
Optimal Update with Out-of-Sequence Measurements ∗

Keshu Zhang X. Rong Li, Senior Member, IEEE

Department of Electrical Engineering, University of New Orleans, New Orleans, LA 70148

Phone: 504-280-7416, Email: xli@uno.edu

Yunmin Zhu

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P.R. China

Abstract: This paper is concerned with optimal filtering in a distributed multiple sensor system with the so-called

out-of-sequence measurements (OOSM). Based on BLUE (best linear unbiased estimation) fusion, we present two

algorithms for updating with OOSM that are optimal for the information available at the time of update. Different

minimum storages of information concerning the occurrence time of OOSMs are given for both algorithms. It is

shown by analysis and simulation results that the two proposed algorithms are flexible and simple.

Keyword: Target tracking, out of sequence measurement, LMMSE, Kalman filter.

1 Introduction

In a distributed multiple-sensor tracking system, observations produced by the sensors typically arrive at a

fusion center with a random time delay due to communication delay. The state equations are usually obtained

in continuous time and then discretized. The sensor may provide a “time stamp” with each measurement. In

centralized multi-sensor tracking systems, all these measurements are sent to the fusion center for processing.

There are usually different time delays in transmitting data into the fusion center. This can lead to situations

where measurements from the same target arrive out of sequence. In this case, a measurement produced at

time tk is received at the fusion center and is used to produce an updated track state estimate and covariance

matrix for that time tk. Then, a delayed observation zd produced at a prior time td (tk−l ≤ td < tk−l+1,

l = 1, 2, · · ·) is received at the fusion center. This could occur if the observation produced at time td was

subject to a longer transmission delay than the delay associated with the observation produced at the later

time tk.

The problem is how to use the “older” measurement from time td to update the current state at tk. There

are some methods for updating the state estimate globally optimally with an out-of-sequence measurement

(OOSM) within one step time delay (i.e., l = 1, referred to as one-step update) for a system with nonsingular

∗Research Supported in part by NSF grant ECS-9734285, and NASA/LEQSF grant (2001-4)-01.

1

state transition matrix [1], and multi-step OOSM updating using augmented state smoothing [5][6][4][5].

Also, one-step suboptimal updating algorithms using stored information have been proposed for systems

with invertible state transition matrix [14][7][3][1]; multi-step update was discussed in [11] without any

discussion of the optimality. These algorithms are shown in this paper to be special cases of our proposed

update algorithms. The globally optimal update algorithm and the optimal update algorithm with limited

information are optimal in the linear minimum mean-square error (LMMSE) sense. When the required

condition holds, our optimal update algorithm with limited information given reduces to the suboptimal

algorithms of [1][11], which provides a simple proof of the optimality of these generally suboptimal algorithms.

In this paper, we first present a discussion concerning what the minimum storage at the current time is

to guarantee a globally optimal update. We derive our first algorithm to give a globally optimal LMMSE

update by storing all necessary information. It is general and systematic. We consider three cases of prior

information about the OOSM. In each case, we try to get the minimum storage. A comparison with existing

globally update algorithms in computation and storage is also discussed. Our second algorithm gives the

LMMSE update by only using the information available at the current time. Although not guaranteed to be

globally optimal, it is optimal for the information given. As for the first algorithm, we also consider three

cases of information storage for the second algorithm. Further, we extend the above single-OOSM update

algorithms to the case of arbitrarily delayed multiple OOSMs.

The results presented in this paper also demonstrate how the “static” estimation fusion formulas presented

in [10] can be applied to dynamic state estimation and fusion.

This paper is a revised and extended version of the conference proceedings paper [15]. The rest of the

paper is organized as follows. Section 2 formulates the problem. LMMSE update with available information

is discussed in a general setting in Section 3. Two algorithms for optimal update of the state estimate with

OOSM are presented in Section 4, along with associated minimum information storage. Numerical examples

are provided in Section 5. Section 6 concludes the paper with a summary.

2 Problem Formulation

The dynamics and measurement models assumed are given by

xj = Fj,j−1xj−1 + wj,j−1 (1)

zj = Hjxj + vj (2)

where Fj,j−1 is the state transition matrix from time tj−1 to tj and wj,j−1 is (the cumulative effect of) the

process noise for the interval [tj−1, tj]. The process noise wj,j−1 and the measurement noise vj are white

and have zero mean and covariances

Cwj,j−1 = cov(wj,j−1) = Qj,j−1, Cvj = cov(vj) = Rj

2

Suppose time td is in the sampling interval tk−l ≤ td < tk−l+1, where l = 1, 2, · · · . Which means that the

OOSM zd is l lags behind.

.........

z
k−l

.......

z
k−s

 z
d
 z

k−l+1
 z

k

t
k−s

 t
k−l

 t
d
 t

k−l+1
 t

k

Measurement Arrival Time

Measurement Time

Fig. 2.1: The OOSM zd arrives after the last processed measurement zk.

Similar to (1), we have

xk = Fk,dxd + wk,d

zd = Hdxd + vd

The problem is as follows: At time tk the LMMSE estimator is

x̂k|k , E∗(xk|zk) = arg min
x̂k|k=Azk+B

Pk|k, Pk|k , MSE[x̂k|k]

where x̃ = x− x̂. Letting Cxz =cov(x, z) and Cz =var(z),

x̂ = E∗(x|z) = x̄ + CxzC
−1
z (z − z̄), MSE(x̂) = E(x̃x̃′)

In the above, zk , {zi}k
i=1 is the measurement sequence through tk. If the inverse C−1

z does not exist, it can

be simply replaced with the unique Moore-Penrose pseudoinverse (MP inverse in short) C+
z . Subsequently,

an earlier measurement at time td arrives after the state estimate x̂k|k and error covariance Pk|k have been

calculated. We want to update this estimate with the earlier measurement zd, that is, to calculate the

LMMSE estimator

x̂k|k,d = E∗(xk|Ωk, zd), Pk|k,d = MSE[x̂k|k,d]

where Ωk stands for the information available for update with the OOSM zd .

3 Optimal Update with Available Information

In general, we want to have the globally optimal updated estimate

x̂k|k,d = E∗(xk|zk, zd)

And generally

E∗(xk|zk, zd) = E∗(xk|x̂d|k−l, z
d,k)

Therefore, if we want to guarantee a globally optimal update, the information stored at each time tm

(k − l + 1 ≤ m ≤ k) should include at least

Ωm = {x̂k−l|k−l, Pk−l|k−l, z
k−l+1,m}

3

or its equivalent. Otherwise, no guarantee that any update is globally optimal in general. In some special

cases, however, information from a smaller storage is sufficient for global optimality. Thus, all measurements,

state estimates, and error covariances from the occurrence time of OOSM to its arrival time need to be saved

to guarantee a globally optimal update.

In practice, an OOSM zd has a random time delay (e.g., l is random). But it may not be too far before

time tk. It is not reasonable to store the observation at each time in order to get the optimal updated

estimate E∗(xk|zk, zd). In fact, in each step, it is often the case that only x̂j|j and the associated error

covariance Pj|j are stored. So at time tk, the available information stored is Ωk =
{
x̂k|k, Pk|k

}
. Thus the

optimal update is better done based on this Ωk and OOSM. Now the update in general can be done by using

formulas for BLUE fusion without prior [10], because the prior information may not be available for update

with OOSM. This update is not globally optimal in general, but it is optimal for the information given.

Both algorithms presented in the next section are optimal in the LMMSE sense. They differ in that

different Ωk are used and thus they are optimal for different available information Ωk.

4 Optimal Update Algorithms

4.1 Algorithm I — Globally Optimal Update

Based on the linear dynamic model, according to recursive LMMSE, the globally optimal update can be

expressed as

x̂k|k,d = E∗(xk|zk, zd) = x̂k|k + Kd(zd −Hdx̂d|k) = x̂k|k + Kdz̃d|k (3)

MSE(x̂k|k,d) = Pk|k −KdSdK
′
d (4)

where

Kd = Uk,dH
′
dS

−1
d , Sd = HdPd|kH ′

d + Rd, Uk,d = Cxk,x̃d|k = cov(xk, x̃d|k)

In the above, if the inverse S−1
d does not exist, we can simply replace it with S+

d , the MP inverse of

Sd =cov(z̃d|k). x̂k|k and Pk|k are available in the Kalman filter. In the following we focus on other necessary

information {x̂d|k, Pd|k, Uk,d}, which in fact exists in a recursive form (non-standard smoothing):

Let

x̂d|n = E∗(xd|zn), Pd|n = MSE(x̂d|n), Un,d = Cxn,x̃d|n

Then, starting from n = k − l + 1, we have the recursion (see Appendix A)

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nH ′

n+1S
−1
n+1z̃n+1|n (5)

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nH ′

n+1S
−1
n+1Hn+1Fn+1,nUn,d

Un+1,d = (I −Kn+1Hn+1)Fn+1,nUn,d

4

with initial value

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,dPd|k−l (6)

Uk−l+1,d = (I −Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l

where

x̂d|k−l = Fd,k−lx̂k−l|k−l (7)

Pd|k−l = Fd,k−lPk−l|k−lF
′
d,k−l + Qd,k−l (8)

Based on the above recursion, it is easy to get that {x̂d|k, Pd|k, Uk,d} are highly related with the OOSM

occurrence time td through {x̂d|k−l, Pd|k−l} which are highly related with the state estimate of xd at that

time. The key to achieve global optimality for the update lies in when and how to initialize the recursion.

Depending on different prior information about td, we consider three cases.

Case I: Perfect Knowledge about td at the Next Sampling Time tk−l+1

In this case, we know the exact sampling time at which each observation is made and supposed to arrive.

Suppose zd made at td (tk−l ≤ td < tk−l+1) has not arrived by tk−l+1 (so we know we have an OOSM);

instead, it arrives during [tk, tk+1) with a time stamp td. Then at the time at which zd is supposed to arrive,

we can still run the Kalman filter to get prediction {x̂d|k−l, Pd|k−l}; the only difference is that there is no

state update with zd. Then at the next time tk−l+1, we can initialize by (6) and run our recursion (5) until

the OOSM arrives. This filter is an extension of the traditional Kalman filter by adding {x̂k|n, Pk|n, Uk,n}
at each recursion n (k− l + 1 ≤ n ≤ k). After receiving the OOSM, the OOSM update algorithm is globally

optimal. The complete algorithm is the Kalman filter associated with the OOSM update, which is referred

to as KF-OOSM. The KF-OOSM for Case I is shown in Fig.4.1.1.

Since the traditional Kalman filter stores {x̂n|n, Pn|n} at each recursion, the information stored in our

KF-OOSM at each recursion n (k − l + 1 ≤ n ≤ k) is

Ωn = {x̂n|n, Pn|n, x̂d|n, Pd|n, Un,d}

In this case, the storage is fixed as the delay l increases.

Case II: Knowing tk−l < td < tk−l+1 at Time tk−l+1

In this case, we know exactly the sampling interval over which each observation is made and supposed

to arrive; supposed zd made at td (tk−l ≤ td < tk−l+1) has not arrived by tk−l+1 (so we know we have an

OOSM); instead, it arrives during [tk, tk+1) with a time stamp td. Then, at time tk−l+1 we can not use

{x̂d|k−l+1, Pd|k−l+1, Uk−l+1,d} directly to initialize our KF-OOSM because they are all related with the state

xd. Without receiving the OOSM zd at time tk−l+1, the necessary state information xd is not available at

that time, but we can initialize our KF-OOSM using the replacement {yk−l+1, Bk−l+1, Uk−l+1}, defined by

yk−l+1 = H ′
k−l+1S

−1
k−l+1z̃k−l+1|k−l, Bk−l+1 = H ′

k−l+1S
−1
k−l+1Hk−l+1, Uk−l+1 = I −Kk−l+1Hk−l+1 (9)

5

Initialization (as for KF)

Measurement missing ?

Kalman Filter

Initialization for OOSM Recursion: (6)

OOSM z
d
 arrives ?

Y

N

Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (5)

Fig.4.1.1: Algorithm I for Case I

None of them are related with state xd and they are generated using the information available in the

traditional Kalman filter at that time. We can define the recursion for {yn, Bn, Un} with k − l + 1 ≤ n ≤ k

as

yn+1 = yn + U ′
nF ′n+1,nH ′

n+1S
−1
n+1z̃n+1|n

Bn+1 = Bn + U ′
nF ′n+1,nH ′

n+1S
−1
n+1Hn+1Fn+1,nUn (10)

Un+1 = (I −Kn+1Hn+1)Fn+1,nUn

Then {x̂d|k, Pd|k, Uk,d} can be obtained by renewing {yk, Bk, Uk} once the OOSM zd arrives (see Appendix

B).

x̂d|k = Pd|k−lF
′
k−l+1,dyk + x̂d|k−l (11)

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l

Uk,d = UkFk−l+1,dPd|k−l

The KF-OOSM for Case II is shown in Fig.4.1.2.

The information needed to be stored for our KF-OOSM at each recursion n (k − l + 1 ≤ n ≤ k) in this

case is

Ωn = {x̂n|n, Pn|n, yn, Bn, Un, x̂k−l|k−l, Pk−l|k−l}
Remark If l = 1 (i.e., one-step update), there is only one recursion in our KF-OOSM ; so the information

needed to be stored is simply

Ωk = {x̂k|k, Pk|k, yk, Bk, x̂k−1|k−1, Pk−1|k−1}

and

Uk,d = [I + (Fk,dPd|k−1F
′
k,d + Qk,d)Bk]Fk,dPd|k−1

6

Initialization (as for KF)

Measurement missing ?

Kalman Filter

Initialization for OOSM Recursion: (9)

OOSM z
d
 arrives ?

Y

N

Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (10)

Renew: (11)

Fig.4.1.2: Algorithm I for Case II

In this case, the storage is also fixed as the delay l increases.

Case III: Knowing Maximum Delay s of OOSM

In this case, there is not any prior information about the OOSM zd occurrence time td before it arrives,

but we know the maximum delay s for the OOSM, i.e., tk−s ≤ tk−l ≤ td < tk−l+1 ≤ tk with an unknown l.

In this case, we do not know when to initialize our KF-OOSM, but we can treat each discrete time in

the time window [tk−s, tk) as the possible initialization point, such as

y(n)
n = H ′

nS−1
n z̃n|n−1, B(n)

n = H ′
nS−1

n Hn, U (n)
n = I −KnHn (12)

and apply the algorithm in Case II to achieve the optimal update after the OOSM is received. The recursion

for {y(m)
n+1, B

(m)
n+1, U

(m)
n+1} (n > k − l + 1, n− s < m < n) is

y
(m)
n+1 = y(m)

n + U (m)′
n F ′n+1,nH ′

n+1S
−1
n+1z̃n+1|n

B
(m)
n+1 = B(m)

n + U (m)′
n F ′n+1,nH ′

n+1S
−1
n+1Hn+1Fn+1,nU (m)

n (13)

U
(m)
n+1 = (I −Kn+1Hn+1)Fn+1,nU (m)

n

Then {x̂d|k, Pd|k, Uk,d} can be obtained by renewing {y(k−l+1)
k , B

(k−l+1)
k , U

(k−l+1)
k } once the OOSM zd arrives

x̂d|k = Pd|k−lF
′
k−l+1,dy

(k−l+1)
k + x̂d|k−l (14)

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dB

(k−l+1)
k Fk−l+1,dPd|k−l

Uk,d = U
(k−l+1)
k Fk−l+1,dPd|k−l

The KF-OOSM for Case III is shown in Fig.4.1.3.

7

Initialization (as for KF)

Initialization for OOSM Recursion: (12)

OOSM z
d
 arrives ?Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (13)

Renew: (14)

Fig4.1.3: Algorithm I for Case III

The information storage in our KF-OOSM at each recursion n in this case increases linearly as time

increases from tk−s+1 to tk, which is as follows:

Ωn = {x̂k−s|k−s, Pk−s|k−s, · · · , x̂n|n, Pn|n, y(k−s+1)
n , B(k−s+1)

n , U (k−s+1)
n , · · · , y(n)

n , B(n)
n , U (n)

n }

Remark 1 If s = 1 (i.e., one-step update), it is just the problem considered in Case II with l = 1.

Remark 2 If td = tk−l, the OOSM was made exactly at a previous sampling time. With the algorithm

slightly changed, the memory can be saved comparing with tk−l < td < tk−l+1. In this case, the flowchart of

KF-OOSM for this case has the same structure as above, but the OOSM initialization and renewing part

are respectively replaced with

y(n)
n = x̂n|n + Pn|nF ′n,n−1H

′
nS−1

n z̃n|n−1

B(n)
n = Pn|n − Pn|nF ′n,n−1H

′
nS−1

n HnFn,n−1Pn|n

U (n)
n = (I −KnHn)Fn,n−1Pn|n

and

x̂d|k = y
(k−l+1)
k , Pd|k = B

(k−l+1)
k , Uk,d = U

(k−l+1)
k

The information needed at each recursion n (k − s < n ≤ k) in our KF-OOSM in this case is

Ωn = {x̂n|n, Pn|n, y(k−s+1)
n , B(k−s+1)

n , U (k−s+1)
n , · · · , y(n)

n , B(n)
n , U (n)

n }

Depending on the uncertainty with the OOSM occurrence time, we have considered three cases of the

KF-OOSM and the associated efficient memory structure for Algorithm I. The more uncertain the OOSM

occurrence time, the more storage we need. Cases I and II have a fixed storage from time tk−l to tk. The

storage in case III increases linearly with the length of the time interval. None of these algorithms for the

three cases generally have any non-singularity requirement on the transition matrix Fk,d.

8

4.2 Comparison of Globally Optimal Update Algorithms

[1, 5] present algorithms to achieve globally optimal update. [1] deals with single-step update problem. There

are two major steps: retrodiction from current time to OOSM occurring time and update the estimate with

the OOSM. [5] is suitable for our Case III assuming td = tk−l. It is based on the method of non-standard

smoothing by augmenting the state vector to include all “states” xk−s, xk−s+1, . . . , xk. It is conceptually

elegant, but not attractive computationally. The OOSM problem is trivial without considering storage or

computation. In other words, storage and computation are crucial consideration for OOSM problems. It

seems impossible to have a globally optimal update with the OOSM when td 6= tk−l (i.e., td is not exactly

some sampling time instant) within this framework of state augmentation. A technique was suggested in [5]

to handle the problem with tk−l < td < tk−l+1 by approximating td to the nearest time tk−l or tk−l+1. The

approximation makes the estimation not globally optimal. The error is small when the sampling intervals

are small. However, this requires more lags (i.e., large l) in the augmented state, and hence increases

computational load to cover the same maximum time delay. This is a dilemma when one wants to have

small errors and efficient computation simultaneously.

The algorithm presented here do not need to retrospect to the previous state or go back by smoothing.

It is the traditional Kalman filter with a few more terms in the recursion. It requires more storage than the

Kalman filter, but the extra storage used is not large. In Cases I and II, the storage is fixed at each recursion

and even in Case III, the storage increases only linearly as the delay l increases.

Let us simply compare the storage and computational load of our OOSM update algorithm with those of

[5] in Case III assuming td = tk−l. In the following, we consider the same maximum delay s for the OOSM

and focus on the total storage and computational burden within a certain time window. The algorithm of

[5] is referred as ALG-S and our globally optimal algorithm I for Case III as ALG-I in the following:

ALG-S (Storage):

x̂k−s|k
...

x̂k|k

 ,

Pk−s|k · · · Cx̃k−s|k,x̃k|k
...

. . .
...

Cx̃k|k,x̃k−s|k · · · Pk|k

ALG-I (Storage):

y
(k−s+1)
k

...

yk−1
k

x̂k|k

,

B
(k−s+1)
k U

(k−s+1)
k

...
...

B
(k−2)
k U

(k−2)
k

B
(k−1)
k U

(k−1)
k

Obviously, the dimension of each term of the stacked estimates and the corresponding covariances in the two

algorithms is the same, which is the same as xk or Pk|k. Let the dimension of xk be p, and the dimension of

Pk|k be p× p. The total storages for the two algorithms are:

ALG-S sp + s2(p× p)

ALG-I (s− 1)p + 2s(p× p)

9

Although the storage of ALG-S can be as small as sp + (s2 + s)(p × p)/2 because of the symmetry of the

covariance matrix, the storage is still quadratic in s. The storage of the ALG-I is linear in s, which means as

the maximum delay s increases, the storage of ALG-S will be much larger than that of ALG-I. The maximum

delay s could be quite large in the case of small sampling interval or large computational delay. In practice,

td 6= tk−l, to have good performance for ALG-S, the sampling interval must be small and thus s is large.

Consequently, ALG-S should have significantly larger computational complexity than ALG-I.

By analysis and comparison, we can conclude that our proposed globally optimal update algorithm has

(1) an efficient memory structure; and (2) an efficient computational structure to solve the problem by storing

the necessary information instead of retrodiction or augmenting the state. Also, it is globally optimal for

tk−l < td < tk−l+1 as well as td = tk−l, whereas ALG-S is globally optimal only for td = tk−l. On the other

hand, ALG-S is conceptually clearer and simpler than ALG-I.

4.3 Algorithm II — Constrained Optimal Update

Only based on information x̂k|k and zd at the time when OOSM zd arrives, the OOSM update is the LMMSE

estimation E∗(xk|x̂k|k, zd). It is in general not globally optimal [i.e., E∗(xk|x̂k|k, zd) 6= E∗(xk|zk, zd)] because

the measurements zk and zd of state xk have correlated measurement noise. Of course, under some conditions,

E∗(xk|x̂k|k, zd) = E∗(xk|zk, zd) holds. Also

E∗(xk|x̂k|k, zd) = x̂k|k + Cxk,z̃d|x̂k|k
C−1

z̃d|x̂k|k
z̃d|x̂k|k

where

z̃d|x̂k|k = zd − z̄d − Czd,x̂k|kC−1
x̂k|k

(x̂k|k − x̄k)

Because Ωk = {x̂k|k, Pk|k} does not sum up all prior information for this case, the LMMSE update with prior

involves the prior information x̄d, Cxd
, which generally are not stored in the Kalman filter. So if we want to

get the LMMSE with prior update, the information storage should increase to include the prior information.

Now, not increasing our information storage in the Kalman filer, we present the LMMSE update without

prior, which is derived as follows.

Let

z =

[
x̂k|k
zd

]

and treat z as the observation of xk. Then the LMMSE estimator x̂k|k,d of xk must be a linear combination

of x̂k|k and zd, i.e., a linear function of z

x̂k|k,d = Kz + b

We obtain the optimal K and b by satisfying the unbiasedness assumption and minimizing the MSE matrix.

According to the unbiasedness E(xk) = E(x̂k|k,d) requirement, we have, by (1)-(2),

Fk,dx̄d = KHx̄d + b

10

where

H =

[
Fk,d

Hd

]

i.e.

(KH − Fk,d)x̄d + b = 0

Since the prior information is not known, this equation must be satisfied for every x̄d, and so

KH = Fk,d, b = 0 (15)

A solution of (15) always exists, because KH = Fk,d holds at least for K = [I, 0]. The next step is to obtain

the optimal K by minimizing the MSE matrix under linear constraint KH = Fk,d:

K = arg min
K

MSE(x̂k|k,d) = arg min
K

{(K − Γ)R(K − Γ)′} (16)

s.t. KH = Fk,d

where the last equality in (16) follows from a tedious derivation (see Appendix C), and

Γ =
[

Fk,dU
′
k,d + Qk,d − Pk|k 0

]
R+

R =

[
Fk,dU

′
k,d + Uk,dF

′
k,d + Qk,d − Pk|k 0

0 Rd

]

The general solution, expressed in terms of the MP-inverse, is given by:

K = K̃ + ξT

where

K̃ = Fk,dH
+ + (Γ− Fk,dH

+)R(TRT)+, T = I −HH+

and ξ is any matrix satisfying ξTR1/2 = 0. So the estimate of xk is

x̂k|k,d = Kz

Pk|k,d = MSE(x̂k|k,d) = (K − Γ)R(K − Γ)′ + Qk,d − ΓRΓ′

Note that

E(ξTz) = E[ξT (Hxd − v)] = E(ξTv) = 0

cov(ξTz) = ξTRTξ = 0

Although K is not unique, the estimate of xk is unique, given by

x̂k|k,d = K̃z

Pk|k,d = (K̃ − Γ)R(K̃ − Γ)′ + Qk,d − ΓRΓ′ (17)

Remark 1 When R matrix is non-singular, according to [9], we have

H+[I −R(TRT)+] = (H ′R−1H)+H ′R−1

11

Then

K̃ = Fk,d(H ′R−1H)+H ′R−1 + ΓR(TRT)+

Remark 2 For invertible Fk,d, the LMMSE estimate of xk without prior is given by the following theorem.

Theorem 4.3.1: For non-singular Fk,d, we have

x̂k|k,d = x̂c
k|k,d, Pk|k,d = P c

k|k,d

where

x̂c
k|k,d = K̃cz, P c

k|k,d = K̃cRcK̃c

and

K̃c = Hc+[I −Rc(T cRcT c)+], T c = I −Hc(Hc)+

Rc =

[
Pk|k (Pk|kF−1′

k,d − Uk,d)H ′
d

Hd(F−1
k,dPk|k − U ′

k,d) Rd + HdF
−1
k,dQk,dF

−1′
k,d H ′

d

]
, Hc =

[
I

HdF
−1
k,d

]

When Rc is invertible, by [9], it becomes

x̂c
k|k,d = (Hc′Rc−1Hc)−1Hc′Rc−1z (18)

P c
k|k,d = (Hc′Rc−1Hc)−1

Proof. see Appendix D.

Obviously, for invertible Fk,d and Rc, if the update is only within one step, (18) is the solution given by

[7, 1]. In the multi-step update case, (18) is consistent with [11]. Thus we can say that these algorithms for

update with Ωk = {x̂k|k, Pk|k} and OOSM are optimal in the LMMSE sense. As such, we have proven the

optimality of these existing algorithms. In Theorem 4.3.1, we have shown that {x̂c
k|k,d, P

c
k|k,d} is a special

case of our general LMMSE estimator {x̂k|k,d, Pk|k,d} when Fk,d is nonsingular.

In Algorithm II, the estimator contains a term Uk,d. According to Algorithm I, Uk,d has the following

recursion.

At each recursion n (n ≥ k − l + 1)

Un+1,d = (I −Kn+1Hn+1)Fn+1,nUn,d (19)

with initial value

Uk−l+1,d = (I −Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l (20)

where

Pd|k−l = Fd,k−lPk−l|k−lF
′
d,k−l + Qd,k−l

Based on this recursion, it is easy to get that Uk,d is highly related with the occurrence time of OOSM

through Pd|k−l, which is highly related with the state estimation error covariance of xk at the OOSM

12

occurrence time. Again, the key to achieve optimality for the update lies in when and how to initialize the

recursion.

According to the uncertainty of OOSM occurrence time, we also consider above three cases of KF-OOSM

and associated information storage as Algorithm I.

Case I: Perfect Knowledge about td at the Next Sampling Time tk−l+1

Similar to Algorithm I for Case I, the KF-OOSM adds a recursion for Un,d to the traditional Kalman

filter. The flowchart of KF-OOSM for this case has the same structure as Algorithm I for Case I, where the

OOSM initialization is given by (20), OOSM recursion is given by (19), and OOSM update by (17). The

update part has the form of Remark 1 or 2 if the condition is satisfied. Since the Kalman stores {x̂n|n, Pn|n}
at each recursion, the information stored at our KF-OOSM at each recursion n (k − l + 1 ≤ n ≤ k) is

Ωn = {x̂n|n, Pn|n, Un,d}

In this case, the storage is fixed as the delay l increases.

Case II: Knowing tk−l < td < tk−l+1 at Time tk−l+1

In this case, we can initialize our KF-OOSM using the replacement Uk−l+1 defined by

Uk−l+1 = I −Kk−l+1Hk−l+1 (21)

and Un (n > k − l + 1) has the recursion

Un+1 = (I −Kn+1Hn+1)Fn+1,nUn (22)

so Uk,d can be obtained by renewing Uk once the OOSM zd arrives

Uk,d = UkFk−l+!,dPd|k−l (23)

The flowchart of KF-OOSM for this case has the same structure as Algorithm I for Case II, where the OOSM

initialization is given by (21), OOSM recursion is given by (22), renew by (23) and OOSM update by (17).

The KF-OOSM has the following information storage structure for each n (k − l + 1 ≤ n ≤ k):

Ωn = {x̂n|n, Pn|n, Un, Pk−l|k−l}

As the delay l increases, the storage is fixed.

Case III: Knowing Maximum Delay s of OOSM

The method is to treat all time from tk−s+1 to tk as a possible initialization point

U (n)
n = (I −KnHn) (24)

and applying the algorithm in Case II to achieve the optimal update with the OOSM. The recursion for

U
(m)
n (n > k − l + 1, n− s < m < n) is

U
(m)
n+1 = (I −Kn+1Hn+1)Fn+1,nU (m)

n (25)

13

so Uk,d can be obtained by renewing U
(k−l+1)
k once the OOSM zd arrives, such as

Uk,d = U
(k−l+1)
k Fk−l+1,dPd|k−l (26)

The flowchart of KF-OOSM for this case has the same structure as Algorithm I for Case III, where the

OOSM initialization is given by (24), OOSM recursion is given by (25), renew by (26), and OOSM update

by (17). The information needed to store in our KF-OOSM at each recursion n (k− s < n ≤ k) in this case

increases linearly from time tk−s+1 to tk−1,

Ωn = {x̂n|n, Pk−s|k−s, · · · , Pn|n, U (k−s+1)
n , · · · , U (n)

n }

Remark If the OOSM was made exactly at a previous sampling time. With the algorithm slightly changed,

the memory can be saved comparing with tk−l < td < tk−l+1. In this case, KF-OOSM flowchart structure

is the same as above, except the OOSM initialization is given by

U (n)
n = (I −KnHn)Fn,n−1Pn|n

and OOSM renew by

Uk,d = U
(k−l)
k

The memory structure of our KF-OOSM at each recursion n (k − s < n ≤ k) in this case is

Ωn = {x̂n|n, Pn|n, U (k−s+1)
n , · · · , U (n)

n }

Algorithm II can always give the optimal update based on the information given. Algorithm II is general,

and does not have any invertibility requirement of matrix Fk,d. If Fk,d is non-singular, the expression of the

solution can be simplified. Most often R and Rc are invertible, which leads to even more simplified results.

The algorithms of [7, 1] are special cases of Algorithm II with invertible Fk,d and Rc for the one-step update

case. The algorithm of [11] solves multi-step update based on invertible matrices Fk,d and Rc. Therefore,

we have proven that these existing algorithms are optimal in the LMMSE sense.

The algorithm C of [1] is also a special case of Algorithm II with wk,d = 0 and invertible Fk,d. But by

setting some terms to zero in the algorithms, the new estimates may or may not be the minimizer of the

original problem, i.e., MSE(x̂∗k|k,d) ≤MSE(x̂k|k) may or may not hold, where x̂∗k|k,d is the update estimation

by applying Algorithm ∗.

It can be seen from the deviation of Algorithm II that the update Algorithm actually needs more infor-

mation than {x̂k|k, Pk|k} as provided by the Kalman filter, and the OOSM zd. Although at the beginning

we hope to update based on the current observations, i.e., the optimal linear combination of x̂k|k and zd, we

need their correlation to build the linear combination weight which include both Pk|k and Uk,d. It tells us

that the valuable update which will improve the current state estimation in general can not only based on

Kalman filer.

14

4.4 Update with Arbitrarily Delayed OOSMs

In all cases discussed before, we only consider the single-OOSM update problem. But there exists arbitrarily

delayed multiple OOSMs for update. The OOSMs can be the measurements of the same state or different

states; the OOSMs can arrive at the same or different time. The case that any OOSM arrives before the

next OOSM occurrence time belongs to the single-OOSM update problem. We can solve it by sequentially

applying the single-OOSM update algorithms discussed above. But in some cases, during the period between

the occurrence time and arrival time of one OOSM, other OOSMs may occur. We now consider the optimal

update problem in such cases, referred to as arbitrarily delayed OOSM update. In the following, we only

consider the problem of update with two OOSMs. Generalization to update with more than two OOSMs is

straight forward.

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 z
k

2
−l

2

t
k

1
−l

1

t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time z
d

2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

......... t

k
2

t
k

1
−l

1
+1

 t
k

2
+1

.........

t
k

1

 t
k

1
+1

z
k

2

 z
k

1

 z
k

2
+1

 z
k

1
+1

.........

Fig. 4.3.1 The OOSMs within the maximum delay period

Suppose zd1 and zd2 are two OOSMs observed at tk−li ≤ tdi < tk−li+1 with 1 ≤ li < s, i = 1, 2, and

arrived during the time period [tki,tki+1). If zd1 arrives before td2 (see Fig. 4.3.1), the state update with

zd2 at its arrival time is just the single-OOSM update problem as before. zd1 had been used to update the

state when it arrived. At zd2 occurrence time, there is not any other OOSMs except zd2 . So we can directly

apply Algorithm I or II for updating with the single-OOSM zd2 at its arrival time. If both of them arrive at

the same time, although we can update the state estimate with them stacked together, computationally and

operationally, it is better to update with the OOSM one by one sequentially.

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 zk
2
−l

2

t
k

1
−l

1

 t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time
z

d
2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

.........

t
k

2

 t
k

1
−l

1
+1

 t
k

2
+1

.........

t
k

1

 t
k

1
+1

.........

z
k

2

 z
k

1

 z
k

2
+1

 z
k

1
+1

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 z
k

2
−l

2

t
k

1
−l

1

 t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time
z

d
2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

.........

t
k

1

t
k

1
−l

1
+1

t
k

1
+1

.........

t
k

2

 t
k

2
+1

.........

z
k

1

 z
k

2

 z
k

1
+1

 z
k

2
+1

Fig. 4.3.2 The OOSMs within the maximum delay period

In the following, we will consider the case that zd1 arrives after td2 (see Fig. 4.3.2). Suppose zd2 arrives

before zd1 , or we process zd2 before zd1 if both of them arrive at the same time. According to Algorithm I

15

and II for single-OOSM update, we need to update the state estimation x̂k2|k2 and Pk2|k2 with zd2 when it

arrived. At the same time, we also need to update other quantities, such as {x̂d1|k2 , Pd1|k2 , Uk2,d1} for AlG-I,

{Uk2,d1} for ALG-II with zd2 . Because zd1 has not arrived yet, the quantities are necessary for updating the

state estimate with later arrived zd1 . Based on different update procedures at zd2 arrival time, we consider

two LMMSE optimal updates cases: (a) globally optimal and (b) constrained optimal.

4.4.1 Globally Optimal Update

In this globally optimal update case, when zd2 arrives, we need to update not only {x̂k2|k2 , Pk2|k2} with

zd2 , but also {x̂d1|k2 , Pd1|k2 , Uk2,d1} used to update with the next zd1 . Denote the updated quantities as

{x̂k2|k2,d2 , Pk2|k2,d2} and {x̂d1|k2,d2 , Pd1|k2,d2 , U
∗
k2,d1

}. Update from {x̂k2|k2 , Pk2|k2} to {x̂k2|k2,d2 , Pk2|k2,d2} is

trivial, it can be done by directly applying single-OOSM globally optimal update algorithm. Here we focus

on the update from {x̂d1|k2 , Pd1|k2 , Uk2,d1} to {x̂d1|k2,d2 , Pd1|k2,d2 , U
∗
k2,d1

}.

By definition

x̂d1|k2,d2 = E∗(xd1 |zk2 , zd2), Pd1|k2,d2 = MSE(x̂d1|k2,d2), U∗
k2,d1

= Cxk2 ,x̃d1|k2,d2

According to the recursive LMMSE, we have

x̂d1|k2,d2 = x̂d1|k2 + Ck2
d2,d1

H ′
d2

(Hd2Pd2|k2H
′
d2

)−1z̃d2|k2

Pd1|k2,d2 = Pd1|k2 − Ck2
d2,d1

H ′
d2

(Hd2Pd2|k2H
′
d2

)−1Hd2(C
k2
d2,d1

)′

U∗
k2,d1

= Uk2,d1 + Uk2,d2H
′
d2

(Hd2Pd2|k2H
′
d2

)−1Hd2(C
k2
d2,d1

)′

where

z̃d2|k2 = zd2 −Hd2 x̂d2|k2 , Ck2
d2,d1

= Cxd1 ,x̃d2|k2

Let

Cn
d2,d1

= Cxd1 ,x̃d2|n

Because Cn
d1,d2

= (Cn
d2,d1

)′ (see Appendix E), we can always suppose td2 > td1 . In this situation Cn
d2,d1

has

a recursion for k2 − l2 + 1 ≤ n ≤ k2, which has the form

Cn
d2,d1

= Cn−1
d2,d1

− U ′
n−1,d1

F ′n,n−1H
′
nS−1

n HnFn,n−1Un−1,d2 (27)

with initial value

Ck2−l2
d2,d1

= Fd2,k2−l2Uk2−l2,d1

After this update procedure, we will have {x̂k2|k2,d2 , Pk2|k2,d2} and {x̂d1|k2,d2 , Pd1|k2,d2 , U
∗
k2,d1

}. Through

KF-OOSM, at zd1 arrival time, we will get {x̂k1|k1,d2 , Pk1|k1,d2} and {x̂d1|k1,d2 , Pd1|k1,d2 , U
∗
k1,d1

}, where

U∗
k1,d1

= Cxk1 ,x̃d1|k1,d2
. Now, the single-OOSM globally optimal update Algorithm I can be directly ap-

plied to obtain {x̂k1|k1,d2,d1 , Pk1|k1,d2,d1}.

It is easy to see that this OOSM update is just a sequential application of the single-OOSM globally

optimal update algorithm except that at each OOSM arrival point, we need update not only the state

16

estimate but also some other necessary quantities prepared to update other OOSMs which are not arrived

yet. This update contains a new term Ck2
d2,d1

(i.e., the correlation between two OOSMs) which fortunately

has a recursive form. So very similar to Algorithm I for single OOSM update case, we can have KF-OOSM

for the three different cases considered before.

4.4.2 Constrained Optimal Update

In this constrained optimal update case, when zd2 arrives, we need to update not only {x̂k2|k2 , Pk2|k2}
with zd2 , but also {Uk2,d1}. Denote the updated quantities as {x̂k2|k2,d2 , Pk2|k2,d2} and {Ūk2,d1}. Update

from {x̂k2|k2 , Pk2|k2} to {x̂k2|k2,d2 , Pk2|k2,d2} is trivial by directly applying single-OOSM constrained optimal

update algorithm. Now, we focus on how to update from {Uk2,d1} to {Ūk2,d1}.

As derived in Appendix F, we have

Ūk2,d1 = Cxd1 ,x̃k2|k2,d2
=

[
Uk2,d1 0

]
K̃ ′ (28)

where

K̃ = Fk2,d2H
+ + (Γ− Fk2,d2H

+)R(TRT)−1, T = I −HH+

Γ =
[

Fk2,d2Ūk2,d2 + Qk2,d2 − Pk2|k2,d2 0
]
R+

R =

Fk2,d2Ūk2,d2 + Ūk2,d2F
′
k2,d2

+

Qk2,d2 − Pk2|k2,d2

0

0 Rd2

 , H =

[
Fk2,d2

Hd2

]

In fact, K̃ is the gain matrix for update with zd2 when it arrives.

Thus after this update procedure, we have {x̂k2|k2,d2 , Pk2|k2,d2} and {Ūk2,d1}. Through recursion, at zd1

arrival time, we can have {x̂k1|k1,d2 , Pk1|k1,d2} and {U∗
k1,d1

}, where U∗
k1,d1

= Cxd1 ,x̃k1|k1,d2
. Now, the single-

OOSM constrained optimal update Algorithm II can be directly applied to obtain state estimate x̂k1|k1,d2,d1

and Pk1|k1,d2,d1 .

This constrained OOSM update is just the sequential single-OOSM constrained optimal update proce-

dure. So all previous conditions that will simplify the estimation formulas can be derived directly here. The

three cases for different uncertainty of the OOSMs occurrence time can be considered in the same way as

the single-OOSM case.

5 Numerical Examples

Several simple numerical examples are given in this section to verify the formulas presented and the existence

of the optimal solution in the case where the state transition matrix is not invertible. All these examples

17

are for the following linear system

xj = Fj−1xj−1 + wj−1

zj = Hjxj + vj

where xj =
[
x

(1)
j , x

(2)
j

]′
, and wj and vj are zero mean white Gaussian noise. In order to consider multi-lag

delay as well as single-lag delay update, we choose a series of OOSMs zd, these OOSM occurred at d = (l+1)n

and arrived at (l+1)n+ l with n = 1, 2, . . ., which corresponding to l-lag delayed OOSMs, where l = 1, 2,

For example, suppose the in-sequence observation series is {z1, z2, z3, . . .}, then the observation series with

OOSMs for l = 1 is {z1, z3, z2, z5, z4, . . .} and the updated states are x3, x5, x7, . . .; the observation series

with OOSMs for l = 2 is {z1, z2, z4, z3, z5, z7, z8, z6, . . .} and the updated states are x4, x8, x11, . . .; and so on.

Globally optimal estimates were obtained by the Kalman filter using all observations (including OOSMs) in

the right time sequence.

In the result, we use mser= trace[Pk|k,d(KF)]

trace[Pk|k,d(Algorithm)] , which is the ratio of the mean-square error of the

globally optimal Kalman filter to that of the algorithm under consideration. It shows the efficiency of the

algorithm. It is in the interval of (0, 1]. The larger the mser is, the better the algorithm is.

5.1 Nonsingular Fk,d

Consider a discretized continuous time kinematic system driven by white noise with power spectral density

q, known as constant velocity model or white-noise acceleration model in target tracking, described by

Fj =

[
1 T

0 1

]
, Hj = [1, 0]

Cwj = Q =

[
T 3/3 T 2/2

T 2/2 T

]
q, Cvj = R = 1

where T is the sampling interval. The prior information is

x̂0|0 = x̄ = [200 Km, 0.5 Km/ sec]′ , P0|0 =

[
R R/T

R/T 2R/T 2

]

and the maneuver index is λ =
√

qT 3/R.

5.1.1 Single-Step Update (l = 1)

In this example, we first apply our globally optimal update algorithm in Case I and II. Then we apply

Algorithm B of [1], referred to as ALG-B, to compare with our optimal update Algorithm II with limited

information, referred to as ALG-II. Although there are two outputs (filtering output or smoothed output)

possible from the framework of [5], smoothed output algorithm needs use future observations to estimate

the current state. It is unfair to compare the smoothed output update result with that of other algorithms

18

by update only with the observations up to current time. In order to have a fair comparison, we only apply

the filtering output Algorithm of [5], referred to as ALG-S. For the case tk−1 < td < tk, in order to apply

ALG-S, we approximate td to the nearest sampling time tk−1. In Table I, we present mser of all algorithms

at time j = 3. We adopt the same values of (λ, q) as in [1], [5], [11].

Table 1: msers of algorithms

(λ, q) KF KF∗ ALG-I ALG-II ALG-B ALG-S

(2,2) 1 0.8786 1 0.9680 0.9680 0.7071

(1,1) 1 0.9121 1 0.9790 0.9790 0.8163

(0.5,0.5) 1 0.8787 1 0.9999 0.9999 0.9283

In Table 1, KF stands for the globally optimal Kalman filter; KF∗ stands for the Kalman filter without

using OOSM. It is easy to see that our Algorithm I in Cases I and II give the globally optimal update.

While Algorithm II gives the same update as Algorithm B of [1]. But the update using the algorithm of [5]

is not optimal and sometimes can be worse than without using OOSM, i.e., mser(ALG-S) < mser(KF∗)

[see the cases (λ, q) = (2, 2) and (λ, q) = (1, 1)]. It is caused by the error arising from the approximation

of the OOSM occurrence time td. For (λ, q) = (0.5, 0.5), the sampling interval T becomes smaller, ALG-S

becomes better.

In Figure 1, we show the theoretical and sample mser of ALG II for (λ, q) = (2, 2). The two curves

match each other very well, which verifies our update formula.

0 5 10 15 20 25 30 35 40 45 50
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time k

Theoretical
Sample

Figure 1: Theoretical and sample mser

It is reasonable to require that any algorithm which updates x̂k|k with an OOSM zd to yield x̂k|k,d should

satisfy

MSE(x̂∗k|k,d) ≤ MSE(x̂k|k) (29)

19

Otherwise update by the algorithm is questionable. All our algorithms satisfy (29), because they are optimal

estimators that minimize MSE based on the information given, but not Alg-S of [5].

5.1.2 Multi-Step Update

In this example, first consider l = 2 with d = 3n and (λ, q) = (2, 2), we apply our globally optimal update

Algorithm I in all three cases and yield mser= 1, which verifies the global optimality of the algorithm. Also,

we apply Algorithm II and compare the mser with the algorithm of [11], referred to as ALG-M. Figure 2

shows that the sample mser of ALG II matches its theoretical mser. ALG-II and ALG-M have the same

theoretical mser. Meanwhile it shows the benefit of updating by comparing with KF∗.

0 5 10 15 20 25 30 35 40 45 50

0.9

0.95

1

1.05

Time k

ALG−II
ALG−M
Sample(ALG−II)
KF*

Figure 2: Comparison of mser

Table 2 shows the benefit of updating when (λ, q) = (2, 2), l = 1, · · · , 3 with d = 2n, 3n, · · · and 6n

respectively, which shows that as the lag l of OOSM becomes larger, the benefit of updating becomes

smaller. Results of KF∗ for Kalman filter by ignoring OOSM show that the effect of OOSM fades quickly

with the target maneuvering behaviors. It provides a strong hint for the maximum delay s to consider, in

addition to physical considerations.

Table 2: msers of algorithms

mser d = 2n d = 3n d = 4n d = 5n d = 6n

ALG II(ALG M) 0.9680 0.9738 0.9976 0.9999 1

KF∗ 0.8786 0.9667 0.9972 0.9999 1

20

5.2 Singular Fk,d

A system with a singular state transition matrix Fk,d is not common in practice because most discrete time

systems are discretized from continuous systems. However in some cases, when a practical system is defined

directly in discrete time, state transition matrix Fk,d may be singular. The corresponding OOSM update

problem needs to be considered. Also, allowing Fk,d to be singular provides additional flexibility to handle

some artificial system models, just like the study of noncausal systems, which is meaningful.

Here we consider a system with H = [1, 1], Q = 0.2I, R = 0.3I and prior information x̂0|0 = x̄ = [1, 1]′,

P0|0 = 0.001I.

5.2.1 Single-Step Update (l = 1)

In this case, we use

F2n−1 =
1
n2

[
1 1

0 1

]
, F2n =

[
1 − 1

n2

−1 1
n2

]

Algorithm I in Case I or II can always gets mser= 1. As shown in Figure 3, the theoretical and sample

mser of ALG II match each other, which verifies the formula.

0 5 10 15 20 25 30 35 40 45 50
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time k

Theoretical
Sample

Figure 3: Theoretical and Sample mser

5.2.2 Multi- step Update (l = 2)

In this case, k = 3n + 2, we use

F3n =

[
1 1/n

−1 −1/n

]
, Fj =

[
1 1/j

0 1

]
j 6= 3n

Algorithm I in all three cases all gave mser= 1. As shown in Figure 4, ALG II can give the benefit of

updating, as shown by comparing mser with KF∗.

21

0 2 4 6 8 10 12 14

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Time k

ALG−II
KF*

Figure 4: Comparison of mser

Examples in this section verify both Algorithms I and II. They show that our proposed Algorithms I

and II are more general. They can solve single-step as well as multi-step update. Also, for singular state

transition matrix Fk,d, they are still efficient.

6 Summary

We have presented two general algorithms with three cases of different information storage for state esti-

mation update with out-of-sequence measurements. Both algorithms are optimal in the LMMSE sense for

the information given and are more general than previously available algorithms. In particular, they are

optimal for multiple-step as well as single-step update; they do not have any non-singularity requirement on

the matrix Fk,d; they yield the best unbiased estimates among all linear estimation algorithms. Algorithm

I is always globally optimal (in the LMMSE sense). Algorithm II is optimal (in the LMMSE sense) for the

information given. Under the linear-Gaussian assumption of the Kalman filtering, both algorithms give the

conditional mean.

Both algorithms need the smallest storage in Case I, the largest storage in Case III. The storage of

Algorithm II for all cases are smaller than Algorithm I. For single-step update, the information stored is

even smaller. Each item in the algorithms has a recursive form and can be computed easily, as presented.

As illustrated by the simulation results, these variants in information storage complement each other in that

they are suitable for different practical situations and yield the same optimal update.

Overall, both Algorithms have (1) an efficient processing structure for information update; (2) an efficient

memory structure for storing historical information; (3) an efficient computational structure, and thus (4) an

easy generalization for arbitrarily delayed multiple OOSMs. In this paper, we focus on the OOSM filtering

problem. In future work, we would like to consider solving the multi-sensor OOSM problem in a cluttered

22

environment [12][13][5].

Appendix A: Derivation of (5)-(8).

The recursion for {x̂d|n, Pd|n, Un,d} is generated as follows. For n ≥ k − l + 1

x̂d|n+1 = E∗(xd|zn+1) = x̂d|n + Cxd,x̃n|nF ′n+1,nH ′
n+1S

+
n+1z̃n+1|n

Pd|n+1 = Pd|n − Cxd,x̃n|nF ′n+1,nH ′
n+1S

+
n+1Hn+1Fn+1,nC ′xd,x̃n|n

Un+1,d = Cxn+1,x̃d|n+1 = Cxn+1,x̃d|n−Cxd,x̃n|nF ′n+1,nH′
n+1S+

n+1z̃n+1|n
(30)

= Cxn+1,x̃d|n − Cxn+1,z̃n+1|nS+
n+1Hn+1F

′
n+1,nC ′xd,x̃n|n

= Fn+1,nUn,d −Kn+1Hn+1Fn+1,nC ′xd,x̃n|n

Theorem

Cxn,x̃d|n = C
′
xd,x̃n|n (31)

Proof:

Cxn,x̃d|n = Cxn−x̂n|n,xd−x̂d|n = Cxn−x̂n|n,xd
= Cx̃n|n,xd

= C
′
xd,x̃n|n

Thus (31) holds. According to the above Theorem, recursion (30) can be simplified as

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nH ′

n+1S
+
n+1z̃n+1|n

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nH ′

n+1S
+
n+1Hn+1Fn+1,nU ′

n,d

Un+1,d = (I −Kn+1Hn+1)Fn+1,nU ′
n,d

with initial value

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dH

′
k−l+1S

+
k−l+1z̃k−l+1|k−l

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,dH

′
k−l+1S

+
k−l+1Hk−l+1Fk−l+1,dPd|k−l

Uk−l+1,d = (I −Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l

Appendix B: Relationship between {x̂d|k, Pd|k, Uk,d} and {yk, Bk, Uk}.

Now

x̂d|k = x̂d|k−1 + U ′
k−1,dF

′
k,k−1H

′
kS−1

k z̃k|k−1

Pd|k = Pd|k−1 − U ′
k−1,dF

′
k,k−1H

′
kS−1

k HkFk,k−1Uk−1,d

Uk,d = (I −KkHk)Fk,k−1Uk−1,d

23

...

x̂d|k = x̂d|k−l + U ′
k−l,dF

′
k−l+1,k−lH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + . . . + U ′

k−1,dF
′
k,k−1H

′
kS−1

k z̃k|k−1

Pd|k = Pd|k−l − U ′
k−l,dF

′
k−l+1,k−lH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,k−lUk−l,d − . . .− U ′

k−1,dF
′
k,k−1H

′
kS−1

k

HkFk,k−1Uk−1,d

Uk,d = [(I −KkHk)Fk,k−1]× . . .× [(I −Kk−l+1Hk−l+1)Fk−l+1,k−l]Uk−l,d

also

yk = yk−1 + U ′
k−1F

′
k,k−1H

′
kS−1

k z̃k|k−1

Bk = Bk−1 + U ′
k−1F

′
k,k−1H

′
kS−1

k HkFk,k−1Uk−1

Uk = (I −KkHk)Fk,k−1Uk−1

...

yk = yk−l + U ′
k−lF

′
k−l+1,k−lH

′
k−lS

−1
k−lz̃k−l+1|k−l + . . . + U ′

k−1F
′
k,k−1H

′
kS−1

k z̃k|k−1

Bk = Bk−l + U ′
k−lF

′
k−l+1,k−lH

′
k−lS

−1
k−lHk−l+1Fk−l+1,k−lUk−l + . . . + U ′

k−1F
′
k,k−1H

′
kS−1

k HkFk,k−1Uk

Uk = [(I −KkHk)Fk,k−1]× . . .× [(I −Kk−l+1Hk−l+1)Fk−l+1,k−l]Uk−l

and for any m ≥ k − l + 1

Um,d = [(I −KmHm)Fm,m−1]× . . .× [(I −Kk−l+2Hk−l+2)Fk−l+2,k−l+1]Uk−l+1,d

Um = [(I −KmHm)Fm,m−1]× . . .× [(I −Kk−l+2Hk−l+2)Fk−l+2,k−l+1]Uk−l+1

By comparing the initial value {x̂d|k−l+1,Pd|k−l+1,Uk−l+1,d} and {yk−l+1,Bk−l+1,Uk−l+1}, we have

Um,d = UmFk−l+1,dPd|k−l

and

Pd|k−lF
′
k−l+1,dyk = Pd|k−lF

′
k−l+1,dyk−l+1 + x̂d|k − x̂d|k−l+1

= Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + x̂d|k − x̂d|k−l+1

= Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + x̂d|k − x̂d|k−l − Pd|k−lF

′
k−l+1,dH

′
k−l+1S

+
k−l+1z̃k−l+1|k−l

= x̂d|k − x̂d|k−l

Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l = Pd|k−lF

′
k−l+1,dBk−l+1Fk−l+1,dPd|k−l − Pd|k + Pd|k−l+1

= Pd|k−lF
′
k−l+!,dH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,dPd|k−l − Pd|k + Pd|k−l − Pd|k−lF

′
k−l+1,dH

′
k−l+1S

−1
k−l+1

Hk−l+1 Fk−l+1,dPd|k−l = Pd|k−l − Pd|k

24

Thus

x̂d|k = Pd|k−lF
′
k−l+1,dyk + x̂d|k−l

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l

Uk,d = UkFk−l+1,dPd|k−l

Appendix C: Derivation of (16).

MSE(x̂k|k,d) = cov(xk − x̂k|k,d) = cov(xk −Kz) = cov(Fk,dxd + wk,d −K

[
x̂k|k
zd

]
)

= cov(Fk,dxd + wk,d −K

[
xk − x̃k|k
Hdxd + vd

]
) = cov(Fk,dxd + wk,d −K

[
Fk,dxτ + wk,d − x̃k|k

Hdxd + vd

]
)

= cov{(Fk,d −KH)xd + wk,d −K

[
wk,d − x̃k|k

vd

]
} = cov(wk,d −K

[
wk,d − x̃k|k

vd

]
)

= Qk,d −
[

Cwk,d,wk,d−x̃k|k 0
]
K
′ −K

[
C ′wk,d,wk,d−x̃k|k

0

]
+ K

[
Cwk,d−x̃k|k 0

0 Rd

]
K
′

= (K − Γ)R(K − Γ)′ + Qk,d − ΓRΓ′

where

Γ =
[

Fk,dU
′
k,d + Qk,d − Pk|k 0

]
R+

R =

[
Fk,dU

′
k,d + Uk,dF

′
k,d + Qk,d − Pk|k 0

0 Rd

]

thus the optimization problem of K is

K = arg min
K

MSE(x̂k|k,d) = arg min
K

{(K − Γ)R(K − Γ)′}

s.t. KH = Fk,d

Appendix D: Proof of Theorem 4.2.1.

The LMMSE estimate in this case is

x̂c
k|k,d = Kcz + bc

according to unbiasedness requirement, we have

x̄k = KcHcx̄k + bc, i.e., (KcHc − I)x̄k + bc = 0

25

Without knowing the prior information x̄k is equivalent to without knowing the prior information x̄d because

Fk,d is invertible. The equation must be satisfied for every x̄k, and so

KcHc = I, bc = 0

A solution always exists, because at least we can choose Kc = [I, 0] to make KcHc = I hold. The optimal

Kc is the solution of the following optimization problem with a linear constraint:

Kc = arg min
K

MSE(x̂c
k|k,d) = arg min

K
KcRcKc′

s.t. KcHc = I

By [10], we have T c = I −Hc(Hc)+ and K̃c = (Hc)+[I −Rc(T cRcT c)+]. On the other hand, obviously we

have HcFk,d = H, and in view of KcHc = I, we have

KcHcFk,d = Fk,d, i.e., KcH = Fk,d

Based on this, the MSE of x̂c
k|k,d has another form

MSE(x̂c
k|k,d) = (Kc − Γ)R(Kc − Γ)′ + Qk,d − ΓRΓ′

So

Kc = arg min
K

(Kc − Γ)R(Kc − Γ)′, s.t. KcH = Fk,d

Because the linear constrained optimization problem for Kc is the same as that of K, we have

x̂c
k|k,d = x̂k|k,d, P c

k|k,d = Pk|k,d

Appendix E: Derivation of (27).

Cn
d1,d2

= cov(xd2 , xd1 − x̂d1|n) = cov(xd2 − x̂d2|n, xd1 − x̂d1|n)

= cov(xd2 − x̂d2|n, xd1) = cov(xd1 , xd2 − x̂d2|n)′ = (Cn
d2,d1

)′

When n ≥ k2 − l2

Cn
d2,d1

= cov(xd1 , xd2 − x̂d2|n) = cov(xd1 , xd2 − x̂d2|n−1 − U ′
n−1,d2

F ′n,n−1H
′
nS+

n z̃n|n−1)

= cov(xd1 , xd2 − x̂d2|n−1)− cov(xd1 , x̃n−1|n−1)F ′n,n−1H
′
nS+

n HnFn,n−1Ud2,n−1

= Cn−1
d2,d1

− U ′
n−1,d1

F ′n,n−1H
′
nS+

n HnFn,n−1Un−1,d2

with initial value

Ck−l2
d2,d1

= Fd1,k2−l2Uk2−l2,d1

26

Appendix F: Derivation of (28).

Ūk2,d1 = Cxd1 ,x̃k2|k2,d2
= cov(xd1 , xk2 − x̂k2|k2,d2) = cov(xd1 , xk2 − K̃(2)

[
x̂k2|k2

zd2

]
)

= cov(xd1 , xk2 − K̃(2)

[
xk2 − x̃k2|k2

zd2

]
)

= cov(xd1 , Fk2,d2xd2 + wk2,d2 − K̃(2)H(2)xd2 − K̃(2)

[
wk2d2 − x̃k2|k2

zd2

]
)

= cov(xd1 , wk2,d2 − K̃(2)

[
wk2,d2 − x̃k2|k2

vd2

]
) =

[
Uk2,d1 0

]
K̃ ′

(2)

where K̃(2) is the gain matrix for update with zd2 at its arrival time.

References

[1] Y. Bar-Shalom. Update with Out-of-Sequence Measurements in Tracking: Exact Solution. SPIE Signal

and Data Processing of Small Targets, 4048:541–556, Apr. 2000.

[2] Y. Bar-Shalom, M. Mallick, H. Chen, and R. Washburn. One-Step Solution for the General Out-of-

Sequence Measurements Problem in Tracking. In Proc. 1st IEEE Aerospace Conf., Big Sky, MT, March

2002.

[3] S. S. Blackman and R. F. Popoli. Design and Analysis of Modern Tracking Systems. Artech House,

Norwood, MA, 1999.

[4] S. Challa, R. Evans, and J. Legg. A fixed lag smoothing framework for OOSI problems. Communications

in Information and Systems, 2(4):327–350, December 2002.

[5] S. Challa, R. Evans, and X. Wang. A Bayesian Solution to OOSM Problem and its approximations.

Information Fusion, 4(3), September 2003.

[6] S. Challa, X. Wang, and J. Legg. Track-to-Track Fusion using Out-of-Sequence Tracks. In Proc.

International Conf. on Information Fusion, pages 919–926, Annapolis, MD, July 2002.

[7] R. D. Hilton, D. A. Martin, and W. D. Blair. Tracking with Time-Delayed Data in Multisensor Systems.

Technical Report NSWCDD/TR-93/351, Naval Surface Warfare Center, Dalgren, VA, Aug. 1993.

[8] X. R. Li and K. S. Zhang. Optimal Linear Estimation Fusion—Part IV: Optimality and Efficiency of

Distributed Fusion. In Fusion2001, pages WeB1.19–WeB1.26, Montreal, QC, Canada, Aug. 2001.

[9] X. R. Li, K. S. Zhang, J. Zhao, and Y. M. Zhu. Optimal Linear Estimation Fusion–Part V: Relationships.

In Fusion2002, pages 497–504, Annapolis, MD, USA, July 2002.

27

[10] X. R. Li, Y. M. Zhu, J. Wang, and C. Z. Han. Unified Optimal Linear Estimation Fusion—Part I:

Unified Fusion Rules. IEEE Transactions on Information Theory, 49(9):2192–2208, Sep. 2003.

[11] M. Mallick, S. Coraluppi, and C. Carthel. Advances in Asynchronous and Decentralized Estimation. In

Proc. IEEE Aerospace Conf., Big Sky, MT, March 2001.

[12] M. Mallick, SJ. Krant, and Y. Bar-Shalom. Multi-sensor Multi-target Tracking using Out-of-Sequence

Measurements. In Proc. International Conf. on Information Fusion, pages 135–142, Annapolis, MD,

July 2002.

[13] M. Orton and A. Marrs. A Bayesian Approach to Multi-target Tracking Data Fusion with Out-of

Sequence Measurements. Proc. IEEE (submitted), 2001.

[14] S. Thomopoulos and L. Zhang. Distributed Filtering with Random Sampling and Delay. In Proc. 27th

IEEE Conf. Decision and Control, Austin, TX, Dec. 1988.

[15] K. S. Zhang, X. R. Li, and Y. M. Zhu. Optimal Update with Out-of-Sequence Measurements for

Distributed Filtering. In Fusion2002, pages 1519–1526, Annapolis, MD, USA, July 2002.

28

