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Abstract – In multi-sensor target tracking systems,
measurements from the same target can arrive out
of sequence, called the out-of-sequence measurements
(OOSMs). The resulting problem – how to update the
current state estimates with the “old” measurements –
has been solved optimally and sub-optimally for one-
lag as well as multi-lag OOSM update. In general, the
existing algorithms assume perfect target detection and
no clutter in the received measurements. The real world
has, however, possible missed target detection and ran-
dom clutter in the possible OOSMs and thus the filter
has to handle the measurement origin uncertainty. In
this paper, we incorporate the probabilistic data asso-
ciation (PDA) into the two OOSM update algorithms
ALG-I and ALG-II proposed previously. We present
the algorithms ALG-I and ALG-II in new forms with
economic storage and efficient computation based on
the nonsingularity assumption of some special matri-
ces. Simulation results show that PDA with the two
OOSM update algorithms have compatible RMS errors
to the in-sequence PDA filter.

Keywords: Target tracking, out-of-sequence mea-
surement, linear minimum mean square estimation
(LMMSE), PDA

1 Introduction
In a multi-sensor multi-target tracking system, ob-

servations obtained by multiple sensors are usually
sent to a fusion center for processing. Out-of-sequence
measurements (OOSMs) can arise at the fusion center
due to communication delay and varying preprocessing
time for different sensor platforms. This can lead to sit-
uations where measurements from the same target ar-
rive out of sequence. One possible scenario is that the
fusion center receives measurements from a local sensor
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at time tk and updates the state estimate and corre-
sponding covariance of a track. After the update, it
receives delayed measurements from another local sen-
sor at a prior time td (tk−l ≤ td < tk−l+1, l = 1, 2, · · · ).
The previous results for OOSM update are formulated
for a Kalman filter to update the state at time tk by
using the “older” measurement from time td. In this
problem, the measurement at each sampling time is
assumed to be target originated and no clutter or in-
terference from other targets is considered. We call
the above setting an OOSM update problem. There
are some optimal methods [1], [2], [3] and suboptimal
methods [4], [5], [6], [7], [8] for one-lag as well as multi-
lag OOSM update. Two general algorithms ALG-I and
ALG-II proposed in [3] can solve the one-lag as well
as the multi-lag OOSM update problems in a globally
optimal or suboptimal (optimal with limited informa-
tion) manner without any restrictions. They are opti-
mal in the LMMSE sense. We will show that ALG-1
and ALG-II have simpler forms with less storage re-
quirement under some additional assumptions which
hold for nearly all target tracking applications.

However, almost all real world tracking problems
involve nonlinear measurements. Therefore, there is
no optimal filtering algorithm exists. In multi-sensor
multi-target tracking problems, measurements received
at the fusion center can originate from targets or clut-
ter, i.e., false alarms. The filter handles the measure-
ment origin uncertainty via the so-called data asso-
ciation algorithm. The existing optimal criterion for
OOSM update within the Kalman filter framework is
no longer valid for the target tracking problem with
measurement origin uncertainty. In this case, the
OOSM update needs to include certain data associ-
ation algorithm. However, the optimal data associ-
ation (in the Bayesian sense) relies on all measure-
ments from the beginning up to the current time. With
limited storage, for example only based on the state



estimate without storing the measurements, it is im-
possible to have the optimal data association. There
exist data association algorithms, such as probabilis-
tic data association (PDA) for a single target in clut-
ter and joint probabilistic data association (JPDA) or
multiple hypothesis tracking (MHT) for multiple tar-
gets in clutter, that solve the measurement-to-track
association sub-optimally. In this setting, it is hard to
propose a meaningful criterion to update the OOSMs
optimally for multi-target tracking in clutter [9]. In
this paper, we provide one solution by incorporating
the PDA technique with the OOSM update for track-
ing a single target in clutter. Through performance
comparison between the PDA with OOSM update and
the in-sequence PDA filter, we find that the perfor-
mance degradation of the PDA with the OOSM up-
date is relatively small. We also find that the PDA
with the OOSM update has better performance than
just ignoring those OOSMs. The generalization of in-
corporating the JPDA with the OOSM filter update for
multi-sensor multi-target tracking in clutter is briefly
discussed.

2 Estimation with OOSMs un-
der Perfect Target Detection
and No Clutter

2.1 Problem Formulation

The dynamic and measurement models for a single
target are given by

xj = Fj,j−1xj−1 + wj,j−1 (1)
zj = Hjxj + vj (2)

where Fj,j−1 is the state transition matrix from time
tj−1 to tj and wj,j−1 is the integrated process noise for
this interval. The process noise wj,j−1 and the mea-
surement noise vj are white, mutually uncorrelated,
with zero mean and variances

var(wj,j−1) = Qj,j−1, var(vj) = Rj

Suppose time td is in the sampling interval tk−l ≤
td < tk−l+1, where l = 1, 2, · · · , which means that
the OOSM zd is l lags behind.
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Figure 2.1: The OOSM zd arrives after the last processed

measurement zk.

Similar to (1), we have

xk = Fk,dxd + wk,d

zd = Hdxd + vd

The OOSM update problem is as follows: At time tk
the LMMSE estimate is

x̂k|k = E∗[xk|zk], Pk|k = MSE[x̂k|k]

where

x̂ = E∗(x|z) = x̄ + CxzC
−1
z (z − z̄)

P = MSE(x̂) = E(x̃x̃′)
Cxz = cov(x, z), Cz = cov(z), x̃ = x− x̂

In the above, zk = {zi}k
i=1 is the measurement se-

quence up to tk. For OOSM filtering, we deal with
the problem that an earlier measurement at time td
arrives after the state estimate x̂k|k and the covariance
Pk|k have been calculated. We want to update this
estimate with the earlier measurement zd, that is, to
calculate the LMMSE estimator

x̂k|k,d = E∗[xk|Ωk, zd], Pk|k,d = MSE[x̂k|k,d]

where Ωk stands for the available information for up-
date with the OOSM zd . In [3], we have considered
three cases of information storage for different prior
information about td. Following most suggestions, we
will only consider update algorithms with required in-
formation storage for the case of knowing the maxi-
mum delay s of OOSM, where there is no prior infor-
mation about the OOSM zd occurrence time td before
it arrives, but we know the maximum delay s for the
OOSM, i.e., tk−s ≤ tk−l ≤ td < tk−l+1 ≤ tk.

2.2 Algorithm I — Globally Optimal
Update (ALG-I)

Based on the linear dynamic model, it follows from
recursive LMMSE estimation that the globally optimal
update can be written as

x̂k|k,d = E∗[xk|zk, zd] (3)
= x̂k|k + Kd(zd −Hdx̂d|k) = x̂k|k + Kdz̃d|k

Pk|k,d = Pk|k −KdSdK
′
d (4)

where

Kd = Uk,dH
′
dS

−1
d , Sd = HdPd|kH ′

d+Rd, Uk,d = Cxk,x̃d|k

Let

x̂d|n = E∗(xd|zn), Pd|n = MSE(x̂d|n), Un,d = Cxn,x̃d|n

Based on the recursion for {x̂d|k, Pd|k, Uk,d} derived
in [3], it can be shown that when Pn+1|n+1, Pn+1|n



and Rn+1 are nonsingular (which hold for most target
tracking problems), we have

H ′
n+1S

−1
n+1z̃n+1|n = P−1

n+1|n(x̂n+1|n+1 − x̂n+1|n)

H ′
n+1S

−1
n+1Hn+1 = P−1

n+1|n − P−1
n+1|nPn+1|n+1P

−1
n+1|n

(I −Kn+1Hn+1) = Pn+1|n+1P
−1
n+1|n

So the recursion for {x̂d|k, Pd|k, Uk,d} starting from n =
k − l + 1 can be rewritten as

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nP−1

n+1|n(x̂n+1|n+1

− x̂n+1|n)

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nP−1

n+1|n(Pn+1|n (5)

− Pn+1|n+1)P−1
n+1|nFn+1,nUn,d

Un+1,d = Pn+1|n+1P
−1
n+1|nFn+1,nUn,d

with the initial conditions given by

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dP

−1
k−l+1|k−l

(x̂k−l+1|k−l+1 − x̂k−l+1|k−l)

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,d(P

−1
k−l+1|k−l

−P−1
k−l+1|k−lPk−l+1|k−l+1 (6)

P−1
k−l+1|k−l)Fk−l+1,dPd|k−l

Uk−l+1,d = Pk−l+1|k−l+1P
−1
k−l+1|k−lFk−l+1,dPd|k−l

where

x̂d|k−l = Fd,k−lx̂k−l|k−l (7)
Pd|k−l = Fd,k−lPk−l|k−lF

′
d,k−l + Qd,k−l (8)

From (5)-(8), we can see that the necessary information
in order to update {x̂d|k, Pd|k, Uk,d} needs to include

Ωk = {x̂k−l|k−l, Pk−l|k−l, · · · , x̂k|k, Pk|k}

For this situation, we do not have any prior informa-
tion about the OOSM zd occurrence time td, and what
we know is the maximum delay s for the OOSM, i.e.,
tk−s ≤ tk−l ≤ td < tk−l+1 ≤ tk . In order to save all
necessary information for the update, we should have

Ωk = {x̂k−s|k−s, Pk−s|k−s, · · · , x̂k|k, Pk|k}

and use (5)-(8) together with (3)-(4) for the OOSM up-
date algorithm. The OOSM update is the traditional
Kalman filter by adding the OOSM update algorithm,
which is shown in Figure 2.2.

Algorithm I presented above is the globally opti-
mal update [3] with less storage requirement since
Pn+1|n+1, Pn+1|n and Rn+1 are all nonsingular. The
storage requirement increases linearly with maximum
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Figure 2.2: Flowchart for Algorithm I

delay s. However, the necessary information only in-
cludes the state estimates in the concerned time inter-
val. The storage is the same as Algorithm Al1 pro-
posed in [5], but can achieve the best performance
within the linear estimator class.

We conclude that Algorithm I has (1) an efficient
memory structure; and (2) an efficient computational
structure to solve the problem by storing the necessary
information instead of retrodiction or augmenting the
state [6], [7], [8], [2]. Also, it is globally optimal for
tk−l < td < tk−l+1 as well as td = tk−l+1.

2.3 Algorithm II — Constrained Opti-
mal Update (ALG-II)

Based only on the information x̂k|k and zd at time
when OOSM zd arrives, the optimal OOSM update is
the LMMSE estimator E∗(xk|x̂k|k, zd) without prior
information [11]. It is in general not globally optimal
[i.e., E∗(xk|x̂k|k, zd) 6= E∗(xk|zk, zd)], but it is optimal
conditioned on the available information. As presented
in [3], the LMMSE update without prior is given by

x̂k|k,d = K̃zc = (Hc′Rc−1Hc)−1Hc′Rc−1zc (9)

Pk|k,d = (Hc′Rc−1Hc)−1

where zc =
[

x̂k|k
zd

]
and Hc =

[
I

HdF
−1
k,d

]
with

Rc=

[
Pk|k (P k|kF−1′

k,d −Uk,d)H
′
d

Hd(F
−1
k,dPk|k−U ′

k,d) Rd+HdF
−1
k,dQk,dF

−1′
k,d H ′

d

]

Algorithm II always gives the optimal update based on
the available information. We have the property that,
if the update is only one-lag, (9) is the solution given by
[7], [1]. In the multi-step update case, (9) is consistent
with [4]. In Algorithm II, the estimator contains the
term Uk,d. As for Algorithm I, when Pn+1|n+1, Pn+1|n
and Rn+1 are nonsingular, we have

(I −Kn+1Hn+1) = Pn+1|n+1P
−1
n+1|n

So the recursion for {Uk,d} starting from n = k− l + 1
can also be rewritten as

Un+1,d = Pn+1|n+1P
−1
n+1|nFn+1,nUn,d (10)



with the initial value

Uk−l+1,d (11)

= Pk−l+1|k−l+1P
−1
k−l+1|k−lFk−l+1,dPd|k−l

If the maximum delay for the OOSM is s. We should
require

Ωk = {Pk−s|k−s, · · · , Pk|k}
Similar to Algorithm I, this OOSM update algorithm
can be implemented at the arrival time of OOSM zd.
The OOSM update is the traditional Kalman filter by
adding the OOSM update using (9)-(11). The infor-
mation storage increases linearly with the maximum
delay s. The storage is the same as Algorithm Bl1 of
[5], it can achieve better performance in terms of the
MSE errors.

2.4 Update with Arbitrarily Delayed
OOSMs

In the case of arbitrarily delayed multiple OOSMs,
i.e., any OOSM arrives before the next OOSM occur-
rence time belongs to the single-OOSM update prob-
lem, we can solve it by sequentially applying the single-
OOSM update. But if some other OOSMs occur dur-
ing the period between the occurrence time and arrival
time of one OOSM, the solution for the optimal update
is not so simple. In the following, we only consider the
problem of update with two OOSMs. Generalization
to update with more than two OOSMs is straight for-
ward.
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Figure 2.4.1 OOSMs in the maximum delay period

Suppose zd1 and zd2 are two OOSMs observed at
tk−li ≤ tdi < tk−li+1 with 1 ≤ li < s, i = 1, 2, and ar-
rived during the time period [tki,tki+1). If zd1 arrives
before td2 (see Figure 2.4.1), the state update with zd2

at its arrival time can use the single-OOSM update
as before. At zd2 occurrence time, there is no other
OOSMs except zd2 . So we can directly apply Algo-
rithm I or II for updating with the single-OOSM zd2 .
If both of them arrive at the same time, although we
can update the state estimate with them stacked to-
gether, computationally and operationally, it is better
to update with the OOSMs sequentially.

If we consider the case that zd1 arrives after td2

(see Figure 2.4.2), we can not simply apply the sin-
gle OOSM update algorithm twice. Suppose zd2 ar-
rives before zd1 , or we process zd2 before zd1 if both of
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Figure 2.4.2 OOSMs in the maximum delay period

them arrive at the same time. According to ALG-I and
ALG-II for single-OOSM update, we need to update
x̂k2|k2 and Pk2|k2 with zd2 when it arrived. By using a
Kalman filter, until time tk1 , we have the state estimate
sequence {x̂k2|k2,d2 , Pk2|k2,d2 , . . ., x̂k1|k1,d2 , Pk1|k1,d2}.
At the time when OOSM zd1 arrives, in order to up-
date {x̂k1|k1,d2 , Pk1|k1,d2}, the necessary information
for ALG-I or ALG-II needs to include {x̂k2−l2|k2−l2,d2 ,
Pk2−l2|k2−l2,d2 , . . ., x̂k2−1|k2−1,d2 , Pk2−1|k2−1,d2} or
{Pk2−l2|k2−l2,d2 , . . ., Pk2−1|k2−1,d2}. Therefore, at
the time when the first OOSM zd2 arrives, we
not only need to update the current state {x̂k2|k2 ,
Pk2|k2}, but also update {x̂k2−l2|k2−l2 , Pk2−l2|k2−l2 , . . .,
x̂k2−1|k2−1, Pk2−1|k2−1} for ALG-I or {Pk2−l2|k2−l2 , . . .,
Pk2−1|k2−1} for ALG-II between OOSM zd2 occurrence
time and its arrival time. The update for {x̂k2−i|k2−i,
Pk2−i|k2−i} or just {Pk2−i|k2−i} with i = 1, . . . , l2 is
quite simple. It can be implemented with the same pro-
cedure for{x̂k2|k2 , Pk2|k2} by treating the arrival time
of OOSM zd2 as in the time interval [tk−i, tk−i+1] with
i = 1, . . . , l2.

3 Estimation with OOSMs in
Clutter

3.1 Problem Formulation

For multi-sensor multi-target tracking in the pres-
ence of clutter, a set of measurements zj collected in
a scan are sent to the fusion center. Some of them
are target originated and others are false measure-
ments. The existing algorithms for tracking a target
in the presence of clutter include non-Bayesian and
Bayesian techniques [10]. Probabilistic data associa-
tion filter (PDA) and its extension, joint probabilis-
tic data association filter (JPDA), belong to Bayesian
techniques. PDA and JPDA are target-oriented ap-
proach. For a known number of targets, PDA (JPDA)
evaluates the measurement-to-target association prob-
abilities and combines them into the corresponding
state estimates. MHT is a measurement-oriented or



track-oriented approach.
Here we limit the discussion to a single target track-

ing in clutter and assume a measurement set zd pro-
duced at previous time td arrived at the fusion center
after the measurement set zk produced at the most re-
cent time tk, where tk > td. Then we can identify that
the measurement set produced at td contains OOSMs.
We will formulate the PDA incorporating OOSM up-
date for a single target tracking. It is easy to analyze
and the result can be generalized to other more com-
plicated cases.

The set of validated measurements is denoted as

zj = {zi
j}mj

i=1

where zi
j is the i-th validated measurement and mj is

the number of measurements in the validated region at
time tj . In view of the assumptions listed, the associ-
ation events

θi
j =





{zi
j is the target originated measurement}

i = 1, . . . , mj

{None of the measurements is target
originated} i = 0

are mutually exclusive and exhaustive for mj ≥ 1. The
problem is as follows: an earlier set of measurements
zd = {zi

d}md
i=1 at time td arrives after the state estimate

x̂k|k and the covariance Pk|k have been calculated. Us-
ing the total probability theorem, the state estimate
using zd is

x̂k|k,d = E(xk|zk, zd)

=
md∑

i=0

E(xk|θi
d, z

k, zd)P (θi
d|zk, zd)

=
md∑

i=0

x̂i
k|k,dβ

i
d

where x̂i
k|k,d for i = 1, . . . ,md is the updated state

conditioned on the event that the i-th validated mea-
surement zi

d is target originate and βi
d = P (θi

d|zk, zd)
is the conditional probability of the event — the asso-
ciation probability — and x̂0

k|k,d = x̂k|k, P 0
k|k,d = Pk|k.

Also

Pk|k,d = E{[xk − x̂k|k,d][xk − x̂k|k,d]′|zk, zd}

=
md∑

i=0

E{[xk − x̂k|k,d][xk − x̂k|k,d]′|θi
d, z

k, zd}βi
d

= P̄k|k,d + P̃d

where P̄k|k,d =
md∑
i=0

βi
dP

i
k|k,d, P̃d =

md∑
i=0

βi
dx̂

i
k|k,d(x̂

i
k|k,d)

′−
x̂k|k,d(x̂k|k,d)′. Based on different OOSM update,
x̂i

k|k,d, P i
k|k,d and βi

d will have different forms.

3.2 OOSM Update: PDA with ALG-I

It follows from the proposed globally optimal OOSM
update filter Algorithm I, that

x̂i
k|k,d = x̂k|k + Kd(zi

d −Hdx̂d|k) = x̂k|k + Kdz̃
i
d

P i
k|k,d = Pk|k −KdSdK

′
d

With z̃d =
md∑
i=1

βi
dz̃

i
d, we have

x̂k|k,d =
md∑

i=0

x̂i
k|k,dβ

i
d = x̂k|k + Kdz̃d

Let P c
k|k,d = Pk|k −KdSdK

′
d. Then

P̄k|k,d = β0
dPk|k + [1− β0

d ]P c
k|k,d

and

P̃d = Kd

[
md∑

i=0

βi
dz̃

i
d(z̃

i
d)
′ − z̃dz̃

′
d

]
K ′

d

The association probability can be derived the same as
in-sequence PDA filter,

βi
d =





ei

b+
mdP
j=1

ej

i = 1, . . . , mk

b

b+
mdP
j=1

ej

i = 0 (12)

where ei = e−
1
2 (z̃i

d)′S−1
d z̃i

d and b = λ|2πSd|1/2 1−PDPG

PD

with gate probability PG and detection probability PD.

3.3 OOSM Update: PDA with ALG-II

It follows from the proposed constrained optimal
OOSM update Algorithm II, that

x̂i
k|k,d = E∗(xk|x̂k|k, zi

d) = K̃zc
i

P i
k|k,d = (Hc′Rc−1Hc)−1

where E∗(xk|x̂k|k, zi
d) is the LMMSE without prior

and zc
i =

[
x̂
′
k|k (zi

d)
′

]′
. With z̃d =

md∑
i=1

βi
dz

c
i =

[
(1− β0

d)x̂′k|k
md∑
i=1

βi
d(z

i
d)
′

]′
, we have

x̂k|k,d =
md∑

i=0

x̂i
k|k,dβ

i
d = β0

d x̂k|k + K̃z̃d

Let P c
k|k,d = (Hc′Rc−1Hc)−1. Then

P̄k|k,d = β0
dPk|k + [1− β0

d ]P c
k|k,d



and

P̃d = K̃[
md∑

i=0

βi
dz

c
i (z

c
i )
′ − z̃d(z̃d)′]K̃ ′ + β0

d [1− β0
d ]

x̂k|kx̂′k|k − β0
dx̂k|k(z̃d)′K̃ ′ − β0

dK̃z̃dx̂
′
k|k

The association probability has the same form as (12)
with ei = e−

1
2 (z̃i

d)′S−1
d z̃i

d and b = λ|2πSd|1/2 1−PDPG

PD
,

where z̃i
d = zi

d−HdE
∗(xd|x̂k|k) and Sd = HdPd|kH ′

d +
Rd. Therefore, the only task for the PDA to in-
corporate the constrained optimal OOSM update is
to get the LMMSE x̂d|k = E∗(xd|x̂k|k) and Pd|k =
MSE[x̂d|k]. Based on the limited information storage
Ωk = {Pk−s|k−s, . . ., Pk|k, zd}, we can only achieve the
LMMSE without prior

x̂d|k = F−1
k,d x̂k|k (13)

Pd|k = F−1
k,d R̄dF

−1′
k,d (14)

where

R̄d = Qk,d + Fk,dU
′
d,k + Ud,kF ′k,d − Pk|k

Then z̃i
d = zi

d − HdF
−1
k,d x̂k|k and Sd =

HdF
−1
k,d R̄dF

−1′
k,d H ′

d + Rd.
PDA with OOSM update is suggested for single tar-

get tracking in clutter. The OOSM update filter can
only handle the state update problem. OOSM update
in the presence of measurement origin uncertainty can
not be done easily. This means we can not expect the
PDA with OOSM update will achieve the same per-
formance as the in-sequence PDA filter. If we want
to have the updated PDA filter have the same perfor-
mance as the in-sequence PDA, we need also update
the associated probability βi

j with j = k− l + 1, . . . , k.
But βi

d relies on the observation zi
j . So in order to up-

date βi
j , all observations from tk−l+1 to tk are needed.

However, the information we have at the OOSMs ar-
rival time is limited, such as Ωk = {x̂k−s|k−s, Pk−s|k−s,
. . ., x̂k|k, Pk|k, zd} or Ωk = {Pk−s|k−s, . . ., Pk|k,
zd}. Even the PDA with globally optimal OOSM up-
date will have difference in performance with the in-
sequence PDA. But we can not affirm that the up-
dated PDA filter will always perform poorer than the
in-sequence PDA since the PDA filter itself is not opti-
mal. There are no fundamental optimal criteria for us
to obtain the optimal OOSMs update within the PDA
framework.

If the available information for update is Ωk =
{x̂k−s|k−s, Pk−s|k−s, . . ., x̂k|k, Pk|k, zk, zd} or Ωk =
{Pk−s|k−s, . . ., Pk|k, zk, zd}, we can also update βi

k

with i = 1, . . . , mi in order to obtain a more accurate
estimate of xk. The procedure includes update state
x̂k−1|k−1 to x̂k−1|k−1,d, then applying the in-sequence

PDA filter to yield x̂k|k,d by recalculating βi
k with zk.

The performance will be the same as PDA with l − 1
lag OOSM update if we treat the original PDA with
OOSM update as an l-lag problem.

3.4 OOSM Update: Multi-Target Case

In the previous subsections, we have incorporated
the PDA with Algorithms I and II for the OOSM up-
date. For multi-target tracking in clutter, we need to
consider both the data association issue and the OOSM
update. For data association via JPDA or its vari-
ants e.g., nearest neighbor JPDA, incorporating the
OOSM update using Algorithms I and II is straight-
forward. For each track, when receiving OOSMs, the
Algorithms I and II operate based on the marginal data
associated probability obtained via JPDA and the fil-
ter updates are decoupled among different tracks once
the marginal data association probabilities for the val-
idated measurements are computed by evaluating the
joint events using JPDA. All these subtleties are data
association issue rather than the OOSM update.

4 Simulations
Several simple numerical examples are given in this

section to verify the proposed algorithms. Consider
a discretized continuous time kinematic system driven
by white noise with power spectral density q, known
as nearly constant velocity model or white-noise ac-
celeration model in target tracking, described by the
following linear model

xj = Fj,j−1xj−1 + wj,j−1

zj = Hjxj + vj

where xj =
[
x

(1)
j , x

(2)
j

]
, wj,j−1 and vj are zero mean

white mutually uncorrelated Gaussian noise with

Fj,j−1 =
[

1 T
0 1

]
Hj = [1, 0]

var(wj,j−1) = Q =
[

T 3/3 T 2/2
T 2/2 T

]
q, var(vj) = R = 1

where T is the sampling interval. The prior informa-
tion is

x̂0|0 = x̄ = [200km, 0.5km/ sec]′

P0|0 =
[

R R/T
R/T 2R/T 2

]

and the maneuver index is λ =
√

qT 3/R.
In order to consider multi-lag delay as well as single-

lag OOSM update, we choose a sequence of OOSMs zd.
These OOSMs occurred at d = (l + 1)n and arrived at
(l + 1)n + l with n = 1, 2, . . ., corresponding to l-lag



delayed OOSMs, where l = 1, 2, . . .. For example, if
the in-sequence observation sequence is {z1, z2, z3, . . .},
then the observation sequence with OOSMs for l =
1 is {z1, z3, z2, z5, z4, . . .} and the updated states are
x3, x5, x7, . . .; the observation series with OOSMs for
l = 2 is {z1, z2, z4, z5, z3, z7, z8, z6, . . .} and the updated
states are x5, x8, x11, . . .; and so on. Ideal estimates
were obtained by the Kalman filter using all target
originated observations only (including OOSMs) in the
right time sequence.

For clutter generation, we use a Poisson model:

µF (m) = e−λV (λV )
m!

with λ — density in measurement space, V — vol-
ume of validation region in measurement space. By
choosing λV ∈ [0, 1], we can simulate different clutter
densities. We set PD = 1. Residual based χ2(99.9) test
is used for testing tracking divergence. In simulation
results, there are less than 10% track loss.

We show RMS errors over 1000 monte Carlo runs
for the OOSM updated states at (l + 1)n + l with
n = 1, 2, . . ., where KF — in-sequence Kalman fil-
ter without clutter; IS-PDAF — in-sequence PDA fil-
ter; IG-PDAF — in-sequence PDA filter ignoring the
OOSMs; UD-PDAF1 — PDA with globally optimal
OOSM Update; UD-PDAF2 — PDA with constrained
optimal OOSM update.

4.1 OOSMs with Good Accuracy

We design the OOSM model by choosing var(vj) =
R/10 at j = (l+1)n with n = 1, 2, . . ., which means the
OOSMs are more accurate than the in-sequence mea-
surements. In the following, we show the RMS errors
for the 1-lag, 2-lag and 4-lag OOSM update problems
at time k = 29 with λV ∈ [0, 0.25, 0.5, 0.75, 1] in Fig-
ure 4.1.1, Figure 4.1.2 and Figure 4.1.3 respectively.
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Figure 4.1.1 The RMS errors for 1-lag OOSM upate at

time k = 29 with λV ∈ [0, 0.25, 0.5, 0.75, 1]

As shown in these figures, when there is no clutter,
i.e., λV = 0, ALG-I has the same performance as the
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Figure 4.1.2 The RMS errors for 2-lag OOSM upate at

time k = 29 with λV ∈ [0, 0.25, 0.5, 0.75, 1]
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Figure 4.1.3 The RMS errors for 4-lag OOSM upate at

time k = 29 with λV ∈ [0, 0.25, 0.5, 0.75, 1]

KF, while ALG-II has slightly poorer performance. For
target tracking in clutter, the PDA with OOSM update
by Algorithm I or II yields RMS errors close to the
KF, which indicates that through OOSM update, the
performance has significant improvement especially for
small-lag OOSMs. For large-lag OOSMs, by ignoring
them, the performance does not suffer much even if
the OOSMs have much better accuracy. The RMS
errors of UD-PDAF1 and UD-PDAF2 are very close to
that of the in-sequence PDA filter. It also shows that
the performance of IS-PDAF, IG-PDAF, UD-PDAF1
and UD-PDAF2 deteriorates as the clutter becomes
heavier.

4.2 OOSMs with Moderate Accuracy

The OOSMs have Cvj = R, at j = (l + 1)n with
n = 1, 2, . . ., which means the in-sequence measure-
ments have the same accuracy as the OOSMs. From
Figure 4.2, we can clearly see that by ignoring the
OOSMs, the performance still suffers a lot. But the
PDA with OOSM update improves the performance,
which is close to that of the in-sequence PDA filter.
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Figure 4.2 The RMS errors for 2-lag OOSM upate at time

k = 29 with λV ∈ [0, 0.25, 0.5, 0.75, 1]

5 Conclusions
In this paper, we first provided a simplified version

of the general OOSM update algorithms Algorithm I
and II presented in [3] under the assumptions of non-
singularity of certain matrices valide for most track-
ing applications. Then we proposed using PDA with
Algorithm I and II for the OOSM update in the pres-
ence of clutter. Simulation results show that the PDA
with the OOSMs update in clutter performs signifi-
cantly better than ignoring the OOSMs, especially for
small-lag OOSMs. Its performance is close to the in-
sequence PDA update for OOSMs with various lags
and under mild clutter where the PDA filter has less
than 10% track loss. In summary, the PDA incorpo-
rating the two OOSM update algorithms has (1) an
efficient processing structure; (2) an efficient memory
structure; (3) an efficient computational structure. A
brief discussion was given concerning how to incorpo-
rate the OOSM update algorithms with the JPDA for
multi-target tracking in clutter.
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