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Abstract – In this paper, we continue our study of optimal
linear estimation fusion in a unified, general, and system-
atic setting. We clarify relationships among various BLUE
and WLS fusion rules with complete, incomplete, and no
prior information presented in Part I before; and we quan-
tify the effect of prior information and data on fusion per-
formance, including conditions under which prior informa-
tion or data are redundant.
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1 Introduction
In the previous parts of this series of papers [9, 6, 8, 7],

we have tackled the problem of optimal linear estimation
fusion in a general, systematic, and unified setting. More
specifically, Part I [9] presents several unified optimal fu-
sion rules in the framework of best linear unbiased estima-
tion (BLUE) and weighted least squares (WLS) and their
underlying unified data model for estimation fusion; Part II
[6] provides a general discussion and examples of the fu-
sion rules presented in Part I; Part III [8] handles the cross
correlation of local estimation errors and presents formulas
for its computation that account for all sources of cross cor-
relation, including those that have been overlooked before
in the literature; Part IV [7] presents theoretical results on
performance efficiency of distributed fusion relative to cen-
tralized fusion and conditions under which distributed and
centralized fusers are identical.

In this paper (Part V), we continue our investigation on
optimal estimation fusion. More specifically, we clarify re-
lationships among various fusion rules in the case of com-
plete, incomplete, and no prior information; we quantify
the effects or contributions of prior information and data,
respectively, on estimation fusion; we present conditions
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under which prior information or data are redundant in
that they do not improve optimal estimation fusion perfor-
mance.

The results presented here will enable better understand-
ing of many fusion results available in the literature, such
as those in [4, 1, 2].

2 BLUE and WLS Fusers
2.1 Unified Linear Data Model

Many results presented in this paper and other parts of
this series assume the following unified data model

y = Hx+ v (1)

where for the centralized fusion, y, H , and v are the ac-
tual observations, its matrix, and observation noise, re-
spectively; for (standard) distributed fusion, they are actu-
ally stacked local estimates [x̂01; : : : ; x̂

0
n]
0, [I; : : : ; I ]0, and

stacked local estimation errors�[~x01; : : : ; ~x
0
n]
0, respectively.

See Part I [9] for more details. The first two moments are
denoted as

�x = E[x]; Cx = cov(x); Cxv = cov(x; v)

�v = E[v]; C = cov(v); �y = E[y]; Cy = cov(y)

2.2 Basic Assumptions and Conventions
The following assumptions and conventions are used

throughout the paper. (a) The weight matrix C for opti-
mal WLS is symmetric and positive definite; otherwise the
least squares approach is questionable — zero fitting error
does not imply zero estimation error. (b) Both �v and C

for optimal WLS are known for the data model (1). For
the standard distributed fusion, this amounts to assuming
knowing all biases (if any) and cross covariances of the es-
timation errors of local estimates, although we do not ex-
plicitly assume that local estimates are unbiased. (c) For
the data model (1), by prior information, we mean that re-
lated to the first two moments of the estimatee (i.e., quantity



to be estimated) x directly — �x, Cx, andCxv — required in
the Bayesian approach; with complete prior information
means that �x, Cx, and Cxv are known exactly; with incom-
plete prior information means that not all �x, Cx, and Cxv

are known or exist; without prior information means none
of �x, Cx, and Cxv are known or exist, as in the case of the
classical approach. (c) The H matrix in the unified data
model (1) is nonrandom and known.

2.3 Unified Fusion Rules
We summarize the optimal fusers presented in Part I [9]

for (1) below.
Theorem 2.1 (BLUE fusion given complete prior). Us-

ing data model (1), the (almost surely, i.e., with probability
1) unique BLUE fuser with prior information �x; Cx; and
Cxv of x is

x̂ = �x+K[y �H�x� �v] (2)

P = cov(x� x̂) = Cx �KSK 0 (3)

Cy = HCxH
0 + C +HCxv + (HCxv)

0 (4)

K = (CxH
0 + Cxv)C

+
y (5)

In the above,S+ stands for the unique Moore-Penrose pseu-
doinverse (MP inverse in short) of S.

Theorem 2.2 (BLUE fusion without prior). For data
model (1) with known �v andC, a BLUE fuser without prior
information of x exits if and only if H has full column rank
(i.e., H+ = (H 0H)�1H 0). If exists, it is unique (almost
surely) and given by

x̂ = K(y � �v); P = KCK 0 (6)

where K = H+[I � C(TCT )+] and T = I �HH+.
Theorem 2.3 (BLUE fusion given incomplete prior).

Given partial prior information: �x; a positive semidefinite
symmetric but singular matrix C�1

x , and Cxv, the BLUE
fuser for data model (1) with known �v and C exists if and
only if �H+ �H = I . If exists, it is given by

x̂ = V K[(V 0
1 �x)

0; (y � �v)0]0; P = V K �CK 0V 0

where V = [V1; V2] is the orthogonal matrix that diago-
nalizes C�1x : C�1x = V diag(�1; 0)V

0 such that V1 corre-
sponds to �1 = diag(�1; : : : ; �r) > 0; r = rank(C�1

x ), the
optimal gain matrix K is as given in Theorem 2.2 with H
and C replaced by �H and �C, respectively, given by

�H =

�
[Ir�r; 0]
HV

�
; �C =

�
��11 �V 0

1Cxv

�(V 0
1Cxv)

0 C

�

The same uniqueness of x̂ and K as in Theorem 2.2 holds
with H and C replaced by �H and �C, respectively.

Theorem 2.4 (WLS fusion). The unique optimal WLS
fuser having minimum norm using data model (1) with
known �v and C is

x̂� = K�(y � �v); P� = K�CK
0
� = (H 0C�1H)+

where the gain matrix is given by

K� = (H 0C�1H)+H 0C�1 = P�H
0C�1

This minimum-norm fuser becomes the unique optimal
WLS fuser if and only if H 0C�1H is nonsingular, in which
case P� = (H 0C�1H)�1.

Theorem 2.5 (Optimal generalized WLS fusion). Given
data model (1) with known �v and C, and prior information
�x; Cx, and Cxv such that

~C =

�
Cx �Cxv

�C 0xv C

�

is nonsingular, the unique optimal generalized WLS fuser
having minimum norm is

x̂ = K[�x0; (y � �v)0]0; P = K ~CK 0 = ( ~H 0 ~C�1 ~H)+

where ~H = [I;H 0]0 and the gain matrix is given by K =
P ~H 0 ~C�1; this minimum-norm fuser becomes the unique
optimal generalized WLS fuser if and only if ~H 0 ~C�1 ~H is
nonsingular, in which case P = ( ~H 0 ~C�1 ~H)�1.

Note that nonsingularity (and positive definiteness) of ~C
is equivalent to det(Cx) 6= 0 and det(C �C 0

xvC
�1
x Cxv) 6=

0 (or det(C) 6= 0 and det(Cx � CxvC
�1C 0xv) 6= 0).

3 BLUE vs. Least Squares
The following proposition presents their equivalent and

familiar forms of the gain and MSE matrices of the BLUE
without prior (Theorem 2.2) when C is nonsingular.

Proposition 3.1 (Alternative form of gain). The gain ma-
trix and the MSE matrix of the BLUE fuser without prior
given by Theorem 2.2 have the following alternative forms

K = PH 0C�1; P = KCK 0 = (H 0C�1H)+

if and only if C is nonsingular.
This follows directly from the following lemma.
Lemma 3.1 For any H and any symmetric and positive

semidefinite C, the following holds

H+[I � C(TCT )+] = (H 0C�1H)+H 0C�1 (7)

if and only if C is nonsingular, where T = I �HH+.
This proposition establishes an intimate relationship be-

tween BLUE without prior information and optimal WLS.

3.1 BLUE without Prior vs. Optimal WLS
Both BLUE fuser without prior and WLS fuser use data

to make estimation without prior information. We are inter-
ested in their relationship. Clearly, even the optimal WLS
fuser cannot have an MSE matrix smaller than that of the
BLUE fuser without prior. By definition, the optimal WLS
fuser is the best fuser in the class of all WLS fusers that has
the smallest MSE matrix. As a corollary of Proposition 3.1,



the following theorem states that if exists, it is actually the
best among all linear unbiased fusers.

Theorem 3.1 (Equivalence of optimal WLS and BLUE
without prior). Consider linear data model (1) with known
�v and C. Assume that C is nonsingular and H has full col-
umn rank. Then the optimal WLS fuser (given by Theorem
2.4) and BLUE fuser without prior (given by Theorem 2.2)
exist and are identical.

For linear data model (1) with known �v andC but without
prior information, a linear unbiased fuser exists if and only
if H has full column rank. When H does not have full
column rank, the WLS criterion with weight W = C�1 is
still meaningful. Its solution, however, is not unique any
more. The one with minimum norm is given by

x̂ = Ky; P = KCK 0; K = (H 0C�1H)+H 0C�1

By Proposition 3.1, the formulas given in Theorem 2.2
when C�1 exists reduce to this minimum-norm solution.
As a result, these formulas can be thought of giving a gener-
alization of the minimum-norm optimal WLS fuser, which
is biased when H does not have full column rank.

3.2 BLUE with Prior vs. Optimal General-
ized WLS

Similarly, we are interested in the relationship of BLUE
and WLS fusers that use prior information. As with the case
without prior, while any WLS fuser using prior cannot have
an MSE matrix smaller than that of the BLUE fuser, the op-
timal WLS fuser (i.e., the best fuser in the class of all WLS
fusers) is actually the same as the BLUE fuser and thus is
optimal among all linear unbiased fusers, as the following
theorem states.

Theorem 3.2 (Equivalence of optimal WLS and BLUE
given prior). Consider linear data model (1) with known �v
and C and complete prior information (�x, Cx, and Cxv).
Assume that ~C of Theorem 2.5 is nonsingular. Then the
optimal generalized WLS fuser (given by Theorem 2.5) and
BLUE fuser with complete prior (given by Theorem 2.1)
exist and are identical.

Since optimal generalized WLS is actually optimal WLS
with prior mean treated as extra data (see Proposition 4.2),
this theorem follows directly from Theorem 4.1, which
states that BLUE with complete prior for linear data model
can always be converted to BLUE without prior by treating
prior mean as extra data.

3.3 Remarks
BLUE without prior exists when optimal WLS exists,

but optimal WLS may not exist when BLUE without prior
exists. Likewise, BLUE with complete prior exists when
optimal generalized WLS exists, but optimal generalized
WLS may not exist when BLUE with complete prior ex-
ists. These two theorems state that they are identical when
they both exist.

4 Effect of Prior Information
4.1 BLUE: With Prior vs. Without Prior

What is the relationship between BLUE fusion with and
without prior? Can one be converted to the other? The
following theorem states that for a linear data model BLUE
fusion without prior is more general than BLUE fusion with
complete prior in that any latter problem can be converted
to a former problem.

Theorem 4.1 (Conversion of BLUE with prior to BLUE
without prior). For the linear data model (1) with known
�v and C, BLUE with complete prior information (�x, Cx,
and Cxv) can always be converted to BLUE without prior
information by treating the prior mean �x as extra data in the
linear model: �x = x + (�x � x). More specifically, BLUE
with complete prior information (�x, Cx, and Cxv) for the
linear data model (1) with known �v and C always coincides
(almost surely) with BLUE without prior information for
the linear data model ~y = ~Hx+ ~v with

~y =

�
�x
y

�
; ~H =

�
I

H

�

E[~v] =

�
0
�v

�
; ~C =

�
Cx �Cxv

�C 0xv C

�

which is given by

x̂ = ~K(~y �E[~v]); P = ~K ~C ~K 0; ~K = [I �KH;K]
(8)

where K is the gain matrix of the BLUE fuser with com-
plete prior, given by Theorem 2.1.

Note that in this case, the gain matrix of BLUE without
prior does not involve MP inverse.

Albeit close, Theorem 4.1 does not imply that Theorem
2.1 can be derived from Theorem 2.2, which should be true
but has not been shown explicitly here because we have not
derived the specific formulas given in Theorem 2.1 from
those of Theorem 2.2. What Theorem 4.1 shows is that
prior information can always be completely embedded into
a linear data model with prior mean as data. In fact, The-
orem 2.2 is valid no matter if the estimatee x is random or
not. It can be thus viewed as a unification of classical and
Bayesian linear estimation fusion. For random x, it is more
precise to state Theorem 2.2 as giving the BLUE fuser for
the case with unknown �x (i.e., regardless if Cx or Cxv is
known or not), rather than without prior. In other words,
the BLUE fusion formulas in this case are invariant with
respect to Cx and Cxv (even if they are known) provided �x
is unknown—the possible effect of Cx andCxv comes only
through other quantities, e.g., C. For example, Theorem
2.2 is valid whether Cxv of the data model (1) is known or
not.

Theorem 4.1 is the foundation of an approach to optimal
linear update with out-of-sequence measurements [11].

The following theorem states that BLUE without prior
can also be converted to BLUE with complete prior.



Theorem 4.2 (Conversion of BLUE without prior to
BLUE with prior). The problem of BLUE without prior
using data y = Hx + v can always be converted to
that of BLUE with complete prior �x = H�1

1 y1, Cx =
H�1
1

cov(v1)(H
�1
1

)0, and Cxv = �H�1
1

cov(v1; v2) using
data y2 = H2x + v2 (i.e., the two BLUE estimators are
identical almost surely), where H1 is nonsingular, formed
by proper rows of H such that

Ay =

�
y1
y2

�
; AH =

�
H1

H2

�
; Av =

�
v1
v2

�

with Au denoting some row-interchanging version of vec-
tor u.

The key in the application of this theorem is to find H1

for the problem at hand.

4.2 Contribution of Prior to BLUE
For the same linear data model, BLUE fuser without

prior clearly can never have a smaller MSE matrix than
BLUE fuser with complete prior information since the lat-
ter uses more information optimally. The questions are: (a)
how much worse? (b) can they be the same? Clearly, they
are the same if and only if the prior information turns out to
be redundant given the data for the problem. The following
theoretical results answer these questions.

Lemma 4.1 (Redundancy condition of prior for BLUE).
Let x̂1 and x̂2 = K2(y � �v) be BLUE with complete prior
and without prior information, respectively, using the same
data y with known mean error �v. Then a necessary and
sufficient condition for x̂1 = x̂2 almost surely is K2Cy =
Cxy, where Cy = cov(y) and Cxy = cov(x; y).

Note that this theorem is valid regardless if y is linear or
nonlinear in the estimatee x provided BLUE without prior
is given in the form x̂2 = K2(y � �v). By Theorem 2.2, x̂2
is always of this form for linear data model (1). For linear
data, we have the following stronger results.

Theorem 4.3 (Redundancy conditions of prior for
BLUE). Consider linear data model (1) with known �v and
C. Let x̂1 and x̂2 be BLUE with complete prior and with-
out prior information, respectively, using the same data y.
Then the following statements are equivalent.

(a) x̂1 = x̂2 almost surely (i.e., prior information is re-
dundant for BLUE)

(b) The gain matrix K2 of x̂2 satisfies K2Cy = Cxy.

(c) The gain matrix K2 of x̂2 satisfies K2Cvy = 0.

(d) (I � CvyC
+
vy)H has full column rank; that is,

[(I � CvyC
+
vy)H ]+[(I � CvyC

+
vy)H ] = I (9)

where C+
vy is the MP inverse of Cvy = cov(v; y).

(e) The following condition holds

[I � CxyC
+
y H ][(I � CyC

+
y )H ]+[(I � CyC

+
y )H ]

= I � CxyC
+
y H (10)

Note that by Theorem 2.2, BLUE without prior exists if
and only if H has full column rank.

The redundancy conditions given in Theorem 4.3 are
general—it holds whenever BLUE without prior exists for
the model (1) with known �v and C. With additional as-
sumptions, we have stronger results, as stated in the follow-
ing corollaries.

Corollary 4.2 (Sufficient condition for redundancy of
prior for BLUE). Consider linear data model (1) with
known �v and C. Then prior information is redundant for
BLUE if rank[Cy; H ] = rank(Cy) and I � CxyC

+
y H = 0.

This corollary follows from Theorem 4.3, in particular,
(10), immediately since rank[Cy; H ] = rank(Cy) is equiv-
alent to CyC

+
y H = H .

Corollary 4.3 (Contribution of prior to BLUE). Consider
linear data model (1) with known �v and C. Assume that ~C
of Theorem 2.5 is nonsingular. Then the contribution of the
prior information (�x, Cx, and Cxv) to BLUE fusion in the
sense of Fisher is given by

P�11 � P�12 = (I + CxvC
�1H)0(Cx � CxvC

�1C 0xv)
�1

�(I + CxvC
�1H)

where P1 and P2 are the MSE matrices of BLUE fusers
with complete and without prior information, respectively.
In particular, the prior information is redundant for BLUE
fusion—BLUE fuser with complete prior information is
(almost surely) identical to BLUE fuser without prior
information—if and only if

I + CxvC
�1H = 0 (11)

Corollary 4.4. Consider linear data model (1) with
known �v and C. Assume C > 0, Cx > 0, and Cxv = 0.
Then the prior information (�x, Cx) is useful for BLUE
fusion—BLUE fuser with complete prior information has
a smaller MSE matrix than BLUE fuser without prior
information—and the contribution of the prior information
is P�1

1
� P�1

2
= C�1x .

This corollary indicates that in the usual case (C > 0,
Cx > 0, and Cxv = 0), the optimal use of the prior mean
and covariance does improve the performance of BLUE fu-
sion; and the prior information and the data information are
additive because they are uncorrelated (“independent”).

It should be clear from these results that the performance
“limits” discussed in [1, 2] are valid only in the sense that
prior information is either unavailable or redundant, which
is, however, not the usual case for steady-state filtering
(e.g., �-� filtering), where Cx := limk!1 Pkjk�1 > 0.



4.3 BLUE: Partial Prior vs. No Prior
In practice, it is sometimes more desirable to define a

singular C�1
x and thus the corresponding covariance Cx

does not exist1. This would be the case if prior informa-
tion about some but not all components of �x were avail-
able. For example, when tracking an aircraft just taking
off from an airport, it is easy to determine the prior velocity
vector (it must be within a certain velocity range) with a co-
variance, but not the prior position vector (it can be over a
much larger region). A practical means of specifying such
knowledge is to set the corresponding elements (or eigen-
values) of Cx to infinity (or more appropriately, set C�1

x to
zero). Such an incomplete prior problem can be converted
to a problem without prior information, as the following
lemma states.

Proposition 4.1. Given partial prior information: �x; a
positive semidefinite symmetric but singular matrix C�1

x ,
and cross covariance Cxv, the corresponding BLUE fusion
for data model (1) with known �v and C can be converted
to BLUE without prior information (Theorem 2.2) with H
and C replaced by �H and �C of Theorem 2.3.

Theorem 2.3 is actually an immediate consequence of
this proposition. In fact, the proof of Proposition 4.1 is em-
bedded in the proof of Theorem 2.3, as found in [9].

4.4 Optimal WLS: Role of Prior
The WLS method is usually limited to the case where the

estimatee x is unknown and there exists no prior informa-
tion. As supported by Theorem 4.1, the optimal general-
ized WLS fusion treats prior mean as extra data optimally.
The following proposition states that the optimal general-
ized WLS fuser is actually a special case of the optimal
WLS fuser by embedding prior information into a linear
data model with prior mean as data: �x = x+ (�x� x).

Proposition 4.2. Given prior information �x,Cx, andCxv

and data model (1) with known �v andC such that ~C of The-
orem 2.5 is nonsingular, the corresponding optimal general-
ized WLS fuser (given by Theorem 2.5) exists and is iden-
tical to optimal WLS fuser (given by Theorem 2.4) with H
and C replaced by ~H and ~C of Theorem 4.1, respectively.

The optimality of this prior information embedding by
the model �x = x+ (�x � x) for WLS follows from the fact
that after embedding the optimal WLS is identical to BLUE
with complete prior (Proposition 4.2 and Theorem 3.2).

The optimal WLS can never have a smaller MSE matrix
than that of the optimal generalized WLS fusion since the
latter uses prior information optimally. However, they can
have the same MSE matrix when the prior information is
redundant. The following theorem presents the improve-
ment of the optimal generalized WLS over optimal WLS in
terms of MSE matrix, including a necessary and sufficient
condition for them to be the same.

1C
�1
x is just a symbol here, not the inverse of any matrix, although it

is meant to be the inverse of Cx if it exists.

Theorem 4.5 (Contribution of prior to optimal WLS).
Consider linear data model (1) with known �v and C. As-
sume that ~C of Theorem 2.5 is nonsingular. Then the con-
tribution of the prior information (�x, Cx, and Cxv) to opti-
mal WLS fusion in the sense of Fisher is given by

P�1
GWLS

� P�1
WLS

= (I + CxvC
�1H)0(Cx � CxvC

�1C 0xv)
�1

�(I + CxvC
�1H)

where PGWLS and PWLS are the MSE matrices of optimal gen-
eralized WLS and optimal WLS fusers, respectively. In par-
ticular, the prior information is redundant for optimal WLS
fusion—optimal generalized WLS and optimal WLS fusers
are identical (almost surely)—if and only if

I + CxvC
�1H = 0 (12)

Note that Cx > CxvC
�1C 0xv whenever ~C of Theo-

rem 2.5 is nonsingular and thus this theorem follows from
Corollary 4.3, Proposition 4.2, and Theorem 3.2.

5 Contribution of Data
Given a particular piece of random data, we may ask sim-

ilar questions: Will the optimal use of it improve BLUE fu-
sion? If the answer is yes, how much is the improvement?
The following theorem answers these questions.

Theorem 5.1 (Contribution of data to BLUE). Consider
the linear data model (1) with known �v and C. Assume that
~C of Theorem 2.5 is nonsingular. Then the contribution of
the data y to BLUE fuser having MSE matrix P in the sense
of Fisher is given by

P�1 � C�1x = (H + C 0xvC
�1
x )0(C � C 0xvC

�1
x Cxv)

�1

�(H + C 0xvC
�1
x )

In particular, data y carries no useful information beyond
the prior information if and only if HCx + C 0xv = 0.

Note that the above condition becomes

P�1 � C�1x = H 0C�1H = P�12

if Cxv = 0, where P2 is the MSE matrix of BLUE fuser
without prior information.

It is intuitively correct that data would not help BLUE
fusion if it is uncorrelated with the estimatee (i.e., Cxy =
0), which also follows rigorously from MSE(x̂) = Cx �
CxyC

+
y C

0
xy. The first part of the theorem thus follows from

the fact that Cxy = CxH
0 + Cxv for linear data model (1).

6 Summary
In this paper, we have clarified the following: (a) the

relationships between BLUE and WLS fusion; (b) the re-
lationships between BLUE fusion with complete, incom-
plete, and no prior information; (c) the relationships be-
tween WLS fusion with and without prior information; (d)



the contribution of prior information to BLUE and WLS
fusion, in particular, conditions under which prior informa-
tion is redundant for BLUE and WLS fusion; (e) the con-
tribution of data to BLUE and WLS fusion. In addition,
we have also shown the following: (a) treating prior mean
as extra data in a linear model that accounts for the prior
covariance does not lose the optimality of BLUE and WLS
fusion; (b) BLUE with complete prior and without prior can
be mutually converted.

In our opinion, the results presented in this series of pa-
pers, along with existing results in the literature, form es-
sential ingredients of a basic theory of linear estimation fu-
sion. These results also have wide application in state es-
timation fusion, as evidenced by the fact that they include
most existing linear fusion formulas for distributed filtering
as special cases. Nevertheless, fusion for estimation of a
process does have its own problems and emphases, which
will be handled in several forthcoming papers.

A Appendix
A.1 Proof of Lemma 3.1

The following lemma is needed in our proof.
Lemma. The following holds for any H and any sym-

metric and nonsingularR:

(R�1H)+ = H+R[I � (TR)+(TR)]

where T = I �HH+.
Proof: It suffices to show that X = H+R[I �

(TR)+(TR)] is the MP inverse of A = R�1H . Note first
that TH = 0 and (B+B)0 = B+B for any B. Then

AXA = R�1HH+R[I � (TR)+(TR)]R�1H

= R�1HH+H �R�1HH+R(TR)+TRR�1H

= R�1HH+H = R�1H = A

XAX = H+R[I � (TR)+(TR)]R�1HH+R

�[I � (TR)+(TR)]

= HH+HR[I � (TR)+(TR)]

= H+R[I � (TR)+(TR)] = X

AX = R�1HH+R[I � (TR)+(TR)]

= R�1(I � T )R[I � (TR)+(TR)]

= (I �R�1TR)[I � (TR)+(TR)]

= I �R�1TR� (TR)+(TR)

+R�1TR(TR)+(TR)

= I � (TR)+(TR)

(AX)0 = [I � (TR)+(TR)]0 = I � (TR)+(TR) = AX

XA = H+R[I � (TR)+(TR)]R�1H

= H+RR�1H = H+H

(XA)0 = (H+H)0 = H+H = XA

Thus, the lemma follows since all the four Penrose condi-
tions are satisfied. 2

The proposition is meaningless if C is singular. As-
sume that C is nonsingular. Let C 1=2 be the positive-
definite symmetric square-root matrix of C, which al-
ways exists and is in fact unique since C > 0. Since
B+ = (B0B)+B0 = B0(BB0)+ and it can be shown that
(TCT )+ = T (TCT )+ = (TCT )+T , we have

(C1=2T )+ = (TC1=2C1=2T )+TC1=2 = (TCT )+TC1=2

= T (TCT )+C1=2 = T (C1=2T )+

Taking transpose of the last equation above leads to

(TC1=2)+ = (TC1=2)+T = C1=2(TCT )+

It thus follows that

(H 0C�1H)+H 0C�1

= (H 0C�1=2C�1=2H)+(H 0C�1=2)C�1=2

= (C�1=2H)+C�1=2

= H+C1=2[I � (TC1=2)+TC1=2]C�1=2

= H+C1=2[I � (TC1=2)+C1=2]C�1=2

= H+[I � C1=2(TC1=2)+] = H+[I � C(TCT )+]

where use has been made of the above lemma. When C is
nonsingular,K is unique and the above shows that

K = H+[I � C(TCT )+] = (H 0C�1H)+H 0C�1

Finally,

P = KCK 0

= [(H 0C�1H)+H 0C�1]C[(H 0C�1H)+H 0C�1]0

= (H 0C�1H)+

A.2 Proof of Theorem 4.1
Treat the prior mean �x as data, that is,

~y =

�
�x
y

�
=

�
I

H

�
x+

�
�x� x

v

�
= ~Hx+ ~v

Clearly, ~H has full column rank and thus BLUE fuser with-
out prior always exists. Consider a particular gain matrix
~K = [I�KH;K], whereK is the gain matrix of the BLUE

fuser with complete prior, given by Theorem 2.1. Since

~K ~H = [I �KH;K]

�
I

H

�
= I

x̂ = ~K(~y � E[~v]) is a linear unbiased fuser without prior,
which is not necessarily BLUE. On the other hand, how-
ever, we have

x̂ = ~K(~y �E[~v]) = [I �KH;K]

�
�x

y � �v

�

= (I �KH)�x+K(y � �v)



which is equal to the BLUE fuser with complete prior (The-
orem 2.1) and thus it minimizes MSE matrix. Therefore, it
must be the BLUE fuser without prior due to the unique-
ness of this BLUE fuser (Theorem 2.2), although the gain
matrix is not necessarily unique.

A.3 Proof of Theorem 4.2
Note first that by Theorem 2.2, BLUE without prior ex-

ists iff H has full column rank and thus the nonsingularH1

always exists. As a result, y1 = H1x + v1 and H�1
1 y1 =

x+H�1
1 v1 are equivalent. Treating y2 = H2x+ v2 as the

data model for BLUE with prior and H�1
1 y1 as the cor-

responding prior mean �x, we have �x = x + H�1
1 v1 =

x + (�x � x) and thus Cx = H�1
1

cov(v1)(H
�1
1

)0, and
Cxv := Cxv2 = �H�1

1 cov(v1; v2). Note that �x so defined
is actually random and possibly correlated with y2 or v2
but BLUE with complete prior (Theorem 2.1) is still valid
in these cases because more fundamentally it is valid for
estimating the random variable ~x = x � �x. By Theorem
4.1, this BLUE with prior coincides almost surely with the
BLUE without prior using data y = Hx+ v.

A.4 Proof of Lemma 4.1
Let u = x̂1 � x̂2. It is well known that x̂1 = x̂2 almost

surely iff �u = 0 and Cu = 0. Here

�u = E[x̂1 � x̂2] = E[x̂1]�E[x̂2] = �x� �x = 0

since both x̂1 and x̂2 are unbiased. It is also well known that
BLUE with prior is given by x̂1 = �x+K1(y��y);8K1 2 K,
where K is the set of K = CxyC

+
y +A(I �CyC

+
y ) for all

compatible matrices A. Since x̂2 = K2(y � �v), we have

Cu = cov[�x+K1(y � �y)�K2(y � �v)]

= cov[(K1 �K2)y] = (K1 �K2)Cy(K1 �K2)
0

Hence, Cu = 0 iff (K1 � K2)Cy = 0, that is, K1Cy =
K2Cy or [CxyC

+
y + A(I � CyC

+
y )]Cy = K2Cy or

CxyC
+
y Cy = K2Cy, which is equivalent to Cxy = K2Cy

since CxyC
+
y Cy = Cxy.

A.5 Proof of Theorem 4.3
(a) = (b): It follows from Lemma 4.1.
(b) = (c): Since Cy = HCxy + Cvy , condition (b) (i.e.,

K2Cy = Cxy) becomes

K2HCxy +K2Cvy = Cxy

or equivalently Cxy + K2Cvy = Cxy because K2H = I

holds for all BLUE without prior, which is K2Cvy = 0.
(c) = (d): K2Cvy = 0 always has a solution and the

general solution is

K2 = A(I � CvyC
+
vy)

where A is any matrix of the same dimension as K2. Since

I = K2H = A(I � CvyC
+
vy)H

the condition becomes

A(I � CvyC
+
vy)H = I

A necessary and sufficient condition for this equation to
have a solution for A is

[(I � CvyC
+
vy)H ]+[(I � CvyC

+
vy)H ] = I

(b) = (e): It is well known that the equationK2Cy = Cxy

has a solution iff CxyC
+
y Cy = Cxy, which always holds

true. Its general solution is

K2 = CxyC
+
y +A(I � CyC

+
y )

where A is any matrix of the same dimension as K2. Since

I = K2H = CxyC
+
y H +A(I � CyC

+
y )H

condition K2Cy = Cxy becomes

CxyC
+
y H +A(I � CyC

+
y )H = I

or
A(I � CyC

+
y )H = I � CxyC

+
y H

A necessary and sufficient condition for this equation to
have a solution for A is

[I � CxyC
+
y H ][(I � CyC

+
y )H ]+[(I � CyC

+
y )H ]

= I � CxyC
+
y H

In essence, the conditions in this theorem are all equiv-
alent to the condition that the gain matrices K1 and K2 of
BLUE with prior and without both belong to K, where K is
the set of K = CxyC

+
y +A(I �CyC

+
y ) for all compatible

matrices A.

A.6 Proof of Corollary 4.3
It can be shown that Corollary 4.3 follows from Corollary

4.2. However, we provide a more direct proof here. Note
that by Proposition 3.1, the MSE matrix of BLUE without
prior is P2 = (H 0C�1H)�1 iff C > 0, while by Theo-
rem 4.1 and Proposition 3.1, the BLUE fuser with complete
prior when ~C�1 exists is actually the optimal generalized
WLS fuser and thus its MSE matrix is P1 = ( ~H 0 ~C�1 ~H)�1.
Using Schur’s identity on the inverse of a partitioned matrix
and the fact that ~C > 0 () fC > 0; Cx > CxvC

�1C 0xvg
(see, e.g., Theorem 7.7.6 of [5]), it is straightforward to
show the following identity

~H 0 ~C�1 ~H = (I + CxvC
�1H)0(Cx � CxvC

�1C 0xv)
�1

�(I + CxvC
�1H) +H 0C�1H



Note also that ~C > 0() det(C) 6= 0 since ~C is a covari-
ance matrix. Hence

P�11 � P�12 = (I + CxvC
�1H)0(Cx � CxvC

�1C 0xv)
�1

�(I + CxvC
�1H)

The BLUE fuser with complete prior information is (almost
surely) identical to BLUE fuser without prior information
iff P1 = P2. Since Cx � CxvC

�1C 0xv is positive definite
under the stated assumption, P1 = P2 (i.e., ~H 0 ~C�1 ~H =
H 0C�1H) iff I + CxvC

�1H . This completes the proof.
In fact, the sufficiency that I+CxvC

�1H 0 implies P1 =
P2 can be shown under the weaker assumption that P2 =
(H 0C�1H)�1 as follows. (4) and (11) imply that

(H 0C�1H)�1H 0C�1Cy

(4)
= CxH

0 + (H 0C�1H)�1H 0 + Cxv

+(H 0C�1H)�1H 0C�1C 0xvH
0

(11)
= CxH

0 + Cxv = Cxy

Then we have

P1 = Cx � CxyC
+
y C

0
xy

= Cx � (H 0C�1H)�1H 0C�1CyC
�1H

�(H 0C�1H)�1

(4)
= Cx � [Cx + (H 0C�1H)�1 + CxvC

�1H

�(H 0C�1H)�1 + (H 0C�1H)�1H 0C�1C 0xv]

(11)
= �(H 0C�1H)�1 + 2(H 0C�1H)�1 = P2

A.7 Proof of Proposition 4.2
Treating prior mean �x as extra data in the model �x =

x + v0 with cov(v0) = cov(�x � x) = Cx. Let ~y, ~H ,
E[~v] = [0; �v0]0, and ~C be as defined in Theorem 4.1. Then,
by Theorem 3.1, for data model ~y = ~Hx + ~v BLUE with-
out prior becomes optimal WLS if ~C is nonsingular. In
other words, the original optimal generalized WLS prob-
lem of estimating a random variable with prior information
becomes an optimal WLS problem without prior informa-
tion.

A.8 Proof of Theorem 5.1
It follows from MSE(x̂) = Cx�CxyC

+
y C

0
xy and Cxy =

CxH
0 + Cxv for linear data model y = Hx + v that y is

not useful for BLUE fusion if CxH
0 + Cxv = 0. Using

Schur’s identity on the inverse of a partitioned matrix and
the fact that ~C > 0() fCx > 0; C > C 0xvC

�1
x Cxvg (see,

e.g., Theorem 7.7.6 of [5]), it is straightforward to show the
following identity

~H 0 ~C�1 ~H = (H + C 0xvC
�1
x )0(C � C 0xvC

�1
x Cxv)

�1

�(H + C 0xvC
�1
x ) + C�1x

Note also that ~C > 0() det(C) 6= 0 since ~C is a covari-
ance matrix. Hence

P�1 � C�1x = (I + CxvC
�1H)0(Cx � CxvC

�1C 0xv)
�1

�(I + CxvC
�1H)
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