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Abstract— In this paper we focus on characterizing the average
end-to-end delay and maximum achievable per-node throughput in
random access multihop wireless ad hoc networks with stationary
nodes. We present an analytical model that takes into account the
number of nodes, the random packet arrival process, the extent
of locality of traffic, and the back off and collision avoidance
mechanisms of random access MAC. We model random access
multihop wireless networks as open G/G/1 queuing networks and
use diffusion approximation to evaluate closed form expressions
for the average end-to-end delay. The mean service time of nodes
is derived and used to obtain the maximum achievable per-node
throughput. The analytical results obtained here from the queuing
network analysis are discussed with regard to similarities and
differences from the well established information-theoretic results
on throughput and delay scaling laws in ad hoc networks. We
also investigate the extent of deviation of delay and achievable
throughput in a real world network from the analytical results
presented in this paper. We perform extensive simulations and verify
that the analytical results closely match the results obtained from
simulations.

I. I NTRODUCTION

A multihop wireless ad hoc network is a collection of nodes
that communicate with each other without any established in-
frastructure or centralized control. The transmission power of a
node is limited, thus the packets may have to be forwarded by
several intermediate nodes before they reach their destinations. So
each node may be a source, destination and relay. The wireless
medium is shared and scarce, therefore ad hoc networks require
an efficient MAC protocol [1]. Since ad hoc networks lack
infrastructure and centralized control, the MAC protocolsfor ad
hoc networks should be distributed, and thus random access MAC
protocols, e.g. MACA [6] and MACAW [1], have been proposed.
The delay and throughput of wireless ad hoc networks depend
on the number of nodes, transmission range of the nodes, traffic
pattern and the behavior of the MAC protocol [5], [4].

In this paper we investigate how the end-to-end delay and
throughput in a random access MAC based multihop wireless
network with stationary nodes depend on the number of nodes,
transmission range and traffic pattern. We propose a queuing
network model. The queuing network model proposed in this
paper is unique in that it allows us to derive closed form expres-
sions for the average end-to-end delay and maximum achievable
throughput. The packet delay is defined as the time taken by a
packet to reach its destination node after it is generated. The
average end-to-end delay is the expectation of the packet delay
over all packets and all possible network topologies. Our analysis
takes into account the queuing delays at source and intermediate
nodes. The packets are assumed to have a fixed size and random
arrival process. Moreover we also characterize how the average
end-to-end delay and maximum achievable throughput vary with

the degree of locality of traffic. The primary purpose of thisstudy
is not to accurately predict the performance of standard protocols
(like IEEE 802.11 MAC) but to gain insights into the queuing
delays and achievable throughput in random access multihop
wireless ad hoc networks.

Several studies have focused on finding the maximum achiev-
able throughput and characterizing capacity-delay tradeoffs in
wireless ad hoc networks [5], [8], [4], [9]. In [5] it is shown
that for a wireless network withn stationary nodes, the per-
node capacity scales asΘ(W/

√
n log n). In [8], the authors use

simulations in order to study the dependence of per-node capacity
on IEEE 802.11 MAC interactions and traffic pattern for various
topologies like single cell, chain, uniform lattice and random
network. An estimate of the expressions for one-hop capacity
and upper bound of per-node throughput is obtained using the
simulation results.

In [4], the authors characterize the delay-throughput tradeoffs
in wireless networks with stationary and mobile nodes. It is
shown that for a network with stationary nodes, the average
delay and throughput are related byD(n) = Θ(nT (n)), where
D(n) andT (n) are the average end-to-end delay and throughput
respectively. However the delay is defined as the time taken by
a packet to reach the destinationafter it has left the source.
Also, according to the network model, the packet size scales
with throughput. Under these assumptions the delay is simply
proportional to the average number of hops between a source
destination pair.i.e. in their model, there is no delay due to
queuing. If, more realistically, the packet size is assumed to be
constant and the delay is defined as time taken by a packet to
reach the destinationafter its arrival/generation at the source,
there would be queuing delays at the source and intermediate
nodes.

Several recent studies have proposed queuing models for per-
formance evaluation of the IEEE 802.11 MAC. A finite queuing
model is proposed and used in [14] for evaluating the packet
blocking probability and MAC queuing delays in a Basic Service
Set withN nodes. A queuing model for performance evaluation
of IEEE 802.11 MAC based WLAN in the presence of HTTP
traffic is proposed in [10]. In [11] the service time of a node,in
IEEE 802.11 MAC based wireless ad hoc network, is modeled
as a Markov modulated general arrival process. The resulting
M/MMGI/1/K queuing model is used for delay analysis over a
single hopin the network. An analytical model for evaluating
closed form expression for the average queuing delay overa
single hopin IEEE 802.11 based wireless networks is presented
in [13]. In [12], the authors use a queuing theoretic approach in
order to calculate the mean packet delay, maximum throughput
and collision probability for an elementary four node network
with hidden nodes and extend the results tolinear wireless
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networks. It is worth noting that none of the prior works [14],
[10], [11], [13], [12] extends to a generaltwo dimensional
wireless network.

We propose a detailed analytic model for multihop wireless
ad hoc networks based on open G/G/1 queuing networks. We
first evaluate the mean and second moment of service time over
a single hop by taking into account the back off and collision
avoidance mechanisms of IEEE 802.11 MAC. We then use the
diffusion approximation for solving open queuing networksin
order to derive closed form expression for the average end-to-
end packet delay. Using the average service time of the nodeswe
obtain an expression for the achievable throughput. We present
detailed discussions on how the maximum achievable throughput
obtained from our queuing analysis compares with the per-node
information theoretic capacity of Gupta-Kumar’s model. The
analytical results are verified against extensive simulations and
numerical computations.

The rest of the paper is organized as follows. In Section II
we briefly describe the well known diffusion approximation for
solving open G/G/1 queuing networks. Detailed descriptionof
the network model is presented in Section III. The delay and
throughput analysis of multihop wireless networks is presented
in Section IV. Comments and discussions on the analytical results
is presented in Section V. The comparison of the analytical and
simulation results is presented in Section VI. Finally we present
concluding remarks in Section VII.

II. D IFFUSION APPROXIMATION METHOD

The diffusion approximation [3] can be used for solving an
open G/G/1 queuing network provided that all the nodes in the
network are single server with first-come first-serve (FCFS)ser-
vice strategy. The advantage of using the diffusion approximation
in this work is that it allows us to obtain closed form expressions
for the average end-to-end delay.

In this section we briefly describe how the diffusion approxi-
mation is used to solve an open G/G/1 queuing network. (Please
see [3] for details). Suppose we have an open queuing network
with n service stations, numbered from1 to n. The external
arrival of a packet is a renewal process with an average inter-
arrival time of 1/λe and the coefficient of variance of inter-
arrival time equalsc2

A. The mean and coefficient of variance of
the service time at a stationi are denoted by1/µi and c2

Bi,
respectively.

The visit ratio of a station in a queuing network is defined as
the average number of times a packet is forwarded by (i.e. visits)
the station. The visit ratio of stationi, denoted byei, is given by

ei = p0i(n) +

j=n
∑

j=1

pji(n) · ej (1)

wherep0i denotes the probability that a packet enters the queuing
network from stationi andpji denotes the the probability that a
packet is relayed to stationi after completing its service at station
j.

There are two sources of packet arrivals at a station: the packets
that are generated at the station and the packets that are forwarded
to the station by other neighboring stations. The resultingarrival
rate is termed theeffective arrival rateat a station. The effective
arrival rate at stationi, denoted byλi, is given by

λi = λeei (2)

The utilization factor of stationi, denoted byρi, is given by

ρi = λi/µi (3)

The squared coefficient of variance of the inter-arrival time at a
stationi, denoted byc2

Ai, is approximated using

c2Ai = 1 +
n

X

j=0

(c2Bj − 1) · p2
ji · ej · e−1

i (4)

wherec2
B0 , c2

A by convention.
According to the diffusion approximation, the approximate

expression for the probability that the number of packets atstation
i equalsk, denoted bŷπi(k), is

π̂i(k) =

{

1 − ρi k = 0

ρi(1 − ρ̂i)ρ̂
k−1
i k > 0

(5)

where

ρ̂i = exp

„

−
2(1 − ρi)

c2Ai · ρi + c2Bi

«

(6)

The mean number of packets at a stationi, denoted byKi, is

Ki = ρi/(1 − ρ̂i) (7)

III. QUEUING NETWORK MODEL

In this section we develop a queuing network model for multi-
hop wireless networks and derive expressions for the parameters
of the model.

A. The network model

The network consists ofn+1 nodes, numbered1 to n+1, that
are distributed uniformly and independently over a torus ofunit
area. We assume a torus area in order to avoid complications
in the analysis caused by edge effects. Each node is assumed
to have an equal transmission range, denoted byr(n). Let rij

denote the distance between nodesi and j. Nodesi and j are
said to beneighborsif they can directly communicate with each
other, i.e. if rij ≤ r(n). Let N(i) denote the set of nodes that
are neighbors of nodei. All the neighbors of a node lie on a disc
of areaA(n) = πr(n)2 centered at the node. The areaA(n) is
termed the“communication area”of a node. The communication
area is chosen such that the network is connected which ensures
thatN(i) 6= φ ∀ i. The transmission rate of each node equalsW
bits/second.

We use a special case of the Protocol Model of interference
described in [5]. If nodei transmits to nodej then the transmis-
sion will be successful only if (i)rij ≤ r(n) and (ii) rkj > r(n)
for every nodek 6= i, j that transmits simultaneously with node
i. In other words, nodei can successfully transmit a packet to
nodej only if i is a neighbor ofj and no other neighbor ofj is
transmitting concurrently withi. (This is equivalent to setting∆
= 0 in the Protocol Model in [5]).

The traffic model for the network may be described as follows.
Each node in the network could be a source, destination and/or
relay of packets. Each node generates packets with rateλ pack-
ets/sec. The delay analysis is possible for any packet generation
process as long as the mean and SCV of packet inter arrival
time is known. For the sake of simplicity, we assume in our
model that the packet generation process at each node is an
i.i.d. Poisson process. The size of each packet is constant and
equalsL bits. When a node receives a packet from any of its
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Fig. 1. Queuing network model for multihop wireless ad hoc network.

neighbors, it either forwards the packet to its neighbors with
probability(1−p(n)) or absorbs the packet with probabilityp(n).
The probabilityp(n) is referred to as “absorption probability”.
In other words, the absorption probability is the probability that
a node is the destination of a packet given that the node has
received the packet from its neighbors. When a node forwards
a packet, each of its neighbors is equally likely to receive the
packet. The advantage of such a model is that we can control the
locality of the traffic by varying the parameterp(n). The traffic
is highly localized ifp(n) is large while a small value ofp(n)
implies unlocalized traffic. This helps in characterizing the effect
of the locality of the traffic on the average delay and maximum
achievable throughput.

We assume that each node in the network has infinite buffers
which means that no packets are dropped in the network. The
packets are served by the nodes on first come first serve basis.

Multihop wireless ad hoc networks can be modeled as a queu-
ing network as shown in Figure 1(a). The stations of the queuing
network correspond to the nodes of the wireless network. The
forwarding probabilities in the queuing network, denoted by pij ,
correspond to the probability that a packet that is transmitted by
nodei enters nodej’s queue. Figure 1(b) shows a representation
of a node in the ad hoc network as a station in the queuing
network.

The end-to-end delay for a packet equals the sum of the
queuing and transmission delays at the source and at the inter-
mediate nodes. We will use the queuing network model shown
in Figures 1(a) and 1(b) in order to mathematically analyze the
end-to-end delay.

B. Parameters of the queuing network model

In this section we derive expressions for the parameters of
the queuing network model of multihop wireless networks. The
detailed proofs of the Lemmas stated below may be found in [2].

Lemma 1:The expected1 probability that a packet is for-
warded from nodei to nodej, denoted bypij(n), is

pij(n) =

(

1−p(n)
n

(1 − (1 − A(n))n) i 6= j

0 i = j
(8)

Lemma 2:The expected visit ratio of nodei, denoted byei,
is given by

ei =
1

(n + 1)p(n)
∀ i (9)

when(1−A(n))n → 0, i.e. whenA(n) is chosen such that the
network is connected with high probability.

Lemmas 1 and 2 (equations 8-9) indicate that the nodes visit
ratio and the forwarding probabilities averaged over all possible

1All expected values in this paper are the expectation over all packets and all possible
network topologies.

instances of the topologies are similar to the visit ratios and
forwarding probabilities of an average topology where each
node has a number of neighbors equal to the average case.
Thus, as a result of these two lemmas, one may derive the
remaining set of model parameters (effective packet arrival rate
and number of packets traversed) by considering the average
case topology. Applying these results in the diffusion model will
provide expressions for the average end to end delay, defined
as the expectation of the packet delay over all packets and all
possible network topology instances.

Lemma 3:The effective packet arrival rate at a nodei, denoted
by λi, is

λi = λ/p(n) (10)

Lemma 4:The expected number of hops traversed by a packet
between its source and destination, denoted bys, is

s = 1/p(n) (11)

Notice that the average queuing delay depends on the service
time distribution of the nodes, which in turn depends on the MAC
protocol used by the nodes. This is the focus of the following
section.

IV. QUEUING ANALYSIS

In this section we first present a model for a random access
MAC that accounts for the back off and collision avoidance
mechanisms of IEEE 802.11 MAC. We then present the delay
analysis of multihop wireless ad hoc networks by integrating
the MAC model with the queuing network model developed in
Section III.

A. The MAC model

1) Interfering neighbors:Two nodes are said to beinterfering
neighborsif they lie within a distance of2r(n) of each other.
The transmission of a node would be successful if none of the
interfering neighbors of the node transmits concurrently.Also two
nodes may successfully transmit at the same time if they are not
interfering neighbors of each other. The definition of interfering
neighbors is similar to the definition given in [5].

2) The random access MAC model:Before transmitting each
packet the nodes count down a random back-off timer. The
duration of the timer is exponentially distributed with mean 1/ξ.
As in IEEE 802.11, the timer of a node freezes each time an
interfering neighbor starts transmitting a packet. When theback
off timer of a node expires, it starts transmitting the packet and the
back off timers of all its interfering neighbors are immediately
frozen. The timers of the interfering neighbors are resumedas
soon as the transmission of the packet is complete. The time
required to transmit a packet from a node to its neighbor is
L/W+To, whereTo is the time required for the exchange of RTS,
CTS and ACK packets. We assume thatTo is negligible compared
to L/W , so in our analysis we assume that the time required to
transmit a packet isL/W . The model is mathematically tractable
and at the same time captures the behavior of IEEE 802.11 MAC
protocol.

B. Delay analysis

With the help of the following three Lemmas we determine the
mean and second moments of the service time of nodes using the
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random access MAC model. The proofs of the Lemmas may be
found in [2]. We then present the result for end-to-end delayin
multihop wireless networks.

Lemma 5:Let Hi denote the number of interfering neighbors
of a nodei. Then

E[Hi] = 4nA(n) (12)

E[H2
i ] = 4nA(n)(1 + 4(n − 1)A(n)) (13)

whereA(n) = π · r(n)
2.

Lemma 6:Let Mi denote the number of interfering neighbors
of a nodei that have at least one packet to transmit. Then under
steady state,

E[Mi] = ρ4nA(n) (14)

E[M2
i ] = ρ2 · 4nA(n)(1 + 4(n − 1)A(n)) + (1 − ρ)ρ4nA(n) (15)

whereρ is the utilization factor of the nodes.
Lemma 7:Let Zi denote the number of times the timer of a

nodei is frozen before its expiration. Then

E[Zi] = 4 · ρnA(n) (16)

Theorem 1:Let Xi and X2
i denote the mean and second

moment of service time of a packet by a nodei. Then

Xi = E[Xi] =

1
ξ

+ L
W

1 − 4nA(n)λi
L
W

(17)

X2
i = E[X2

i ](1 + 3m + 2m2)
L2

W 2
+ 2(2m + 1)

L

W

1

ξ
+

2

ξ2
(18)

wherem = E[Mi] (in (14)) andm2 = E[M2
i ] (in (15)).

Proof: The time taken by nodei to serve a packet, denoted
by Xi, is the sum of three terms: (i) the duration of the random
back off timer (ti), (ii) the duration for which the timer remains
frozen (ZiL/W ), and (iii) the transmission time (L/W ). Thus

Xi = ti + Zi
L

W
+

L

W
(19)

Taking expectation of both sides we get,

E[Xi] = E[ti] + E[Zi] ·
L

W
+

L

W
=

1

ξ
+ 4ρnA(n)

L

W
+

L

W
(20)

Substitutingρ = λiXi and by rearranging, we get (17).
The proof of (18) may be found in [2].
Corollary 1: The standard deviation of service time of a node

i, denoted byσ2
Xi

, is given by

σ2
Xi

=
L2

W 2
(m + m2 + σ2

m) + 2(2m + 1)
L

W

1

ξ
+

1

ξ2
(21)

whereσ2
m = m2 − m2.

The squared coefficient of variance of the service time at a
node i, denoted byc2

Bi is given by σ2
Xi

/Xi
2
. Using (4), the

squared coefficient of variance of the inter arrival time at anode
i, denoted byc2

Ai, is given by

c2Ai = 1 +

n+1
X

j=1,j 6=i

(c2Bi − 1)
1 − p(n)

n
= 1 + (c2Bi − 1)(1 − p(n))

With the knowledge ofc2
Ai, c2

Bi andρ, we can find the parameter
ρ̂ as given in (6).

Theorem 2:For the random access MAC model the average
end-to-end delay in a multihop wireless network, denoted by
D(n), is given by

D(n) =
ρi

λ · (1 − ρ̂)
(22)

Proof: Let Di denote the average delay at a nodei.
According to Little’s Law,Di = Ki/λi, whereKi is the average
number of packets in the queue of nodei. SubstitutingKi from
(7) we get

Di = Ki/λi = ρ/(λi(1 − ρ̂))

By Lemmas 1 and 2 the average delay at each node is the
same. Thus the average end-to-end delay equals the product of
the average number of hops traversed by a packet and the average
delay at each node. HenceD(n) = s ·Di which leads to (22).

C. Maximum achievable throughput

The maximum achievable throughput, denoted byλmax, is
defined as the maximum packet arrival rate at each node for
which the average end-to-end delay remains finite. If the packet
arrival rate exceedsλmax, the delay will become unbounded.
The following corollary, that follows from Theorem 1, yields a
relationship between the maximum achievable throughput and the
network parameters.

Corollary 2: For a multihop wireless network the maximum
achievable throughputλmax is

λmax =
p(n)

1
ξ

+ L
W

+ 4nA(n) L
W

(23)

Also from (23),λmax = o (1/snA(n)).
Corollary 2 directly follows fromρi = λiXi < 1.

V. D ISCUSSIONS

In this section we discuss the implications of the analytical
results derived in the last section. We first present a brief intuitive
interpretation of the mean service time followed by a discussion
on the maximum achievable throughput evaluated in Corollary 2
and how it compares with well known information theoretic
results [5]. We also discuss how our analytical results varyfrom
those obtained for a more pragmatic network model.

A. Interpretation of mean service time

We now present a mathematically non-rigorous, but intuitive,
derivation of mean service time of a node for the random access
MAC model. This derivation further elucidates the result on
service time. Consider a hypotheticaltwo node networkwhere
one of the nodes transmits packets to the other node. Both nodes
use the random access MAC model described in IV-A. In this
scenario there is no contention for the channel and the average
service time of the transmitter would be1ξ + L

W . We refer to
1
ξ + L

W as theuncontended service time.
Now consider a node (say node0) with m interfering neigh-

bors, numbered1 throughm. The node and its interfering neigh-
bors use the random access MAC model for collision avoidance.
Packets of sizeLj bits arrive at a rate ofαj packets/second
at neighborj. From the point of view of node0, the channel
is available when no other interfering neighbor is transmitting.
Under steady state, the fraction of time that the channel is
available to node0 is 1−

∑m
k=1 αk(Lk/W ). So the service time

of node0 would be the uncontended service time scaled by the
fraction of time the channel is available to node0. Hence the
service time of node0 equals 1/ξ+L0/W

1−
P

m

k=1
αk(Lk/W ) . We refer to

∑m
k=1 αk(Lk/W ) as thecontention term.
In a multihop wireless network,m is analogous to the number

of interfering neighbors andαj = λi, Lj = L ∀ j. The expected
value of the contention term (or the fraction of time the channel is
not available to a node) is4nA(n)λi

L
W and therefore the service

time of a node equals 1/ξ+L/W
1−4nA(n)λi(L/W ) .
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B. Implications of maximum achievable throughput result

The result of Corollary 2 re-emphasizes the importance of
carefully choosing the transmission ranges of nodes.λmax in-
creases with decrease inr(n). However ifr(n) is too small then
the network would become disconnected. According to [7], the
network is asymptotically connected forr(n) = ω(

√

log n/n).
So for a connected networkA(n) = ω(log n/n) and λmax =

o( p(n)
c+4 log(n)(L/W ) ).
Another interesting observation is the dependence ofλmax

on the traffic pattern.λmax is directly proportional top(n).
From (11), the expected number of hops traversed by a packet
equals1/p(n). Thus another way of interpreting the result is that
λmax is inversely proportional to the expected number of hops
between a source-destination pair.

We further investigate how our result on the maximum achiev-
able throughput compares with the result by Gupta-Kumar on
throughput capacity. According to the Gupta-Kumar model, the
nodes are distributed uniformly and independently over a sphere
of unit surface area and each source chooses a random destina-
tion. Therefore the expected distance between a source and the
corresponding destination equals the expected distance between
two points uniformly and independently distributed on a sphere.
Thus the expected distance between a source destination pair in
Gupta-Kumar’s model is a constant (i.e. does not vary withn),
says

GK
. The transmission range in their model isω(

√

log n/n).
Thus the expected number of hops between a source-destination
pair in Gupta-Kumar model iso(

√

n/ log n).
In order to compare our results with Gupta-Kumar’s results

we choose our model parameters such that we have comparable
average number of hops between a source-destination pair and
comparable transmission range. In our model if we choose
p(n) =

√

log n/n, then the expected number of hops between a
source and destination node iss = 1/p(n) =

√

n/ log n, which is
comparable to the Gupta-Kumar model. Alsor(n) =

√

log n/n
or A(n) = π log n/n makes the transmission range of our model
comparable to that of the Gupta-Kumar model. So for the model
parameters that are comparable to the Gupta-Kumar model, the
maximum achievable throughput is

λmax =

1
4π

W√
n log nL

1 + c
4π log n(L/W )

(24)

or λmax = o(W/
√

n log n).
The above discussion implies that for the similar values of

parameters of the network model we get a bound similar to the
Gupta-Kumar’s bound on throughput capacity, but for our model
the bound is not achievable. The reason for the bound not being
achievable is that in our model we consider a random access MAC
protocol rather than a perfect deterministic scheduling. Thus the
bound is not achievable because some amount of channel capacity
is wasted by the nodes during contention for the channel.

C. Comparison with delay and throughput in real networks

The analytical model in this paper is kept reasonably simple
so that it is possible to obtain closed form expressions for delay
and throughput. In particular our MAC model does not take into
account packet collisions and our routing model is random walk
of packets over the network. Thus our model deviates from the
real world scenarios where the packets collide due to random
access MAC and the packets are routed along fixed paths dictated
by routing protocols. In this subsection we discuss how muchthe

delay and maximum achievable throughput in real world networks
deviate from our analytical results.

1) Effect of packet collisions:Consider a more practical MAC
model where a node transmits as soon as its transmit timer expires
and the interfering neighbors freeze their timers only whenthey
sense the transmission. For such a MAC, the transmission of node
i may collide with the transmission of an interfering neighbor
if the difference between the time instances when the transmit
timers of nodei and that of the interfering neighbor expire is
less than the propagation delay between the nodes. Letd denote
the propagation delay between nodei and its interfering neighbor
that has a packet to send, then the probability that the transmission
of i does not collide with that of the interfering neighbor equals
e−2ξd. Since the interfering neighbors are located within two hops
of nodei, d ≤ 2r/c = δ, wherec is velocity of electromagnetic
waves. Thus the probability that the transmission of nodei does
not collide with an interfering node’s transmission is greater
than e−2ξδ. So if nodei has I interfering neighbors, then the
probability that a transmission is a success is bounded by

P [Success] ≥ e−2ξδI (25)

Let Ps denote the expected probability of success, averaged over
all possible topologies, then

Ps ≥
(

1 −
(

1 − e−2ξδ
)

4A(n)
)n

= P (L)
s (26)

The expected number of times a node transmits a packet before
it is received successfully by its neighbor equals1/Ps. It is easy
to see that the RHS of eqn. (20) is scaled by a factor of1/Ps

and the mean service time may be evaluated by rearranging the
resulting equation. So for the more practical MAC model, that
allows packet collisions, the mean service time is bounded by

1
ξ + L

W

1 − 4nA(n)λiL/W
≤ Xi ≤

1
ξ + L

W

P
(L)
s − 4nA(n)λiL/W

(27)

The maximum achievable throughput, evaluated usingλiXi < 1,
is bounded by

λ
(L)
max =

P
(L)
s p(n)

1
ξ

+ L
W

+ 4nA(n) L
W

≤ λmax ≤
p(n)

1
ξ

+ L
W

+ 4nA(n) L
W

= λ
(U)
max

(28)

The dependence ofλ(L)
max, the lower bound ofλmax, on the rate

of transmit timer,ξ, is particularly interesting. Asξ increases,
both P

(L)
s and 1/ξ terms in the denominator decrease. Thus

there is a tradeoff in choosing the rate of the transmit timer- a
high ξ leads to lower waiting time before transmission but leads
to higher probability of packet collision. Letξ⋆ be the optimal
value of ξ that maximizes the lower bound ofλmax. Equating
dλ

(L)
max/dξ to 0 yields thatξ⋆ satisfies the following relation

(b(n)ξ⋆2 + ξ⋆)e−2ξ⋆δ

(1 − 4A(n)(1 − e−2ξ⋆δ))
=

1

8nA(n)δ
(29)

where b(n) = L/W + 4nA(n)L/W . Closed form expression
for ξ⋆ cannot be evaluated from the above relation. However
by approximatinge−2ξ⋆δ ≈ 1 (high probability of success) and
solving the resulting quadratic equation we get

ξ⋆ ≈ 1

2L/W

1

1 + 4nA(n)

(
√

1 +
(1 + 4nA(n))L

2nA(n)Wδ
− 1

)

(30)

As expected,ξ⋆ decreases with increase in the expected number
of interfering neighbors, packet transmission time and propaga-
tion delay.
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Fig. 2. Comparison of the analytical results with simulation results.

2) Effect of deterministic routing:In the routing model used
in this paper, a node forwards a packet to any of its neighbor
with equal probability which spreads the traffic evenly throughout
the network. On the other hand, a deterministic routing protocol
routes each packet belonging to a particular flow (typically
identified by a source-destination pair) along a deterministic path,
determined using some goodness metric. This may lead to the
unfortunate situation where large number of flows pass through a
few nodes that are perceived by the protocol to have good paths
to many destinations. This leads to creation of routing bottlenecks
leading to large queuing delays at intermediate nodes and higher
end-to-end delays. (Several protocols have been designed to
particulary avoid this by routing around congested areas and
hence achieving load balancing.) In this case, (22) can be viewed
as a lower bound on the average end-to-end delay in networks
with deterministic routing.

VI. SIMULATIONS

In this section we compare the simulation results with the
analytical results. The aim of the comparison is to verify the
validity of the assumptions made in our analysis and the accuracy
of the diffusion approximation method as applied in modeling
stationary multihop ad hoc networks.

The simulation setting is the following. The network topology
for the simulations consists ofn nodes scattered randomly over a
torus of unit surface area. Each node can communicate with nodes
within a distancer(n) =

√

log n/n. The random access MAC
protocol used by the nodes is the same as described inIV −B.
Each node produces packets of sizeL = 1 Kbits at the rate of
λ packets/sec. The transmission rate of each node isW = 106

bits/sec. The probabilistic routing described in Section III is used
for the simulations. The average delay for a particular topology
is obtained by averaging the end-to-end delay of all packets
produced during the simulation. In order to average out the effect
of topology, each simulation is repeated over several topologies.
The average end-to-end delay is obtained by averaging the delay
over all topologies.

Figure 2(a) shows how the average end to end delay, as
obtained from the simulations, varies with the number of nodes
for λ = 0.5, 0.7 and 1.0 with p(n) =

√

log n/n. Figure 2(b)
shows how the average end to end delay varies with the arrival
rate (λ) for n = 500, 600 and 800 with p(n) =

√

log n/n.
Figure 2(c) shows how the average end to end delay varies with
the number of nodes for various values of absorption probability
with λ = 1 packets/sec. The theoretical values of the average end-
to-end delay as obtained from the analytical results are plotted
alongside the simulation results in Figures 2(a), 2(b) and 2(c).
It is observed that the simulation results agree closely with the
theoretical values.

VII. C ONCLUSION AND FUTURE WORK

The characterization of capacity and delay in ad hoc networks
has been the focus of considerable research. However capacity
and delay of networks based on random access MAC, like IEEE
802.11, have not been substantially studied. In this paper we pre-
sented delay analysis of random access MAC multihop wireless
ad hoc networks. We derived closed form expressions for the
average end-to-end delay and maximum achievable throughput.
We showed that, for comparable network parameters, the upper
bound on maximum achievable throughput is of the same order as
the Gupta-Kumar’s bound. However for the random access MAC
the bound is not achievable. The analytical results are verified
using simulations.

The results and framework presented in this paper leads to
several venues for future research. Our current directionsinclude
the delay analysis and characterization of the maximum achiev-
able throughput for hierarchical networks, many to one commu-
nication scenarios, wireless networks with sleeping nodesand
wireless networks with other medium access control algorithms.
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