize the cases where mobility decreases the
quality of coverage.

2. Multiple sensors moving with fixed velocity: For this case we
characterize the gain of deploying multiple mobile sensors.
The sensors move along C with velocity v, while remaining
equidistant from each other.

3. Single sensor moving with variable speed: Here we consider
sensors that are able to move with any velocity between 0
and vmax. For this case we characterize the optimal velocity
pattern that the mobile sensor must use in order to maximize
the fraction of events covered.

3.1 Single Sensor Fixed Velocity Case
A state cycle is a 0 → 1 → 0 or 1 → 0 → 1 cycle of the state

of a PoI. During each round trip around C, the sensor visits each
PoI exactly once. The time for which a PoI is visible to the mobile
sensor during a round trip around C equals 2r

v
seconds. So if the

PoI became visible to the sensor at time t, the sensor would capture
any event at the PoI in the time interval [t, t + 2r

v
]. The number

of events captured by the sensor during a visit depends upon the
state of the PoI at the beginning of the visit and the number of state
cycles during the duration of the visit.

LEMMA 1. Let C(τ) denote the number of state cycles observed
at a PoI during time (t, t + τ). Then

E[C(τ)] =
λµ

λ + µ

„
τ − 1

λ + µ
(1 − exp(−(λ + µ)τ))

«
(1)

PROOF. The state cycle is a renewal process whose inter arrival
time is the sum of two exponential random variables. According
to [12], the Laplace transform of the expected number of renewals
in time τ , LN (r), is given by

LN (r) =
LF

r(1 − LF (r))
(2)

where LF (r) is the Laplace transform of the pdf of inter arrival
time of the renewal process.

Let T denote the inter arrival time of the state cycles, then T =
T1 + T2, where T1 and T2 are exponential distributions with mean
1
µ

and 1
λ

respectively. Then P [T ≤ t] is given by

P [T ≤ t] = FT (t) = 1 − 1

λ − µ
(λ exp(−µt) − µ exp(−λt)) (3)

Thus the pdf of T is given by

fT (t) =
dFT (t)

dt
=

λµ

λ − µ
(exp(−µt) − exp(−λt)) (4)
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Figure 2: The gray area indicates the duration of a visit to a
PoI.

LT (r), the Laplace transform of fT (t), is given by

LT (r) =

Z ∞

0

fT (t) exp(−rt)dt =
λµ

(r + µ)(r + λ)
(5)

Let LC(r) denote the Laplace transform of E[C(τ)]. According to
(2), LC(r) is given by

LC(r) =
LT (r)

r(1 − LT (r))

Therefore,

LC(r) =
λ

λ + µ

1

r2
− λµ

(λ + µ)2
1

r
+

λµ

(λ + µ)2
1

r + µ + λ
(6)

So E[C(τ)] = L−1(LC(r)), where L−1 is the inverse Laplace
transform, which directly leads to (1).

Let Si(t) denote the state of PoI i at time t. From the analysis of
a two state Markov chain it follows that

P [Si(t) = 0] =
µ

µ + λ
and P [Si(t) = 1] =

λ

µ + λ
(7)

LEMMA 2. Let Ni(t, t + 2r
v

) denote the number of events cap-
tured by the mobile sensor during a visit to a PoI i that started at
time t. Then

E[Ni(t, t+
2r

v
)] =

λ

λ + µ

„
1− e

(−µ D−2r
v

)
+

λµ

λ + µ
×

„
2r

v
− 1

λ + µ

(1 − e
(−(λ+µ) 2r

v
))

««
+

µ

λ + µ

„„
1 − e

(−λ 2r
v

)
«
×

»
1 +

λµ

λ + µ

2r

v
− λµ

(λ + µ)2

–
− λµ

λ + µ

»
1

λ
−

„
2r

v
+

1

λ

«
e
(−λ 2r

v
)
–

+
λ2

(λ + µ)2

»
e
(−λ 2r

v
) − e

(−(λ+µ) 2r
v

)
–«

(8)

PROOF. We proceed by evaluating E[Ni(t, t + 2r
v

)|Si(t) = 1]

and E[Ni(t, t + 2r
v

)|Si(t) = 0] and combining them using (7) to
find E[Ni(t, t + 2r

v
)].

Figure 2 illustrates the states of a PoI observed by a sensor during
a visit to the PoI. It should be noted that when the state of a PoI at
the beginning of a visit is 1, the number of events captured during
the visit equals 1 + C(2r/v) i.e. number of 1 → 0 → 1 cycles
during the visit duration plus 1. However, the event captured at the
beginning of the event may be the same as the event captured by
the robot while leaving the PoI during the last visit. The probability
that this is true, denoted by Pr , is given by

Pr = P

»
Si(t

′
) = 1 ∀ t − D − 2r

v
≤ t

′ ≤ t

–
= e

(−µ D−2r
v

) (9)

The expected number of distinct events captured by a sensor during
a visit, given that the state of the PoI at the beginning of the visit is
1, is given by

E

»
Ni(t, t +

2r

v
)|Si(t) = 1

–
= 1 − Pr + E

»
C

»
2r

v

––

= 1 − e
(−µ D−2r

v
)
+

λµ

λ + µ

„
2r

v
− 1

λ + µ
(1 − e

(−(λ+µ) 2r
v

)
)

«
(10)
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Figure 3: Fraction of events captured against velocity of the
robot for different sets of λ and µ.

Now consider the case when the state of PoI is 0 at the beginning
of a visit. If the state of the PoI flips from 0 to 1 at some time
t′ during the visit, the number of events captured during the event
equals 1 + C

`
t + 2r

v
− t′

´
. If the state does not flip from 0 to 1

during the visit then the number of events captured during the visit
equals 0. Thus E[Ni(t, t + 2r

v
)|Si(t) = 0] can be expressed as

E[Ni(t, t +
2r

v
)|Si(t) = 0] =

Z t+ 2r
v

t

P [Si(t
′
) = 0, Si(t

′
+ dt

′
) = 1]

„
1 + E

»
C(t +

2r

v
− t

′
)

–«

Since the time spent by the PoI in state 0 is exponentially dis-
tributed with mean 1

λ
, P [Si(t

′) = 0, Si(t
′+dt′) = 1] = λ exp(−λ(t′−

t))dt′. Thus

E[Ni(t, t +
2r

v
)|Si(t) = 0] =

Z t+ 2r
v

t

λe
(−λ(t′−t)) ·

„
1 + E

»
C

„
t +

2r

v
− t

′
«–«

dt
′ (11)

Substituting t1 = t′ − t, we get

E[Ni(t, t +
2r

v
)|Si(t) = 0] =

Z 2r
v

0
λe

(−λt1)
„

1 + E

»
C

„
2r

v
− t1

«–«
dt1

(12)

Thus

E[Ni(t, t +
2r

v
)|Si(t) = 0] =

„
1 − e

(−λ 2r
v

)
«»

1 +
λµ

λ + µ

2r

v
− λµ

(λ + µ)2

–
−

λµ

λ + µ

»
1

λ
−

„
2r

v
+

1

λ

«
e
(−λ 2r

v
)
–

+
λ2

(λ + µ)2

»
e
(−λ 2r

v
) − e

(−(λ+µ) 2r
v

)
–

(13)

Combining (10) and (13) we have

E[Ni(t, t +
2r

v
)] = P [Si(t) = 1] × E[Ni(t, t +

2r

v
)|Si(t) = 1]

+P [Si(t) = 0] × E[Ni(t, t +
2r

v
)|Si(t) = 0]

which yields (8).

LEMMA 3. The expected number of events captured by the sen-
sor in an entire round trip around C, denoted by Ntrip, is given
by

Ntrip =
aX

i=1

E[Ni(t, t +
2r

v
)] = aE[N1(t, t +

2r

v
)] (14)

Lemma 3 directly follows from the fact that all PoIs have i.i.d. event
dynamics and are visited exactly once during a round trip.



THEOREM 1. The expected fraction of events captured by a sin-
gle sensor moving around C with velocity v, denoted by F1(v), is
given by

F1(v) =
v(λ + µ)

λµD
E[N1(t, t +

2r

v
)] (15)

PROOF. Let NT∞ denote the expected number of events cap-
tured by the sensor in time T∞, where T∞ → ∞. NT∞ is equal
to the product of number of round trips completed by the sensor
in time T∞ and the expected number of events captured during a
round trip. Therefore

NT∞ =
vT∞
D

Ntrip = a
vT∞
D

E[N1(t, t +
2r

v
)] (16)

The actual number of events that occur at the PoIs, denoted by N ′
T∞

is equal to aC(T∞). For T∞ → ∞, it is equal to

N ′
T∞ = a

λµ

λ + µ
T∞ (17)

Equation (15) is obtained using F1(v) = NT∞/N ′
T∞

Using (15) we may answer questions like what is the effect of
mobility on quality of coverage? Or, what are the gains achieved by
a mobile sensor over a stationary one? To answer these questions,
consider a situation where the PoIs are located is such a manner
so that only one of them could be covered by a stationary sensor
at any given time i.e. the distance between any two PoIs is more
than 2r. So if a stationary sensor is deployed, then the fraction of
events captured by the stationary sensor is simply 1/a. Therefore
the mobility is useful only if F1(v) > 1/a. Figure 3 shows the
plot of F1(v) against v for events with varying dynamics. Here
D = 50, r = 1 and a = 10. Also plotted alongside is the fraction
of events covered if a stationary sensor was deployed. Through
this plot it is easy to see that if the mobile sensor moves slowly
then its quality of coverage is in fact worse than that of a stationary
sensor. The critical velocity required achieve a better QoC than a
stationary sensor increases as the rate of arrival and departure of
events increases.

3.2 Multiple Sensors, Fixed Velocity
In this subsection we evaluate the quality of coverage for multiple

mobile sensors. We consider m mobile sensors each moving around
C with velocity v. The distance between two adjacent sensors is
assumed to be the same and equal to D/m. The case where distance
between adjacent mobile sensors is less than 2r, i.e. D/m ≤ 2r,
is trivial since in this case each PoI would always be seen by one
of the mobile sensors and hence all events would be captured. We
focus our attention on the case where D/m > 2r i.e. m < D/2r.

THEOREM 2. Let Fm(v) denote the fraction of events captured
by m sensors moving around C with velocity v. Then

Fm(v) =
mv(λ + µ)

λµD
E[N11(t, t +

2r

v
)] (18)

where

E[N11(t, t+
2r

v
] =

λ

λ + µ

„
1−e

(−µ
D/m−2r

v
)
+

λµ

λ + µ

„
2r

v
− 1

λ + µ
×

(1−e
−(λ+µ) 2r

v )

««
+

µ

λ + µ

„
(1−e

(−λ 2r
v

)
)

»
1+

λµ

λ + µ

2r

v
− λµ

(λ + µ)2

–
−

λµ

λ + µ

»
1

λ
−

„
2r

v
+

1

λ

«
e
(−λ 2r

v
)
–
+

λ2

(λ + µ)2

»
e
−λ 2r

v −e
−(λ+µ) 2r

v

–«
(19)
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Figure 4: Fraction of events captured against velocity of the
sensing robots for various numbers of deployed sensors.
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Figure 5: Fraction of events captured against number of mobile
sensors deployed for various velocities.

The proof of Theorem 2 is similar to that of Theorem 1 and is pre-
sented in a related technical report [7].

Figure 4 shows the plots of fraction of events captured against
velocity for various values of m. For these plots, D = 100, r =
1, a = 10 and λ = µ = 1.0. It is observed that the gain in
performance does not commensurate with the increase in number
of sensors after a certain threshold. In fact the fraction of events
covered for m = 5 and m = 6 do not differ significantly. The
dotted lines in Figure 4 show the fraction of events captured if the
sensors were stationary. It is observed that the gains of mobility are
higher when number of sensors deployed are less. Figure 5 shows
the plots of fraction of events captured against number of sensors
deployed. For this plot λ = µ = 0.5. It is observed that the gains
of increasing the number of sensors diminish with higher speed.

3.3 Single Sensor, Variable Velocity
As observed in the previous subsections, the quality of coverage

of mobile sensors with low velocity is worse than that of stationary
sensors. This is because the slow sensors spend most of the times
traveling around regions of C where no PoIs can be seen. We refer
to the union of such regions as futile regions. High velocity enables
the sensors to cover the futile regions in shorter time. However at
high velocity the duration of a visit to a PoI is also decreased. This
reduces the number of events that the sensor can capture during a
visit to the PoI. Intuitively it is appealing that mobile sensors slow
down while any PoI is visible, to increase the number of events
captured during that visit, and move at the maximum speed in the
futile regions. In this subsection investigate the gains, if any, of
varying sensor speed in this fashion.

We consider one mobile sensor capable of moving at any speed
up to vmax. Since there is no incentive to slow down in the futile
regions, the sensor moves with velocity vmax in the futile regions.
However, while a PoI is visible to the sensor it moves with speed
vc ∈ (0, vmax]. We refer to vc as capture speed.



For a mobility pattern, the time taken by the sensor to move
around C depends on length of the futile region which in turn de-
pends on the location of PoIs on C. Although we can analyze this
case for a particular PoI placement, in order to be able to obtain
general results we consider random placement of PoIs along C. As-
sume that the distance of a PoI (along C) from a reference PoI is
uniformly distributed between 0 and D. For such a random place-
ment we find expressions for expected round trip time and expected
inter-visit time and use that to evaluate the fraction of events cap-
tured for a given motion strategy.

THEOREM 3. The fraction of events captured by the mobile sen-
sor moving with variable speed, denoted by Fv(vc), is given by

Fv(vc) =
λ + µ

λµTtrip
E

ˆ
N1v

`
t, t +

2r

vc

´˜
(20)

Where,
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λ
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where,

Ttrip =
E[W ]

vmax

+
D − E[W ]

vc

, Tvisit =
E[W ]

vmax

+
D − E[W ] − 2r

vc

and E[W ] =

„
1 − 2r

D

«a−1

(D − 2r)

A detailed proof of Theorem 3 is presented in [7].
There exists an optimal capture velocity if there exists a capture

velocity vc = v�
c such that dFv(vc)/dvc = 0 at v�

c . Unfortunately
dFv(vc)/dvc = 0 at v�

c is too complex to be solved explicitly.
So we present numerical computation results to show how Fv(vc)
varies with vc. Figure 6 shows plots of Fv(vc) against capture ve-
locity for various number of PoIs. For this plot vmax = 40 m/s,
D = 100, r = 1 and µ = λ = 1.0. It is observed that only for
a = 2, it is advantageous to have vc < vmax. If number of PoIs
equals a, then in general the sensor is missing out events on about
a − 1 PoIs while it is visiting a PoI. So if a is large enough then
the sensor might miss a large number of events if it spends a lot of
time during a visit to a PoI. For a = 2, when the sensor slows down
while sensing a PoI it misses out events at only one PoI. However
it makes up for the lost events at the other PoI by sensing more
events at the PoI being currently visited. Thus a = 2 is the only
case where slowing down while visiting a PoI may not be disad-
vantageous. In general, the best policy is to keep moving with the
maximum possible speed.

4. BOUNDED EVENT LOSS PROBABILITY
(BELP) PROBLEM

In the previous section we found expressions for the quality of
coverage of mobile sensors in terms of expected fraction of events
captured. In this section we consider a stricter quality of coverage
metric: event loss probability. We consider a set of PoIs S, such
that |S| = a. Each PoI has event dynamics λi and µi and is located
at Xi. Let Ei denote the event that an event occurs at PoI i and is
not captured by any of the mobile sensors. The goal is to generate
a motion plan for the mobile sensors such that

P [Ei] < ε ∀ 1 ≤ i ≤ a (22)
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Figure 6: Fraction of events captured against capture velocity
for various values of a.

i.e. probability that any event is not captured is bounded by ε.
This problem is referred to as the Bounded Event Loss Probabil-
ity (BELP) problem.

Note that the constraint on probability of event being missed is a
stronger condition than the fraction of events captured. For exam-
ple, if events rarely occur at a PoI that is far from the rest of the PoIs
then a large fraction of events can be covered by ignoring that PoI
completely. However if a bound on probability of event loss has to
be maintained for all PoIs then no PoI may be completely ignored.
Also, if (22) is satisfied then the fraction of events captured would
be at least 1 − ε.

We now discuss the characteristics of BELP solution and how
hard it is to find one. The event loss probability at PoI i, P [Ei],
depends on the time between two consecutive visits to the PoI. The
following lemma gives the relationship between the event loss prob-
ability and inter visit time.

LEMMA 4. Let T denote the time between two consecutive vis-
its to a PoI with event dynamics λ and µ. Then the probability that
an event is lost between the visits, P(T, λ, µ), is given by

P(T, λ, µ) = 1 − µ

µ2 − λ2
(µe

−λT
) − λe

−µT
) − λe−µT

λ + µ
−

µλ

µ2 − λ2

„
µ

µ − λ
e
−λT − λ

µ − λ
e
−µT − λTe

−µT

«
(23)

PROOF. If the PoI was in state 0 at the end of first visit then
no event is lost if T is less than the time it takes to complete a
0 → 1 → 0 cycle. According to (3), this happens with probability
(λe−µT − µe−λT )/(λ − µ). Therefore, P [loss|0], is given by

P [loss|0] = P [cycle in T ] = 1 − 1

λ − µ
(λe−µT − µe−λT )

On the other hand if the state of PoI at the end of first visit was 1
then the loss probability, P [loss|1], is given by

P [loss|1] =

Z T

0
P [1 → 0 transition at τ ]P [cycle in T − τ ]

= 1 − e
−µT − µ

µ − λ

„
µ

µ − λ
e
−λT − λ

µ − λ
e
−µT − λTe

−µT

«
(24)

P(T, λ, µ) can now be determined using

P(T, λ, µ) =
µ

λ + µ
P [loss|0] +

λ

λ + µ
P [loss|1]

which yields (23).

Let Tcriti(ε) denote the inter-visit time for PoI i such that
P(Tcriti(ε), λi, µi) = ε. Since P(T, λ, µ) is a strictly increas-
ing function of T , Tcriti(ε) is unique and P(T, λi, µi) < ε ∀ T <
Tcriti(ε). Tcriti(ε) is referred to as the critical time of PoI i. Thus



Critical Time = 4T Critical Time = 4T

Critical Time = T

Figure 7: The TSP path requires sensor to move with velocity
3/T , while the optimal path shown with dashed line requires
the sensor to move with 2/T .

the BELP problem boils down to finding mobility schedules for the
mobile sensors such that the time between any two consecutive vis-
its to each PoI is less than their respective critical times. For the
rest of the paper we ignore the argument ε of the critical time and
simply refer to it as Tcriti

We define A(i, j, v) as the feasibility function. A(i, j, v) is equal
to 1 if it is feasible to solve BELP for PoIs i and j with a single mo-
bile sensor having velocity v and is 0 otherwise. In other words
A(i, j, v) equals 1 if a mobile sensor moving back and forth be-
tween PoIs i and j visits each PoI (i and j) at least once within
their critical times. That is

A(i, j, v) =

(
1, if

2(|Xi−Xj |−2r)
v < min(Tcriti

, Tcritj
)

0, otherwise

where |Xi − Xj | is the distance between PoIs i and j.
A set N ⊆ S is said to be a feasible set for velocity v if it is

possible to solve BELP for N with a single sensor having velocity
v. The necessary condition for feasibility of a set is A(i, j, v) =
1 ∀ i, j ∈ N .

We consider two versions of BELP problem:

• Minimum Velocity BELP (MV-BELP) Given a set of PoIs,
their locations and event dynamics, what is the minimum ve-
locity with which a mobile sensor must move to satisfy (22).

• Minimum Sensors BELP (MS-BELP) Given a set of PoI, their
locations and event dynamics, what is the minimum number
of mobile sensors, each moving with velocity v, that need to
be deployed so that (22) is satisfied.

It is easy to see that both versions of BELP are NP-hard prob-
lems. MV-BELP requires finding the optimal path that the mobile
sensor must take to visit PoIs such that time elapsed between two
consecutive visits is less than the critical time. The shortest path
required to visit a set of points is a well studied problem, better
known as Traveling Salesman Problem (TSP). TSP is known to be
an NP-complete problem. When critical times of all PoIs is the
same, the MV-BELP problem reduces to finding TSP path and set-
ting the velocity of the sensor equal to length of TSP path divided
by the critical time. Thus TSP is a special case of MV-BELP prob-
lem and thus at least as hard as TSP. It is not always true that the
TSP path is the optimal path for MV-BELP problem. This is made
clear in Figure 7. The solid path in the figure is the TSP path while
the dashed path is the optimal path.

For v = 0 MS-BELP is reduced to the minimum set cover prob-
lem, which is an NP-hard problem. Since set cover is a special case
of MS-BELP problem, MS-BELP is at least as hard as set cover.
When v > 0 let C(v) denote the collection of all feasible subsets
of S for a mobile sensor traveling with velocity v. The MS-BELP
problem is to find the collection of feasible subsets C′ ⊂ C(v), of
minimum cardinality, such that set S is covered by C′. Determin-
ing whether a subset is feasible is also a non-trivial problem since it

requires finding optimal path for visiting the PoIs belonging to that
set, which is also at least as hard as TSP.

According to the above discussion, it is not possible to develop
polynomial time optimal algorithms for any of the above problems
for general two dimensional placement of PoIs and sensor motion.
However certain restrictions on placement of PoI and sensor motion
allow us to efficiently solve both cases of BELP. We refer to such
cases as restricted BELP.

In the next three sections we consider three different scenarios, in
increasing order of difficulty. We present algorithms for MV-BELP
and MS-BELP problems for each scenario. The three scenarios are

1. Linear case: All PoIs are located along a straight line and the
mobile sensors can move only along the straight line.

2. Closed curve case: All the PoIs are located on a simple closed
curve and the mobile sensors can move only along the closed
curve.

3. General 2-D case: The PoIs are located on a 2-D plane and
the mobile sensors are free to move on the plane in any arbi-
trary fashion.

The first two cases, namely linear and closed curve cases, put re-
striction on the paths used by the mobile sensor. For the MV-BELP
problem this avoids the necessity of finding the optimal path, thus
significantly reducing the complexity of the problem. For the MS-
BELP problem, although the restriction on paths make it easier to
verify whether a set of PoIs is feasible or not but still the problem
of choosing the minimum number of feasible sets to cover all PoIs
is still an instance of set cover problem. Thus restricted MS-BELP
problem still remains a NP-hard problem. In real life the restrictions
on paths traversed by sensors may often since it is not always to fea-
sible/desirable to take any arbitrary path to visit the PoIs. It would
be preferable that the sensors traverse along well trusted paths to
avoid getting stuck or lost. For example, if there are bunch of PoIs
at the outskirts of a dense forest area then it would be desirable that
the sensor moves along the outskirts of the forest area rather than
venture into the dense forest, where it runs higher risk of getting
stuck, lost or damaged. We first present algorithms for linear case
followed by those for the closed curve and general 2-D case.

A note on the coverage model:
In the basic BELP formulation, the only constraint is that a PoI

must be covered by some sensor every Tcriti time units. There-
fore, in the multiple sensor case, one might imagine solutions where
there exists some PoIs, each of which is covered by multiple sen-
sors. For example, a PoI may be covered by k sensors in a round
robin manner, such that each sensor visits the PoI within kTcriti

time units (The case k = 2 can be easily constructed for PoIs on
the line). However, such a solution may not be desirable as it re-
quires the sensors to move synchronously. If the sensors lose syn-
chronicity, possibly when a sensor slows down or gets stuck for a
short time, then a situation may arise where no sensor visits the
PoI within some Tcriti time units. Without a central controller, this
loss of coverage can continue indefinitely. In order to avoid the
synchronous motion requirement, in the rest of the paper we only
consider solutions where each point is covered by a unique sensor.

5. BELP: THE LINEAR CASE
In this case the PoIs are located along a line. Let Xi (1 ≤ i ≤ a)

denote the position of PoI i. Without loss of generality, assume that
PoIs are ordered in increasing order of their positions, i.e. Xi > Xj

if i > j, and that X1 = 0.



5.1 The linear case - minimum velocity prob-
lem

Algorithm 1 MVBELP LINE(X , T , a)

return max1≤i≤a max
“

2(X[i]−X[1]−2r)
T [i] ,

2(X[a]−X[i]−2r)
T [i] , 0

”

Algorithm 1 presents pseudo code for the optimal algorithm for
the line case of the MV-BELP problem. MVBELP LINE takes ar-
rays of locations and critical times of PoIs (X[i] = Xi, T [i] =
Tcriti ) along with the number of PoIs as input. It returns the min-
imum velocity with which the mobile sensor satisfies (22) while
moving back and forth between points x = r to points x = Xa−r.
In doing so, the mobile sensor observes a PoI i while moving from
left to right (from x = r to x = Xa − r) and again while mov-
ing from right to left (from x = Xa − r to x = r). So the
maximum time elapsed between two consecutive visits to PoI i
equals max

`
Xi−X1−2r

v
, Xa−Xi−2r

v
, 0

´
. In order to satisfy BELP

at PoI i the velocity of mobile sensor must be greater than vmini =

max
“

2(X[i]−X[0]−2r)
T [i]

, 2(X[a]−X[i]−2r)
T [i]

, 0
”

. MVBELP LINE sets

the velocity to be maxi vmini , thus satisfying QoC at all PoIs.

THEOREM 4. MVBELP LINE returns the minimum velocity re-
quired to cover a set of PoIs along a line while satisfying (22).

PROOF. Let vmin denote the velocity returned by MVBELP LINE.
¿From the above discussion it is clear that the BELP is satisfied at
all PoIs by a mobile sensor moving back and forth between x = r
and x = Xa − r with velocity vmin. We now show that vmin is
optimal. According to MVBELP LINE vmin is either 0 or equal

to max

„
2(Xk−X1−2r)

Tcritk
, 2(Xa−Xk−2r)

Tcritk

«
for some 1 ≤ k ≤ a. If

vmin = 0, then it is trivially optimal. Now assume that vmin 	= 0
and there exists v� < vmin such that it possible for a mobile sensor
to maintain the required quality of coverage while moving with ve-
locity v�. However if this is the case then there exists a 1 ≤ k ≤ a

such that v� < max

„
2(Xk−X1−2r)

Tcritk
, 2(Xa−Xk−2r)

Tcritk

«
. It implies

that k cannot be covered along with either PoI 1 or a. This contra-
dicts with the assumption that v� satisfies the quality of coverage
constraints. Thus vmin is the minimum velocity with which the
quality of coverage can be maintained.

5.2 The linear case - minimum sensor problem
Algorithm 2 presents a greedy algorithm for the MS-BELP prob-

lem for the line case. MSBELP LINE takes the position, critical
times and number of PoIs, along with the velocity of mobile sen-
sors, as input. The array Γi is the array of PoIs that are assigned to
be covered by mobile sensor i. The algorithm starts allocation to Γi

by adding the leftmost PoI that has not been included in any other
sensor to Γi. Then the algorithm sequentially looks at all the PoIs
located to the right of Γi[0]. If it finds a PoI to the right of Γi[0],
that has not been allocated to any other sensor, say PoI j, then it in-
spects if QoC at j may be maintained by sensor i while maintaining
QoC at all the PoIs already included in Γi. If Γi + {j} is a feasible
set then j is added to Γi, otherwise the algorithm moves on to in-
spect the PoI to the right of j. When the algorithm has inspected all
PoIs from Γi[0] to a. If all PoIs have not been assigned to a mobile
sensor, then the algorithm starts allocating the unassigned PoIs to
Γi+1 in a similar fashion. When all the PoIs have been assigned to
a mobile sensor, the algorithm returns the number of mobile sensors
required to cover the given PoIs. The running time of the algorithm
is O(a2).

Algorithm 2 MSBELP LINE(X , T , a, v)
Set i = k = 0
While all PoIs not assigned

k = k + 1; i = 0
Γk[i] = leftmost PoI not yet assigned
for j = Γk[0] + 1 to a

if j not assigned and A(l, j, v) = 1 ∀ l ∈ Γk

i = i + 1
Γk[i] = j

end if
end for

end while
return k
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Figure 8: All possible relationships between trajectories of two
mobile sensors doing back and forth motion.

In the rest of this paper the first (leftmost) PoI belonging to set
Γi referred to as si, while the last (rightmost) PoI is referred as ei.
That is, sensor i sweeps the portion of line between PoI si and ei.
If |Γi| = 1, si = ei. This is illustrated in figure 5.2. We now prove
some properties of the MSBELP LINE algorithm that we will use
in order to bound the performance of the algorithm with respect to
the optimal.

Property 1: For all i (1 ≤ i ≤ k), the QoC of all PoIs belonging
to Γi is satisfied if a single sensor is deployed to cover the PoIs in
Γi (k is the number of sensors used).

PROOF. The MSBELP LINE algorithm accepts a new PoI l into
the Γi only if it is feasible to maintain QoC at all points already
belonging to Γi and at l after including l in Γi. Thus for all l ∈
Γi, A(si, l, v) = 1 and A(l, ei, v) = 1. This implies that if a
mobile sensor moves back and forth between si and ei, then each
PoI belonging to Γi is visited at least once during any time duration
equal to its critical time. So a single sensor may satisfy QoC at all
points belonging to Γi.

This property implies that MSBELP LINE divides PoIs into sets
such that the QoC at all PoIs belonging to a set may be satisfied
using a single mobile sensor.

Property 2: si < sj ∀ 1 ≤ i < j ≤ k.
This property easy to see since the first PoI added to a set Γi is

the leftmost PoI not yet assigned to any other set.
Property 3: For all i (1 ≤ i ≤ k − 1), ∃ a PoI ti ∈ Γi, such

that si ≤ ti < si+1 and A(ti, si+1, v) = 0. This implies that one
or both of the following is true: (i) A(ti, l, v) = 0 ∀ l ≥ si+1,
(ii) A(l, si+1, v) = 0 ∀ l ≤ ti.

PROOF. In order to add PoIs to Γi, MSBELP LINE looks at the
leftmost PoI that has not been assigned to any set and checks if it is
feasible to cover that PoI along with all the PoIs already belonging
to Γi. According to Property 2, si+1 > si. Also we know that
si+1 is not added to Γi which implies that while constructing Γi,
the algorithm did not find it feasible to add si+1 to Γi. In other
words ∃ ti ∈ Γi such that ti < si+1 and A(ti, si+1, v) = 0. If
such a ti did not exist then si+1 would have been added to Γi

Recall that A(ti, si+1, v) = 0 implies that one or both of the

following is true: (i)
2(|Xsi+1−Xti

|−2r)

v
> Tcritti

or (ii)



2(|Xsi+1−Xti
|−2r)

v
> Tcritsi+1

. Note that condition (ii) is true for
cases illustrated in Figures 8(b) and 8(c) while both conditions (i)
and (ii) may be true for 8(a). If (i) is true then it implies that a
mobile sensor cannot sense PoI ti, then move to sense si+1 or any
point located to the right of it and return to ti within the critical time
of ti. Thus it is infeasible to cover ti while covering si+1 or any
other point located to the right of si+1. Similarly if (ii) is true, then
it is infeasible to cover si+1 while covering ti or any point that lies
to the left of ti. This proves the above property.

THEOREM 5. Let kOPT denote the minimum number of mobile
sensors required to cover a set of PoIs and let k denote the number
of sensors used by MSBELP LINE. Then

k ≤ 2kOPT + 1 (25)

PROOF. ¿From property 3, ∀ i (1 ≤ i ≤ k − 1), ∃ ti ∈ Γi such
that si ≤ ti < si+1 and

A(ti, l, v) = 0 ∀ l ≥ si+1 (26)

Or,

A(l, si+1, v) = 0 ∀ l ≤ ti (27)

where si+1 is the leftmost PoI in Γi+1. Now we construct sets H1

and H2 in the following manner: For each 1 ≤ i ≤ k − 1 add ti

to H1, find ti s.t. A(ti, si+1, v) = 0. Property 3 implies that such
a ti exists. For the ti and si+1 pair, add ti to H1 if (26) holds and
add si+1 to H2 if (27) holds. Thus for each (i, i + 1) pair, such
that 1 ≤ i ≤ k − 1 at least one PoI is added to either H1 or H2.
Therefore

|H1| + |H2| ≥ k − 1 (28)

We will now show that for all l, m ∈ H2 (l 	= m), A(l, m, v) =
0. By definition of H2, we know that there exist i and j (i 	= j,
2 ≤ i, j ≤ k) such that l = si and m = sj . Let i < j, then
l = si ≤ tj−1 < sj = m. From structure of H2, we know that
it is infeasible to cover m while covering tj−1 or any point to its
left. Thus A(l, m, v) = ∀ l, m ∈ H2. Similarly we can show
that A(l, m, v) = 0 ∀ l, m ∈ H1. In other words it is infeasible
to cover two points belonging to either H1 or H2 using a single
mobile sensor. This property implies that

kOPT ≥ max(|H1|, |H2|) (29)

If (29) is not true, then this implies that the optimal strategy would
have to use one mobile to sense at least two PoIs belonging to H1

or H2. But this would lead to violation of QoC requirement at those
points.

Also from (28),

max(|H1|, |H2|) ≥ (k − 1)/2 (30)

¿From (29) and (30), it follows that

kOPT ≥ (k − 1)/2 (31)

Rearranging (31), we get (25).

6. BELP: THE SIMPLE CLOSED CURVE
CASE

In this subsection we present solutions to the MV and MS-BELP
problems for the case where the mobile sensors are constrained to
only move along a simple closed curve joining the PoIs. Consider
a set of PoIs each with event dynamics λi, µi and critical time

Algorithm 3 MVBELP CURVE(L, T , a)
Set minT = min0≤i≤a−1 T [i]
Set minV = D/minT
for i = 0 to a − 1

for j = 0 to a − 1
X[j + 1] = L[i][ mod a(i + j)]
T ′[j + 1] = T [ mod a(i + j)]

end for
V = MVBELP LINE(X , T ′, a)
minV = min(minV, V )

end for
return minV

Tcriti located on a simple closed curve C. Without loss of gen-
erality, assume that the PoIs are numbered, 0 to a − 1, with the
PoI id increasing along the counter-clockwise direction. Let lij de-
note the shortest distance traveled along C to reach PoI j from PoI
i while traveling in counter-clockwise direction, and D denote the
total length of the curve. The algorithms for this case are based on
the algorithms for the linear case.

6.1 The closed curve case - minimum velocity
problem

There are two possible paths that a mobile sensor may take in
order to cover all the PoIs: (i) keep on traveling in a loop along
C, or (ii) move back and forth between PoIs i and mod a(i −
1)1 (i.e. i to mod a(i − 1) in counter-clockwise direction and
mod a(i − 1) to i in clockwise direction) for some 0 ≤ i ≤ a.
The number of type (ii) paths equals a while there is only one type
(i) path. Thus the total number of possible paths that the mobile
sensor may take equals a + 1. The minimum speed of the mobile
sensor if it takes type (i) path equals D

mini Tcriti
. The minimum

speed required for each of the type (ii) paths may be determined
using MVBELP LINE by opening the curve into a straight line,
such that the PoI i is at the left end of the line and PoI mod a(i−
1) is on the right end of the line. The path, among the a+1 possible
paths, that requires the least velocity is the optimal path that the
mobile sensor must take and the velocity required to cover PoIs
along that path is the optimal velocity.

This is the basis of the MVBELP CURVE algorithm (Algorithm 3)
that returns the optimal sensor velocity required to cover the PoIs
while moving along a simple closed curve C. The algorithm takes
the relative distance lij measured along C in counter-clockwise di-
rection, the critical times of the PoIs and the number of PoIs as
input. The algorithm then evaluates the minimum velocity required
to cover the given PoIs along each of the possible paths. In order to
evaluate the minimum velocity for the type (ii) paths, the algorithm
creates a line topology, with i at one end and mod a(i− 1) at the
other end for each 0 ≤ i ≤ a − 1, which corresponds to the back
and forth motion of sensor between PoI i and mod a(i−1). This
line topology is passed to MVBELP LINE that returns the mini-
mum velocity required to cover the PoIs using that path. The algo-
rithm obviously returns the optimal velocity since it compares the
optimal velocity for all possible paths and returns the minimum ve-
locity possible. The running time of MVBELP CURVE is O(a2).

6.2 The closed curve case - minimum sensor
problem

The PoIs may be divided into the following two categories, S1

and S2, depending on their critical time: (i) i ∈ S1 if Tcriti < D/v,

1The function moda(x) returns the value of x modulo a, i.e. remainder of x
a .



or (ii) i ∈ S2 if Tcriti ≥ D/v, i.e. S2 is the set of PoIs whose QoC
may be maintained by a mobile sensor traveling in a loop around C.

We first consider solution for case where S2 = φ. For this case
we will show that there exists an optimal solution that is also the
optimal solution for some linear topology obtained by opening the
curve into a line. Thus greedy algorithm that we developed for the
linear case in the last section may be used to allocate the PoIs to
mobile sensors.

If S2 = φ then there exists no PoIs whose QoC can be satisfied
by a mobile sensor moving around the curve C and therefore all
sensors in this case would perform back and forth motion between
a pair of PoIs. Similar to the definition in the previous section,
let sk and ek denote the PoIs located at the extreme ends of curve
swept by sensor k such that the sensor moves between sk and ek

in counter-clockwise manner. For two mobile sensors k′ and k,
one of the following three cases is true: (i) sk′ ≤ ek′ < sk ≤
ek - i.e. the curve swept by the sensors is disjoint (Figure 8(a)),
(ii) sk′ < sk ≤ ek < ek′ - i.e. the curve swept by sensor k is com-
pletely contained within the curve swept by sensor k′ (Figure 8(b)),
(iii) sk′ < sk < ek′ < ek - i.e. the curve swept by sensors k′ and
k partially overlaps (Figure 8(b)).

We will show that if the curves swept by two sensors overlap
(case (iii)), then the PoIs may be reassigned to the sensors such that
the curves swept by the sensors are disjoint, without introducing
any extra mobile sensors. This allows us to prove that there is an
optimal allocation of the PoIs to mobile sensors such that the PoI
sk is not visited by any other mobile sensor, for some mobile sensor
k. In other words, the curve swept by sensor k is neither contained
within the curve swept by any other sensor, nor does the curve swept
by sensor k partially overlaps with the curve swept by some other
sensor. Thus the curve may be opened to form a line by fixing that
PoI as the first PoI on the line and arranging all other PoIs along the
line such that the relative counter-clockwise distance between the
PoIs is preserved.

CLAIM 1. If S2 = φ, there exists an optimal solution such there
exists a mobile sensor k such no other mobile sensor passes through
point sk.

PROOF. Suppose no such sensor exists in a optimal solution.
Consider a sensor k whose coverage curve partially overlaps with
that of another sensor k′ such that k′ passes through sk (as shown
in Figure 8(c)). We will now show that the coverage curves of the
two sensors may be made disjoint without increasing the number of
sensors deployed.

Starting from sk check to see if the PoIs covered by sensor k and
lying between sk and ek′ may be covered by sensor k′. If all PoIs
between sk and ek′ can be covered by the sensor k′, then we have a
new starting point, s′k, for sensor k such that no other sensor passes
through it and we are done.

Now suppose all PoIs between sk and ek′ cannot be covered by
the sensor k′. This would imply that there exists a PoI, say tk,
between sk and ek′ such that tk cannot be covered by k′. This
would imply that the time taken for a round trip between sk′ and tk

is less than the critical time of tk, that is

2(lsk′ tk − 2r)

v
> Tcrittk

Now since tk is already covered by sensor k, it implies that the
round trip time between tk and ek is less than the critical time of
tk.

2(lsk′ tk − 2r)

v
> Tcrittk

≥ 2(ltkek − 2r)

v

Now consider a PoI dk′ between tk and ek′ (including ek′ ) which is

already covered by sensor k′. Since dk′ is covered by k′, its critical
time satisfies the following inequality

2(ldk′ek − 2r)

v
< Tcritd′ ≤ 2(lsk′dk′ − 2r)

v
2(lskdk′ − 2r)

v
< Tcritd′ <

2(lsk′dk′ − 2r)

v

These inequalities imply that the QoC at all PoIs between tk and
ek′ , that are originally covered by sensor k′, may be satisfied by
sensor k. Therefore we can assign all the PoIs between tk and
ek′ to sensor k. This modification in the allocation satisfies QoC
at all the PoIs. At the same time, tk, the starting PoI of the new
curve swept by sensor k is visited by sensor k only. Thus partially
overlapping curves may be converting into non-overlapping curves
without increasing the number of sensors deployed.

Claim 1 implies that there exists an optimal solution such that
no mobile sensor passes between some PoI i and mod a(i + 1)
(0 ≤ i ≤ a − 1). So if we know the PoI i for which this is true,
then we can find an assignment of the PoIs to the sensors in the fol-
lowing manner. We open the curve C to form a line topology with
mod a(i+1) at the left end and i at the other, while preserving the
distances between the PoIs. The optimal assignment for the case
of PoIs on C would be same as that for this line topology, since
we know that no sensor traverses the section between PoIs i and
mod a(i + 1). We then use MSBELP LINE in order to find the
optimal assignment for the new topology. From Theorem 5 it im-
mediately follows that the number of sensors used by this algorithm
would be at most twice the optimal plus one.

However we do not know which portion of C is not traversed
by any mobile sensors in an optimal solution. So for each PoI i, we
open C to form a line topology with i at left end and mod a(i+1)
at the right end and run MSBELP LINE for each such topology.
The line topology that requires minimum number of sensors may
be used for assignment of sensors to the PoIs. MSBELP LINE is
executed a times in this solution.

Now consider the case where S2 	= φ. For this case there exist
certain PoIs whose QoC may be satisfied by a sensor moving around
C. Note that only one sensor, moving around C, is required to sat-
isfy QoC at all PoIs belonging to S2. None of the PoIs belonging to
S1 will have their QoC satisfied by a sensor moving around C. The
optimal strategy for this case would either have one or no sensor
that goes around C. We approach the assignment problem for this
case in the following manner. First we find the number of sensors
required if one sensor goes around C by running MSBELP LINE
|S1| times over the PoIs in set S1 as described above. Then find
number of sensors required if no mobile sensors goes around C.
This can be done by running MSBELP LINE a times as described
above. Comparison of the number of sensors required for both cases
would yield the number of sensors required using the greedy strat-
egy and corresponding assignment of PoIs to sensors. Again the
number of sensors used would be within two times the optimal plus
one.

Algorithm 4, MSBELP CURVE, finds the optimal number of
sensors required to cover PoIs on a simple closed curve. The al-
gorithm is based on the above discussions. The algorithm first finds
the optimal assignment if none of mobile sensors circles around C.
This is done by creating a line topology for each PoI, with the PoI
at the extreme left end and running MSBELP LINE over it. Then
the algorithm compares with assignment for the case where one
mobile sensor is allowed to circle around C. A line topology is cre-
ated for each PoI that is not covered by the sensor circling C. The
line topology contains only those PoIs that are not covered by the



Algorithm 4 MSBELP CURVE(L, T, a, v)
Set minK = ∞
for i = 0 to a − 1

for j = 1 to a − 1
X[j] = L[i][ mod a(i + j − 1)]
T ′[j] = T [ mod a(i + j − 1)]

end for
K = MSBELP LINE(X, T ′, a, v)
minK = min(minK, K)

end for
for i = 0 to a − 1

if T [i] < D/v
for j = 1 to a − 1

if X[j] < D/v
X[j] = L[i][ mod a(i + j − 1)]
T ′[j] = T [ mod a(i + j − 1)]

end if
end for
K = MSBELP LINE(X, T ′, a, v)
minK = min(minK, K + 1)

end if
end for

circling sensor. MSBELP LINE is run over each line topology to
find the optimal assignment. If the critical times of all the nodes is
less than D/v, then the second part of the algorithm is not needed.
Since MSBELP LINE runs in O(a2) time, MSBELP CURVE runs
in O(a3) time.

7. BELP: GENERAL 2-D CASE
As already mentioned, if the PoIs are scattered over a plane and

the mobile sensors are allowed to move in an unconstrained fash-
ion, the MV-BELP and MS-BELP problem are NP-complete and
NP-hard respectively. Therefore in this section we suggest some
heuristic algorithms for MV-BELP and MS-BELP problem.

7.1 General 2-D case - minimum velocity prob-
lem

The main hurdle in solving MV-BELP is finding the optimal
path that covers all the PoIs. Therefore we focus on finding “good
enough” path that visits all the PoIs and then set the velocity of the
sensor equal to length of the path divided by the mini Tcriti . One
possible approach is to use solution of Traveling Salesman Problem
with Neighborhoods (TSPN) [10] in order to find good paths to visit
the PoIs.

The TSPN consists of a set of points and a neighborhood around
the points. A point is said to be visited if we visit any point in
its neighborhood. The TSPN problem is to find the shortest path a
traveling salesman should take in order to visit all the points. For
BELP problem, the neighborhoods of the PoIs are simply the disc of
radius r (sensing radius) around the PoIs. The TSPN itself is a NP-
complete problem but fortunately there are many good approximate
algorithms [10] that may be used to find the path.

The heuristic algorithm, MVBELP 2D, is thus summarized in
Algorithm 5.

Algorithm 5 MVBELP 2D

Calculate TSPN(S)
Return |TSPN(S)|

mini Tcriti

THEOREM 6. Let vTSPN denote the velocity returned by MV-
BELP 2D and let v� denote the optimal velocity, then

vTSPN

v�
≤ Tmax

Tmin
(32)

where Tmax = maxi Tcriti and Tmin = mini Tcriti .

PROOF. The optimal algorithm would visit the neighborhoods
of all PoIs at least once in time interval (t, t + Tmax), for all t.
Thus the sensor would cover at least distance |TSPN(S)| in the
time period (t, t + Tmax). Therefore

v� ≥ |TSPN(S)|/Tmax

The velocity returned by the heuristic algorithm equals |TSPN(S)|/Tmin.
Therefore ratio vTSPN/v� is equal to

vTSPN

v�
≤ |TSPN(S)|/Tmin

|TSPN(S)|/Tmax
=

Tmax

Tmin

If f(a) is the approximation ratio of the TSPN algorithm used
in Algorithm 5, then vTSPN/v� ≤ f(a)Tmax/Tmin. If the TSPN
algorithm proposed in [10] is used then f(a) = k, where k is a
constant independent of a. Thus for the case where critical times
of all the PoIs is the same, we have a constant factor approximation
algorithm for MVBELP problem.

7.2 General 2-D problem - minimum sensor
problem

For the MS-BELP problem in 2-D we present a heuristic algo-
rithm, MSBELP 2D (Algorithm 6), which is also based on the so-
lution of TSPN problem. The algorithm calculates the TSPN path
for visiting all the PoIs and uses MSBELP CURVE to find the as-
signment of PoIs to mobile sensors if the sensors move only along
the TSPN path.

Algorithm 6 MSBELP 2D

Calculate TSPN(S)
Apply MSBELP CURVE() over TSPN path

The following lemma justifies using TSPN as a subproblem for
solving MS-BELP problem.

LEMMA 5. Let kOPT denote the number of sensors used by an
optimal solution and rmax denote the maximum distance between a
pair of PoIs, then

|TSPN(S)| ≤ kOPT(vTmax + rmax) (33)

Using Lemma 5 we can bound the MSBELP 2D’s deviation from
the optimal value.

THEOREM 7. Let k denote the number of sensors used by MS-
BELP 2D, then

k

kOPT
≤ 2Tmax

Tmin
+

2rmax

vTmin
(34)

The proofs of Lemma 5 and Theorem 7 are presented in [7].
As mentioned in the previous subsection, there are TSPN algo-

rithms with constant approximation ratio. If such an algorithm is
used for solving the TSPN in MSBELP 2D, then the bound in (34)
would be simply scaled by the same constant.



The approximation ratio of MSBELP 2D depends not only on the
ratio of critical times, but also on the relative location of PoIs and
velocity of sensors. Favorable situations for applying the algorithm
are: equal critical times, closely placed PoIs, large sensor velocity
and large minimum critical time.

8. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of providing quality of cov-

erage using mobile sensors. We present analytical results that quan-
tify the effect of controlled mobility on the fraction of events cap-
tured and how it is effected by the dynamics of phenomenon being
covered. The analytical results provide guidelines for choosing the
velocity and the number of sensors to be deployed for satisfying
constraints on fraction of events captured.

We also studied the following motion planning problems in order
to bound the probability of event loss: (i) Finding the minimum ve-
locity for covering a set of PoIs with a single sensor (MV-BELP),
and (ii) Finding the minimum number of sensors to be deployed if
the velocity of each sensor is fixed (MS-BELP). The MV-BELP and
MS-BELP problems are shown to be NP-hard. We provide optimal
algorithms for the the special case of MV-BELP where the sensors
are only allowed to move on the line or curve along which the PoIs
are located. For the similar restricted case of MS-BELP problem
we present an algorithm that uses at most 2 ·OPT + 1 mobile sen-
sors, where OPT is the minimum number of mobile sensors used
by an optimal algorithm. For the general version of MV-BELP and
MS-BELP, where the PoIs are scattered over a plane, we present
heuristic algorithms based on TSP problem and bound their perfor-
mance with respect to the optimal solution.

The performance of the heuristic algorithm for MV-BELP pre-
sented in this paper depends on the ratio of critical times of the
PoIs. This may be undesirable if the sensors are covering variety
of events that have a large range of critical times. Even for a small
number of PoIs the performance of the heuristic algorithm may be
arbitrarily bad. The next step would be to develop good approxi-
mation algorithms for MV-BELP and MS-BELP problems whose
approximation ratio would depend on the number of PoIs, rather
than the ratio of critical times.

We did not consider the communication requirements of the mo-
bile sensors in this paper. In many scenarios the sensors may require
to communicate with each other or to relay the gathered informa-
tion to a base station. Adding communication requirements is likely
to constrain the solution further, thus our results in this paper may
serve as a reference for the more constraint cases. Incorporating the
communication requirements and collaboration of mobile sensors
in the event capture problem is the focus of our future research.
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