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Abstract – This paper is concerned with the performance
of distributed and centralized fusion with best linear un-
biased estimation (BLUE), also known as linear mini-
mum mean-square error (LMMSE) estimation, and opti-
mal weighted least squares (WLS) estimation. Necessary
and sufficient conditions for optimal distributed fusion rules
to have identical performance as their centralized coun-
terparts are presented. The conditions are general—e.g.,
no assumption is made that measurements are linear in the
estimatee. Further, measures of relative efficiency of dis-
tributed fusion compared with centralized fusion are pro-
posed. General and explicit formulas in terms of MSE ma-
trix for performance degradation of the optimal distributed
fusion relative to the optimal centralized fusion are given.
It is shown both theoretically and by simulation results that
the optimal distributed and centralized fusion rules using
linear measurements have identical performance in general
when measurement errors are uncorrelated across sensors
and the measurement matrix has full column rank; the for-
mer is inferior to the latter in general when the measure-
ment errors are correlated across sensors or are correlated
with the estimatee. Numerical examples that demonstrate
the relative efficiency of the distributed fusion are given. It
is also illustrated that the optimal distributed fusion could
be quite poor compared with the optimal centralized fusion.

Keywords: Distributed fusion, centralized fusion, track fu-
sion, BLUE, least squares

1 Introduction
Distributed fusion has certain advantages over central-

ized fusion in terms of survivability, autonomy, communi-
cation requirements, etc. In target tracking, for example,
distributed fusion and centralized fusion are known as track
fusion and measurement fusion, respectively.

An important issue in distributed fusion is its perfor-
mance relative to that of centralized fusion. It is well known
that under linear-Gaussian assumption (i.e., linear measure-
ments with jointly Gaussian noise), optimal distributed fu-
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sion is algebraically equivalent to centralized fusion if mea-
surement noises are uncorrelated across sensors. It was,
however, not known what conditions are necessary and suf-
ficient for such an equivalence in performance to hold in
any (general or special) case. Probably more important, in
the case such an equivalence does not hold, how much is the
performance degradation of the distributed fusion relative to
the centralized fusion? This knowledge is very helpful for
such tasks as system design in data fusion.

This issue is the topic of numerous publications, includ-
ing [5, 1, 8, 2, 3, 9, 4]. To the authors’ knowledge, how-
ever, neither general necessary and sufficient conditions for
the distributed and centralized fusion to have identical per-
formance, nor formulas for performance degradation of the
former relative to the latter are available. Such formulas are
quite useful in, e.g., design of a distributed system.

In this paper, we present such general necessary and suf-
ficient conditions for BLUE fusion and optimal WLS fusion
and propose measures of relative efficiency of distributed
fusion as compared with the corresponding optimal cen-
tralized fusion performance. Although the results will be
presented for fusing estimates of x, they are perfectly valid
for fusing estimates of x rather than xk.

The rest of the paper is organized as follows. Sec. 2
presents optimal distributed and centralized BLUE fusion
rules for any two-sensor case in a form particularly handy
for comparing their performance. A necessary and suffi-
cient condition for the optimal distributed and centralized
BLUE fusion to have identical performance is presented in
Sec. 3 in a two-sensor system, along with several sufficient
conditions. Sec. 4 is dedicated to the important special case
of linear observations. A necessary and sufficient optimal-
ity condition for a general distributed system of an arbitrary
number of sensors is presented in Sec. 5. Sec. 6 presents
optimal WLS fusion rules and a necessary and sufficient op-
timality condition for the optimal distributed fusion. Mea-
sures of efficiency of distributed fusion relative to the opti-
mal centralized fusion are proposed in Sec. 7. Numerical
examples are provided in Sec. 8. Sec. 9 concludes the paper
with a summary.



2 Optimal Centralized and
Distributed BLUE Fusers

Centralized, standard distributed, and distributed fusion
architectures have been defined in [7]. The corresponding
fusion rules have been presented there, with illustrative ex-
amples given in [6]. This paper does not address nonstan-
dard distributed fusion directly and the standard distributed
fusion is simply referred to as distributed fusion.

Notation and terminology. The best linear unbiased
estimator (BLUE) and the optimal weighted least squares
(WLS) estimator using data y are defined by

x̂BLUE = arg min
x̂ = a +By

E[(x� x̂)(x� x̂)0jy] (1)

x̂WLS = argmin
x̂

(y �Hx̂)0R�1(y �Hx̂) (2)

where a and B do not depend on data y and R is the mea-
surement noise covariance. They minimize mean-square
error and fitting error, respectively.

It is well known that the BLUE estimator of x using data
zi is given by

x̂i = x̂(zi) = E�[xjzi] = �x+Ki~zi

Pi = Cx �KiSiK
0
i

where1

x̂(zi) = estimator of x using data zi
E�[xjzi] = BLUE of x using data zi

�y = E[y] = prior mean of y

Cy = cov(y) = E[(y � �y)(y � �y)0]

Cuv = cov(u; v) = E[(u� �u)(v � �v)0]

Si = Czi

Ki = CxziS
+
i

~zi = zi � �zi = zi �E[zi]

~xi = x� x̂i = estimation error

Pi = MSE(x̂i) = E[~xi~x
0
i] = MSE matrix of x̂i

where MSE stands for mean-square error matrix, and A+

stands for the unique Moore-Penrose pseudoinverse, MP in-
verse for short, of A (A+ = A�1 if A�1 exists).

Remarks. Use of the MP inverse makes the formulas
presented completely general in the sense they are valid for
all matrices. An MP inverse A+ used below can be inter-
preted as matrix inverseA�1 for an easier understanding (at
a price of a slight loss of generality). Also note that Matlab
function pinv(A) computes the MP inverse of any matrix
A that could be singular or rectangular.

The following theorem is instrumental for our results on
BLUE fusion.

Theorem 2.1 (BLUE Fusion Rule). The unique BLUE
fusion rule using z = [z 01; z

0
2]
0 with two arbitrary observa-

1This is because BLUE estimator has many properties akin to those of
conditional mean, although E�[xjz] is not necessarily conditional mean.

tions z1 and z2 can always be written in the following form:

x̂cf = E�[xjz1; z2] = E�[xjx̂1; ~z2j1]

= x̂1 + C~x1~z2j1C
+
~z2j1

~z2j1

Pcf = MSE(x̂cf ) = P1 � C~x1~z2j1C
+
~z2j1

C 0
~x1~z2j1

where

x̂1 = E�[xjz1] = �x+K1~z1

P1 = MSE(x̂1) = Cx �K1S1K
0
1

~z2j1 = z2 �E�[z2jz1] = ~z2 � Cz2z1C
+
z1 ~z1

By the orthogonality principle, we have ~x1 ? ~z1 and
~z2j1 ? ~z1, and then it can be easily shown

C~x1~z2j1 = Cx~z2j1 = C~x1z2 = Cxz2 �K1Cz1z2

C~z2j1 = S2 � Cz2z1S
+
1 C

0
z2z1

This theorem indicates that use of z = [z 01; z
0
2]
0 and ~z =

[x̂01; ~z
0
2j1]

0 is equivalent for BLUE fusion. The use of the
notation E�[xjx̂1; ~z2j1] above is justified by the fact that as
shown in Appendix, E�[xjx̂1] = x̂1.

Note that Theorem 2.1 is valid for any observations z1
and z2. In particular, it is valid for z1 = x̂1 and z2 = x̂2. In
other words, distributed fusion is a special case of central-
ized fusion with z1 = x̂1 and z2 = x̂2. Also, Theorem 1 of
[7] for centralized fusion in the two-sensor case is a special
case of this theorem in the case of linear observations.

Thus, as a corollary of Theorem 2.1 by treating x̂ 2 as the
observation z2 of x, we have the following theorem.

Theorem 2.2 (Distributed BLUE Fusion Rule). The
distributed BLUE fusion rules can always be written in the
following form:

x̂df = E�[xjx̂1; x̂2] = x̂1 + C~x1~x2j1C
+
~x2j1

~x2j1

Pdf = MSE(x̂df ) = P1 � C~x1~x2j1C
+
~x2j1

C 0
~x1~x2j1

where

~x1 = x� x̂1 = ~x�K1~z1

~x2j1 = x̂2 �E�[x̂2jx̂1] = K2~z2 � Cx̂2x̂1C
+
x̂1
K1~z1

C~x1~x2j1 = Cx~x2j1 = C~x1x̂2

This theorem and Theorem 1 of [7] for standard dis-
tributed fusion are equivalent for the two-sensor case.

By the orthogonality principle, we have ~x1 ? (x̂1 � �x1)
and ~x2j1 ? (x̂1 � �x1), and then it can be easily shown that

Cx̂i
= KiSiK

0
i

Cx̂2x̂1 = K2Cz2z1K
0
1

C~x1~x2j1 = Cx~x2j1 = C~x1x̂2 = C~x1z2K
0
2 = Cx̂2 � C 0

x̂2x̂1

C~x2j1 = K2S2K
0
2

� (K2Cz2z1K
0
1)(K1S1K

0
1)

+(K2Cz2z1K
0
1)

0

Although optimal distributed and centralized fusion rules
have other equivalent forms, the two forms presented above
are particularly convenient for the establishment of a nec-
essary and sufficient condition for them to have identical
performance. This is the topic of the next section.



3 Optimality Condition for Two-
Sensor Distributed BLUE Fusion

We first present a necessary and sufficient condition for
the optimal distributed BLUE fusion rule to have the same
performance as the optimal centralized BLUE fusion rule.
It is clear from a comparison of Theorems 2.1 and 2.2 that
this is the case if and only if the two fusion rules have the
same MSE matrix:

Pcf = Pdf (3)

Since

Pcf = P1 � C~x1~z2j1C
+
~z2j1

C 0
~x1~z2j1

= P1 � C~x1z2C
+
~z2j1

C 0
~x1z2

Pdf = P1 � C~x1~x2j1C
+
~x2j1

C 0
~x1~x2j1

= P1 � C~x1z2K
0
2C

+
~x2j1

K2C
0
~x1z2

(3) is equivalent to

C~x1z2(C
+
~z2j1

�K 0
2C

+
~x2j1

K2)C
0
~x1z2 = O

Note that the BLUE estimator that minimizes MSE matrix
is unique almost surely (i.e., unique except possibly for a
set of measurement space with zero probability). If this
condition is satisfied, by the uniqueness of the BLUE, the
distributed and centralized fusion rules are identical (almost
surely).

We formally state the above necessary and sufficient con-
dition as a theorem.

Theorem 3.1 (Optimality Condition for Distributed
BLUE Fusion). Assume that local estimators are BLUE.
The optimal distributed and centralized BLUE fusion re-
sults are identical (almost surely) if and only if the follow-
ing condition is satisfied

C~x1z2(C
+
~z2j1

�K 0
2C

+
~x2j1

K2)C
0
~x1z2 = O (4)

We present below as corollaries of Theorem 3.1 several
sufficient conditions for the optimal distributed and central-
ized BLUE fusion rules to be equivalent.

Corollary 3.1. The optimal distributed and central-
ized BLUE fusion rules are identical (almost surely) if
K1Cz1z2 = Cxz2 or K2Cz2z1 = Cxz1 .

Proof. This corollary follows immediately from (4) since
in this case C~x1z2 = Cxz2 � K1Cz1z2 = O. Condition
K2Cz2z1 = Cxz1 follows from the symmetry of z1 and z2
since the results cannot be dependent on the arbitrary la-
belling of sensor identity.

Corollary 3.2. The optimal distributed and centralized
BLUE fusion rules are identical (almost surely) if measure-
ments are uncorrelated across sensors, that is, Cz1z2 = O.

Proof. When Cz1z2 = O, we have C~z2j1 = S2, C~x1z2 =
Cxz2 , and C~x2j1 = K2S2K

0
2, and thus (4) follows from

below

C~x1z2K
0
2C

+
~x2j1

K2C
0
~x1z2

= Cxz2C
+
z2C

0
xz2(Cxz2C

+
z2C

0
xz2)

+Cxz2C
+
z2C

0
xz2

= Cxz2C
+
z2C

0
xz2 = C~x1z2C

+
~z2j1

C 0
~x1z2

4 BLUE Fusion with Linear
Observations

Consider the special case that observations are linear in
the estimatee (i.e., the quantity to be estimated) x:

zi = Hix+ vi

with known E[vi] = �vi, E[x] = �x, cov(vi) = Ri,
cov(vi; vj) = Rij , cov(x; vi) = Vi, and cov(x) = Cx.

In this case, the measurement residual covariance and the
gain are

Si = Czi = HiCxH
0
i +HiVi + (HiVi)

0 +Ri

Ki = CxziC
+
zi = (CxH

0
i + Vi)S

+
i

and the centralized and distributed BLUE fusion rules are

x̂cf = �x+K1~z1 + C~x1z2C
+
~z2j1

(~z2 �K1~z1)

Pcf = Cx �K1S1K
0
1 � C~x1z2C

+
~z2j1

C 0
~x1z2

x̂df = x̂1 + C~x1z2K
0
2C

+
~x2j1

[K2~z2

�(K2C
0
z1z2K

0
1)(K1S1K

0
1)

+K1~z1]

Pdf = Cx �K1S1K
0
1 � C~x1z2K

0
2C

+
~x2j1

K2C
0
~x1z2

where

~zi = zi � (Hi�x+ �vi)

Cz1z2 = H1CxH
0
2 +H1V2 + V 0

1H
0
2 +R12

C~x1z2 = CxH
0
2 + V2 �K1Cz1z2

C~z2j1 = S2 � C 0
z1z2S

+
1 Cz1z2

C~x2j1 = K2S2K
0
2

� (K2C
0
z1z2K

0
1)(K1S1K

0
1)

+(K2C
0
z1z2K

0
1)

0

The two BLUE fusion rules are equivalent if and only if

C~x1z2(C
+
~z2j1

�K 0
2C

+
~x2j1

K2)C
0
~x1z2 = O (5)

Theorem 4.1. Assume that Ri; and Cx are positive defi-
nite rather than just positive semidefinite, Hi have full col-
umn rank. For BLUE fusion with linear observations, the
distributed fusion and centralized fusion are equivalent if
Cz1z2 = (H2Cxz1)

0; that is, if

H1V2 +R12 = O (6)

or equivalently (by symmetry of two sensors), Cz2z1 =
(H1Cxz2)

0 or

H2V1 +R0
12 = O (7)

Corollary. Under the stated assumption for BLUE fu-
sion with linear observations, the distributed fusion and
centralized fusion are equivalent if the observation errors
are uncorrelated across sensors (i.e., R12 = O) and uncor-
related with the estimatee (i.e., Vi = O).



5 Optimality Condition for General
Distributed BLUE Fusion

A necessary and sufficient condition for the distributed
fusion to have identical performance as the centralized fu-
sion for a two-sensor system is presented in Sec. 3. It
can be generalized to a general distributed system with an
arbitrary n sensors by treating z1 := [z01; z

0
2; : : : ; z

0
n�1]

0,
z2 := zn, x̂1 := [x̂01; x̂

0
2; : : : ; x̂

0
n�1]

0, and x̂2 := x̂n. This,
however, will lead to a condition that is quite messy. In-
stead, we present in this section an alternative but equiv-
alent condition for such a general system, which is much
more elegant.

Consider a parallel distributed system with n sensors.
Denote the stacked vectors of local observations and esti-
mates as

z = [z01; z
0
2; : : : ; z

0
n]

0; y = [x̂01; x̂
0
2; : : : ; x̂

0
n]

0

Note that for any local estimates x̂i = �x+Ki~zi, we have

y = �x+K~z; K = diag(K1; : : : ;Kn)

where ~z = z � E[z]. As established in [7], centralized and
distributed BLUE fusion rules for this system are nothing
but BLUE estimators using z and y, respectively. Then,
from the BLUE theory, we have the following theorem.

Theorem 5.1 (Optimal BLUE Fusion). The centralized
and distributed BLUE fusion rules for the above n-sensor
system are given respectively by

x̂cf = E�[xjz] = �x+ CxzC
+
z ~z

Pcf = MSE(x̂cf ) = Cx � CxzC
+
z C

0
xz

x̂df = E�[xjy] = �x+ CxyC
+
y ~y

Pdf = MSE(x̂df ) = Cx � CxyC
+
y C

0
xy

where Cz = cov(z) and

Cxz = cov(x; z) = [Cxz1 ; : : : ; Cxzn ]

Cxy = cov(x; y) = CxzK
0

Cy = cov(y) = KCzK
0

Based on this theorem and following the same steps as in
Sec. 3, we immediately have the following theorem.

Theorem 5.2 (Optimality Condition for General Dis-
tributed BLUE Fusion). The optimal distributed and cen-
tralized BLUE fusion rules are identical (almost surely) if
and only if the following condition is satisfied

Cxz[C
+
z �K 0(KCzK

0)+K]C 0
xz = O (8)

Note that the local estimators need not be BLUE for The-
orems 5.1 and 5.2 to hold. Theorem 5.2 is not only more
elegant but also more general than Theorem 3.1, which is
valid only for a two-sensor system with BLUE local es-
timators, although it can be extended to the general case.
However, this condition involves matrices that have much
higher dimensions than those involved in Theorem 3.1. For
example, let dim(zi) = m;8i. Then, Cz of this theorem is
(nm)� (nm) while C~z2j1 of Theorem 3.1 is only m�m.

6 Optimal Weighted LS Fusion
Consider the measurement model of Sec. 4. Let

z = [z01; : : : ; z
0
n]

0; H = [H 0
1; : : : ; H

0
n]

0

R = cov(v) = [Rij ] = [cov(vi; vj)] ; v = [v1; : : : ; v2]
0

Theorem 6.1 (Optimal Centralized WLS Fusion). The
optimal centralized weighted least-squares fusion using
z = Hx+ v with R = cov(v) is given by

x̂cf = x̂(z) = (H 0R�1H)�1H 0R�1z

Pcf = MSE(x̂(z)) = (H 0R�1H)�1

This centralized fusion rule is well known.
Consider now distributed fusion. Let y = [x̂ 0

1; : : : ; x̂
0
n]

0.
Note that

x̂i = x� (x� x̂i) = x+ ~vi

or 2
64

x̂1
...
x̂n

3
75 =

2
64

I
...
I

3
75x+

2
64

~v1
...
~vn

3
75

Then as established in [7], by treating y as a vector-valued
measurement of x, we have the following theorem.

Theorem 6.2 (Optimal Distributed WLS Fusion). The
optimal distributed weighted least-squares fusion using y =
[x̂01; : : : ; x̂

0
n]

0 is given by

x̂df = x̂(y) = ( ~H 0 ~R�1 ~H)�1 ~H 0 ~R�1y

Pdf = MSE(x̂(y)) = ( ~H 0 ~R�1 ~H)�1

where

~H = [I; : : : ; I ]0

~R =
h
~Rij

i
= [cov(~xi; ~xj)] ; ~xi = x� x̂i

Therefore, the optimal centralized and distributed
weighted least-squares fusion rules have the same perfor-
mance if and only if MSE(x̂(z)) = MSE(x̂(y)), that is,

(H 0R�1H)�1 = ( ~H 0 ~R�1 ~H)�1

or equivalently, H 0R�1H = ~H 0 ~R�1 ~H . We state this fact
formally as a theorem.

Theorem 6.3 (Optimality Condition for Distributed
WLS Fusion). The optimal centralized and distributed
weighted least-squares fusion rules have identical perfor-
mance if and only if

H 0R�1H = ~H 0 ~R�1 ~H (9)

Note that the local estimators need not be optimal WLS
estimators Theorems 6.2 and 6.3 to hold. If local estimates
are unbiased and given by x̂i = Kizi, then KiHi = I due
to the unbiasedness requirement and

~xi = x� x̂i = KiHix�Kizi = Ki(Hix� zi) = �Kivi

and thus

~R =
�
KiRijK

0
j

�
= KRK 0; K = diag(K1; : : : ;Kn)



With this, we present the following theorem.
Theorem 6.4 (Sufficient Condition for Optimality of

Distributed WLS Fusion). Assume that local estimates
are from optimal WLS estimators. Then the optimal cen-
tralized and distributed weighted least-squares fusion rules
have identical performance if the measurement noises are
uncorrelated across sensors:

Rij = O; i 6= j

Proof. When local estimates are from optimal WLS esti-
mators, x̂i = Kizi = (H 0

iR
�1
i Hi)

�1H 0
iR

�1
i zi and

~R =
�
KiRijK

0
j

�
= diag(K1R1K

0
1; : : : ;KnRnK

0
n)

~R�1 = diag[(K1R1K
0
1)

�1; : : : ; (KnRnK
0
n)

�1]

= diag(H 0
1R

�1
1 H1; : : : ; H

0
nR

�1
n Hn)

~H 0 ~R�1 ~H = H 0
1R

�1
1 H1;+ � � �+H 0

nR
�1
n Hn = H 0R�1H

The theorem thus follows from Theorem 6.3.

7 Relative Efficiency of Distributed
Fusion

Since distributed fusion does not yield in general the per-
formance of the centralized fusion, a question arises natu-
rally: How much performance degradation is the (optimal)
distributed fusion relative to the optimal centralized fusion?

This can be answered by comparing the MSE matrices of
the optimal centralized and distributed fusion rules. Clearly,
the performance degradation in terms of MSE matrix is
given by MSE(x̂df )� MSE(x̂cf ). For BLUE fusion, it is
given by

MSE(x̂df )�MSE(x̂cf )

=

�
Cxz[C

+
z �K 0(KCzK

0)+K]C 0
xz any n

C~x1z2(C
+
~z2j1

�K 0
2C

+
~x2j1

K2)C
0
~x1z2

n = 2

For optimal WLS fusion, it is given by

MSE(x̂df )�MSE(x̂cf ) = ( ~H 0 ~R�1 ~H)�1� (H 0R�1H)�1

This degradation is matrix-valued and not convenient
to use. It may be replaced by the following scalar mea-
sure of performance degradation in terms of scalar MSE:
mse(x̂df )� mse(x̂cf ), or

mse(x̂df )�mse(x̂cf )

=

�
tr (Cxz[C

+
z �K 0(KCzK

0)+K]C 0
xz) ; BLUE

tr[( ~H 0 ~R�1 ~H)�1 � (H 0R�1H)�1]; WLS

where tr(A) stands for trace of matrix A and

MSE(x̂) = E[(x� x̂)(x� x̂)0]

mse(x̂) = E[(x� x̂)0(x � x̂)]

This is an absolute difference. Its magnitude does not re-
flect the performance efficiency of the optimal distributed
fusion relative to the optimal centralized fusion. To judge

how well a distributed fusion rule is relative to the opti-
mal centralized fusion, it is intuitively more appealing to
look into relative difference, rather than the above absolute
difference. Clearly, the smaller the relative difference the
more efficient. As a measure or index for the relative effi-
ciency of the distributed fusion, it would be more desirable
that a greater value implies better efficiency.

In view of the above, we introduce two measures of rela-
tive efficiency of the distributed fusion: mse ratio (MSER)
and generalized error variance ratio (GEVR), defined by

MSER =
mse(x̂cf )
mse(x̂df )

=
tr[MSE(x̂cf )]
tr[MSE(x̂df )]

(10)

GEVR =
det[MSE(x̂cf )]
det[MSE(x̂df )]

(11)

where det(A) stands for determinant of matrix A. Note
that the determinant of a covariance matrix is known as
generalized variance in statistics. Both measures have the
following nice property:

0 � MSER � 1; 0 � GEVR � 1

Clearly, the greater these measures, the more efficient the
distributed fusion rule is. If any of the above necessary and
sufficient condition is satisfied, then MSER = GEVR = 1.

The above concepts and measures are general. They are
valid for any distributed fusion rule that is not necessarily
optimal or linear.

8 Numerical Examples
Several simple numerical examples are given in this sec-

tion to verify the formulas presented and to demonstrate
the relative efficiency of the optimal distributed fusion com-
pared with the optimal centralized fusion. In all these ex-
amples, a distributed system of two or three sensors is con-
sidered and the following linear measurements are used

zil(k) = H i
lx(k) + vil ; 8i; l = 1; 2; 3; 4; k = 1; : : : ; 100

where superscript i and subscript l stand for quantities per-
taining to sensor i and lth measurement, and

H i
l =

�
1
20 [1; 5] l = 1
l
20 [0; 1] l 6= 1

; Ri
l(k) = cov(vil (k)) = 1

For BLUE fusion, x(k) � N [�x(k); Cx] was generated,
where

�x(k) =

�
10 cos(2k�=100)
10 sin(2k�=100)

�
; Cx = cov[x(k)] = (1=3)I

are known to the BLUE fuser. For the WLS fusion, the true
x(k) was not generated as random.

The observation noises are both white noise sequences
and thus the short notation v il is used.

All simulation results are averages over 100 Monte-Carlo
runs.



8.1 Example 1: Uncorrelated Error
In this example, the system consists of three sensors and

the observation errors are uncorrelated across sensors (i.e.,
Rij = O) and uncorrelated with the state (i.e., Vi = O)
for the BLUE (for WLS, x is not random). The following
parameters were used:

cov(vil ; v
j
m) = Æl�mÆi�jR

i
l ; cov(x; vil ) = O

where stands Æi�j for the Kronecker delta function.
It can be easily checked that the necessary and sufficient

conditions (8) and (9) are satisfied in this case.
Let the difference in the (theoretical and sample) MSE

matrices of distributed and centralized fusion be

E =

�
Cxz[C

+
z �K 0(KCzK

0)+K]C 0
xz BLUE

( ~H 0 ~R�1 ~H)�1 � (H 0R�1H)�1 optimal WLS

As such, the optimality condition (8) or (9) is satisfied if
and only if E = O, or its Frobenius norm is zero:

kEkF =

�X
i;j

a2ij

�1=2

= 0

The arithmetic averages of the norms for the theoretical
(calculated by the computer) and sample MSE matrices
over 100 Monte-Carlo runs are plotted in Fig. 1. It is seen
to be of the order of computer rounding errors (10�16) and
thus it verifies that optimal distributed and centralized fu-
sion estimates are equal in every run.

8.2 Example 2: Correlation of Error and
State for BLUE Fusion

In this example, the observation errors are uncorrelated
across sensors (i.e., Rij = O) but correlated with the state
(i.e., Vi 6= O). The following parameters were used:

cov(vil ; v
j
m) = Æl�mÆi�jR

i
l ;

cov(xk; vil ) =
1

(k +m)

�
1
3

�
; m =

�
16; 2 sensors
18; 3 sensors

It can be easily checked that the optimality condition (8)
is not satisfied in this case. Fig. 2(a) shows that the dif-
ference in the scalar MSE between optimal distributed and
centralized fusion is not zero. This verifies that they are
not equivalent and thus the distributed fusion is inferior, al-
though the performance degradation is small. This demon-
strates that the optimality conditions presented are exact.
Fig. 2(b) plots the relative efficiency of the optimal dis-
tributed fusion in terms of the theoretical mean-square error
ratio (MSER) and generalized error variance ratio (GEVR),
defined by (10)–(11). It also verifies how small the per-
formance degradation is. The corresponding sample MSER
and GEVR are not plotted because the small changes in the-
oretical MSER and GEVR would become unnoticeable due
to the relatively large fluctuations in the sample MSER and
GEVR. Note that the optimal distributed fusion becomes
more efficient because the correlation between the observa-
tion noise and the state becomes weaker as time goes.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3
x 10

−17

Time (k)

Theoretical
Simulation

(a) BLUE

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−14

Time K

Theoretical
Simulation

(b) Optimal WLS

Fig. 1: Average normalized Frebenius norm of MSE matrix dif-
ference for Example 1.

8.3 Example 3: Correlated Error
As shown in a forthcoming paper, the observation errors

of a sample system of a continuous-time multiple-sensor
system are correlated. The performance degradation re-
ported in [4] can also be attributed to this correlation across
sensors in the presence of a common process.

This example is a minor modification of the example con-
sidered in [6]. In this example, the observation errors are
correlated across sensors (i.e., Rij 6= O) but uncorrelated
with the state (i.e., Vi = O). Both 2-sensor and 3-sensor
cases were considered. The following parameters were
used:

cov(vil1 ; v
j
l2
) = 3minfl1;l2g�1(0:8)(l1+l2)

�
�k 0
0 0

�
; i 6= j

�k =

�
�0:129+ 0:258n

99 2-sensor case
�0:065+ 0:13n

99 3-sensor case

cov(vil ; v
i
m) = Æl�mR

i
l ; cov(x; vil ) = 0

It can be checked that none of the corresponding opti-
mality conditions (4), (8), and (9) are satisfied in this case.
Simulation results (not shown) verify this.

Fig. 3 plots the relative efficiency of distributed fusion in
terms of the theoretical MSER and GEVR for BLUE and
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Fig. 2: Relative efficiency of distributed fusion for Example 2.

optimal WLS fusion rules for the 2-sensor case. The hor-
izontal axis is the value of �k. Also plotted is the simula-
tion result of MSER, which verifies the theoretical MSER.
Fig. 4 plots the corresponding results for BLUE for the 3-
sensor case and a comparison between BLUE and optimal
WLS fusion for the 2-sensor case. These plots illustrate that
the relative efficiency of the optimal (BLUE or WLS) dis-
tributed fusion could be quite low—the optimal distributed
fusion could be quite inferior to the optimal centralized fu-
sion. It is interesting to note that the relative efficiency of
the optimal distributed fusion deteriorates as the covariance
is getting closer to be singular. Note that although the dis-
tributed BLUE fusion is more efficient than the distributed
optimal WLS fusion over the interval shown, it can be less
efficient for other values of �k.

Fig. 5 shows a comparison between 2- and 3-sensor
cases, where Fig. 5(a) plots log(1�MSER), which is over
a larger interval of the �k values than those shown in Figs.
3 and 4. The smaller log(1�MSER) is, the better. Note
that �k cannot have an arbitrarily large magnitude due to
positive semidefiniteness of the noise covariance matrix.

As demonstrated in Fig. 5, the performance degradation
is more significant when more sensors are involved, as ex-
pected.
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Fig. 3: Relative efficiency of distributed fusion for Example 3
(2-sensor case).

We found from all cases tested that GEVR is more sensi-
tive than MSER to the relative efficiency.

9 Summary
Simple necessary and sufficient conditions for the opti-

mal distributed and centralized BLUE fusion and optimal
WLS fusion to have identical performance have been pre-
sented, which can be easily checked. Several measures of
efficiency of distributed fusion relative to centralized fusion
have been proposed, which include the ratio of the mean-
square errors of centralized fusion and distributed fusion.
These measures quantify the performance degradation of
distributed fusion to the optimal centralized fusion. It has
been shown both theoretically and by simulation results that
the optimal distributed and centralized fusion rules using
linear measurements have identical performance in general
only when measurement errors are uncorrelated across sen-
sors; the former is inferior to the latter in general when the
measurement errors are correlated across sensors or are cor-
related with the estimatee (i.e., state). Numerical examples
provided have verified the theoretical results presented and
demonstrated that the optimal distributed fusion could be
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Fig. 4: Relative efficiency of distributed fusion for Example 3.

quite inferior in performance to the optimal centralized fu-
sion. We emphasize that the results presented are directly
valid for fusion of state estimates by treating the state xk

as our x above (i.e., viewing the above as a snapshot at the
time of fusion).

References
[1] Y. Bar-Shalom, “On the Track-to-Track Correla-

tion Problem,” IEEE Trans. Automatic Control, AC-
26:571–572, Apr. 1981.

[2] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor
Tracking: Principles and Techniques. Storrs, CT: YBS
Publishing, 1995.

[3] K. C. Chang, R. K. Saha, and Y. Bar-Shalom, “On Op-
timal Track-to-Track Fusion,” IEEE Trans. Aerospace
and Electronic Systems, AES-33(4):1271–1276, Oct.
1997.

[4] H. Chen, T. Kirubarajan, and Y. Bar-Shalom, “Per-
formance Limits of Track-to-Track fusion vs. Central-
ized Estimation: Theory and Application,” IEEE Trans.
Aerospace and Electronic Systems (submitted), 2001.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−18

−16

−14

−12

−10

−8

−6

−4

−2
2 sensors
3 sensors

(a) BLUE [log(1�MSER)]

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0.985

0.99

0.995

1

2 sensors
3 sensors

(b) Optimal WLS (MSER)

Fig. 5: Relative efficiency of distributed fusion for Example 3
(2-sensor and 3-sensor cases).

[5] C. Y. Chong, “Hierarchical Estimation,” in Proc. Sec-
ond MIT/ONR Workshop on C3, (Monterey, CA), July
1979.

[6] X. R. Li and J. Wang, “Unified Optimal Linear Esti-
mation Fusion—Part II: Discussions and Examples,” in
Proc. 2000 International Conf. on Information Fusion,
(Paris, France), pp. MoC2.18–MoC2.25, July 2000.

[7] X. R. Li, Y. M. Zhu, and C. Z. Han, “Unified Opti-
mal Linear Estimation Fusion—Part I: Unified Models
and Fusion Rules,” in Proc. 2000 International Conf.
on Information Fusion, (Paris, France), pp. MoC2.10–
MoC2.17, July 2000.

[8] J. A. Roecker and C. D. McGillem, “Comparison of
Two-Sensor Tracking Methods Based on State Vec-
tor Fusion and Measurement Fusion,” IEEE Trans.
Aerospace and Electronic Systems, AES-24:447–449,
July 1988.

[9] Y. M. Zhu, J. Zhao, K. S. Zhang, X. R. Li, and Z. S.
You, “Performance Analysis for Feedback Track Fu-
sion,” in Proc. the 3rd Chinese World Congress on In-
telligent Control and Intelligent Automation, (Hefei,
China), June 2000.


