
Optimal Linear Estimation Fusion — Part VI:
Sensor Data Compression∗

Keshu Zhang X. Rong Li Peng Zhang
Department of Electrical Engineering, University of New Orleans, New Orleans, LA 70148

Phone: 504-280-7416, Email: xli@uno.edu
Haifeng Li

Department of Computer Science and Engineering, University of California, Riverside, CA 92521
Phone: 909-787-2882, Email: hli@cs.ucr.edu

Abstract – In many engineering applications, esti-
mation accuracy can be improved by data from dis-
tributed sensors. Due to limited communication band-
width and limited processing capability at the fusion
center, it is crucial to compress these data for the fi-
nal estimation at the fusion center. One way of ac-
complishing this is to reduce the dimension of the data
with minimum or no loss of information. Based on the
best linear unbiased estimation (BLUE) fusion results
obtained in the previous parts of this series, in this pa-
per we present optimal rules for compressing data at
each local sensor to an allowable size (i.e., dimension)
such that the fused estimate is optimal. We show that
without any performance deterioration, all sensor data
can be compressed to a dimension not larger than that
of the estimatee (i.e., the quantity to be estimated).
For some simple cases, these optimal compression rules
are given analytically; for the general case, they can be
found numerically by an algorithm proposed here. Sup-
porting simulation results are provided.

Keywords: Estimation fusion, BLUE, MSE, Sensor
compression rule

1 Introduction
In recent years, the applications of data fusion tech-

niques have increased significantly, such as in tar-
get tracking, image processing, economic data anal-
ysis. The motivation behind using multiple sensors
has many folds: to reduce error and uncertainty in
the measurement, to obtain results that would not be
accessible using a single sensor, etc. Data fusion tech-
niques are used to combine the outputs of multiple sen-
sors. Estimation fusion, or data fusion for estimation,
is the problem of how to best utilize useful informa-
tion contained in multiple sets of data for the purpose
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of estimating an unknown quantity – a parameter or
process. These data sets are usually obtained from
multiple sources (e.g., multiple sensors).

Estimation fusion has been investigated for more
than two decades. Many results have been obtained
(e.g., [1, 2, 9, 8, 7, 6]). These results focus on build-
ing the optimal fusion rules for distributed estimation
fusion. In target tracking, the most commonly used
distributed architecture — the standard distributed
fusion [1] — only local estimates are available at the
fusion center. However, for many applications, dis-
tributed fusion has a more general architecture. In
distributed fusion, each local sensor sends linearly or
nonlinearly processed data to the fusion center. How
to define these local mappings is still an open prob-
lem. The reason is that a fusion rule can be easily de-
fined by optimizing a certain criterion. For example,
MMSE (minimum mean square error), BLUE (best
linear unbiased estimation), and WLS (weighted least
square) fusion rules minimize mean square error (ma-
trix), mean square error within the class of linear rules,
and the weighted data fitting error, respectively. How-
ever, within a single local sensor, there is no clear-cut
criterion to define the best mapping for processing the
sensor observations because our final goal is to achieve
the optimal estimation at the fusion center rather than
at the local sensor. For the standard estimation fusion
architecture, local sensor uses the same optimality cri-
terion as the fusion center and obtains the rule that
maps local observations to the optimal local estimate.
A benefit of this structure is that local sensors can also
have their own optimal estimates. Limitations of this
local sensor rule are obvious. This mapping does not
optimize estimation at the fusion center, nor consider
the communication capacity between the local sensors
and the fusion center, as well as fusion center’s pro-
cessing ability.

An optimal sensor compression rule should yield the



optimal fusion at the center with the constraint on the
communication bandwidth between the fusion center
and the local sensors, and the processing capability of
the fusion center. The problem of creating the data
compression rule is a constrained optimization prob-
lem. Without constraints, the problem is trivial: the
local sensors’ observations can be directly sent to the
fusion center, and then a globally optimal solution is
guaranteed. Note that the size of the raw data is of-
ten large, which has a high demand on communication
bandwidth and the fusion center must have good com-
putation capability and large memory. For example,
if we consider a uniform quantization for every dimen-
sion of the data, the larger the data size, the more bits
we need to send. Thus it is crucial to consider data
compression rules for the local sensors. In this paper,
for the fusion rule, we consider the BLUE fusion. In
the Gaussian case, BLUE is equivalent with MMSE.
Many practical problems have the Gaussian assump-
tion. Without loss of generality, we assume the dimen-
sion of each single observation is fixed. We consider
compressing the local raw measurement to a lower di-
mension. Since it is very difficult to discuss general
nonlinear transformations, our discussion is limited to
linear rules. These linear rules are optimal in the sense
that the fused estimates at the center are optimal un-
der the constraints.

The remainder of this paper is organized as follows.
Section 2 formulates the distributed estimation fusion
problem. Section 3 presents the basic data compression
rule for a single sensor in a distributed system. A gen-
eral data compression rule for a multiple sensor system
is discussed in Section 4, along with a Gauss-Seidel it-
eration algorithm to obtain the optimal solution. Sev-
eral numerical examples are presented in Section 5 to
support the theoretical results. Section 6 provides a
summary.

2 Problem Formulation
Consider a distributed system with a fusion center

and n sensors (local stations), each connected to the
fusion center.

Denote by zi (an ni-dimensional vector) the obser-
vations of the ith sensor of the estimatee (i.e., the
quantity to be estimated) x. For a distributed fu-
sion system, only data-processed observations are sent
to the fusion center, that is, a non-trivial mapping gi

(i = 1, . . . , n) is applied on sensor measurements:

gi : zi → yi

After sensor data processing, the available information
at the fusion center is y = [y′1, . . . , y

′
n]′. If yi = zi,

it is known as centralized fusion, central-level fusion,
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Figure 1: Framework of estimation fusion

or measurement fusion. If yi = x̂i, that is, only lo-
cal estimates (based on zi) and its MSE matrix Pi are
available at the fusion center, it is the standard dis-
tributed fusion. In general, the sensor rule gi(·) could
be any linear or nonlinear mapping. In this paper, only
linear rules are considered, that is,

gi(zi) = A′izi : Rni → Rdi

where di ≤ ni and di is less than or equal to the dimen-
sional requirement for the ith sensor due to communi-
cation or processing constraints of the system. After
this data processing, sensor i sends yi = A′izi to the
fusion center. Since the original data size is reduced by
the local processing, in the sequel, we call this linear
transform the local sensor data compression.

At the fusion center, only linear unbiased estimation
fusion is considered; that is, we consider the most com-
monly used linear estimation method: best linear unbi-
ased estimation (BLUE). It is also known as linear min-
imum mean-square error (LMMSE), linear minimum
variance (LMS), or linear unbiased minimum variance
(LUMS) estimation. It is defined by, for the available
information y at the fusion center,

x̂ = E∗(x|y) = x̄ + CxyC−1
y (y − ȳ)

MSE(x̂) = E[(x− x̂)(x− x̂)′] = Cx − CxyC−1
y C ′xy

where x̄ = E(x), Cx =cov(x), Cxy =cov(x, y) and
Cy =cov(y) are prior information. If the inverse C−1

y

does not exist, it can be simply replaced with the
unique Moore-Penrose pseudoinverse (MP inverse in
short) C+

y . With our sensor data compression, esti-
mation fusion at the center can only base on the com-
pressed data y = [y′1, . . . , y

′
n]′, which is

y = A′z

where

A = diag[A1, . . . , An]

z = [z′1, · · · , z′n]′



Now Cxy = CxzA and Cy = A′CzA, and then

x̂ = x̄ + CxzA(A′CzA)−1A′(z − z̄) (1)

MSE(x̂) = Cx − CxzA(A′CzA)−1A′C ′xz

where

Cxz = cov(x, z) = [Cxz1 , · · · , Cxzn ]

Cz = cov(z) =




Cz1 Cz1z2 · · · Cz1zn

Cz2z1 Cz2 Cz2zn

...
. . .

...
Cznz1 Czn




The problem of optimal sensor data compression,
i.e., finding the optimal matrix Ã which satisfies the
dimensional requirement, is to solve the following con-
strained optimization problem:

A = arg min{MSE(x̂)}
= arg min{Cx − CxzA(A′CzA)−1A′C ′xz}
= arg min{tr[Cx − CxzA(A′CzA)−1A′C ′xz]}

(2)

= arg max
A

J(A)

s.t. A = diag[A1, . . . , An] and dim(Ai) = ni × di

where

J(A) = tr[CxzA(A′CzA)−1A′C ′xz] (3)

The third equality in (2) holds because of the unique-
ness of optimal estimation x̂ corresponding to the op-
timal Ã [4]. (We will clearly see this in the following
section.) If A = I, y = [z′1, z

′
2, . . . , z

′
n]′, raw data are

sent to the fusion center. This is the centralized fu-
sion and the estimation is globally optimal based on
all measurements observed from local sensors. Gener-
ally

J(A) ≤ J(I) = tr[CxzC
+
z C ′xz] (4)

The equality in (4) holds if and only if the sensor data
compression has no information loss for BLUE fusion.

3 Optimal Data Compression of
a Single Sensor for Estimation

Suppose estimation is only based on the compressed
data from a single sensor. In this system, the local
sensor collects and processes the data. The compressed
data are sent to the center for estimation. We first
discuss this case because it is a good starting point to
derive the optimal solution.

In this case, n = 1, z = z1 and A′ = A′1 and thus
y = y1 = A′1z1 compresses the data from dimension
n1 to d1 (d1 < n1). According to (2), the optimal

compression is the solution of the following constrained
optimization problem.

A = arg max
A

J(A) (5)

= arg max
A

tr[CxzA(A′CzA)−1A′C ′xz]

s.t. dim(A1) = n1 × d1

As before, (A′CzA)−1 can be replaced with the MP
inverse (A′CzA)+ if the inverse does not exist. In gen-
eral, however, we can always find some A such that
A′CzA is nonsingular: when A′CzA is not invertible,
we can always find a new Ā with a lower dimension,
but Ā′CzĀ becomes the nonsingular matrix.
Lemma 3.1: If A′CzA is singular, we can find a lower
dimensional matrix Ā such that Ā′Cz1Ā is invertible
and satisfies

J(Ā) = J(A)

Proof: Omitted.
Lemma 3.2: For any nonsingular matrix D, we have

J(A) = J(AD)

Proof: Omitted.
Based on Lemma 3.1, in the following, we only con-

sider the case that A′CzA is invertible.
Theorem 3.1: The optimal solution Ã of (5) is

Ã = C+
z K̄ (6)

where the column vectors of K̄ are the eigenvec-
tors corresponding to the d1 largest eigenvalues of
(C ′xzCxzC

+
z ), and J is the sum of these d1 eigenval-

ues.
Proof: Omitted.
Based on Lemma 3.2., the optimal solution of (5)

is not unique[3], because if Ã is an optimal solution,
ÃD is another optimal solution for any nonsingular
matrix D. However different optimal solutions Ã and
ÃD correspond to the same estimator:

E∗(x|Ãz) = E∗(x|ÃDz) (7)

This can be shown easily from the definition of BLUE
estimator (1). It can be shown that any two elements A
and Ã in the optimal solution set Ω are related by A =
ÃB for some nonsingular matrix B. So (7) verifies the
uniqueness of the optimal estimator x̂ corresponding
to Ω.

Suppose rank(C ′xzCxzC
+
z ) = m, m ≤min{n1, nx},

where n1 is the dimension of observation z1; nx is the
dimension of estimatee x. So C ′xzCxzC

+
z has only m

nonzero eigenvalues, which means that if the dimen-
sional requirement for the sensor is larger than m, we
can always project the observation into a subspace of



dimension m in that we can choose the optimal A such
that d1 = m. It should be realized that there is no
information loss with this data compression. Also,
m =min{n1, nx} = n1 means the observation dimen-
sion is not larger than the dimension of the estimatee.
Since J (A) is the sum of the d1 largest eigenvalues
and J (I) is the sum of all nonzero n1 eigenvalues
of (C ′xzCxzC

+
z ), if we compress the observations with

d1 < m ≤ n1, then J(A) < J(I). In this situation, we
can not compress the data without information loss
(performance deterioration). If d1 < m, there is infor-
mation loss even for the optimal compression y = A′z,
that is, the globally optimal estimation is not achiev-
able using the optimally compressed data:

J(A) < J(I)

Note that sensor data compression is optimal in
that the most important information in the data is
extracted for estimating x at the fusion center.

4 Optimal Data Compression
for BLUE Fusion

For multiple-sensor estimation fusion (n > 1), the
linear mapping y = A′z compresses each local sen-
sor measurement from dimension ni to di (di <
ni), i = 1, . . . , n, where z = [z′1, z

′
2, . . . , z

′
n]′ and

A =diag[A1, . . . , An]. In this section, we first discuss
three special cases which have simple optimal solu-
tions. The most general and difficult case is discussed
last.

4.1 Uncorrelated sensors

In this case, Czizj = 0 for any i 6= j where
i, j = 1, . . . , n. Since Cz and A are all block diag-
onal matrices,

A′CzA = diag[A′1Cz1A1, . . . , A
′
nCznAn]

we have

(A′CzA)−1 = diag[(A′1Cz1A1)−1, . . . , (A′nCznAn)−1]

Also

A′C ′xzCxzA

=




A′1C
′
xz1

Cxz1A1 · · · A′1C
′
xz1

CxznAn

...
. . .

...
A′nC ′xzn

Cxz1A1 · · · A′nC ′xzn
CxznAn




According to the property of trace, the objective func-
tion (3) can be rewrite as

J(A) = tr[A′C ′xzCxzA(A′CzA)−1]

=
n∑

i=1

tr[A′iC
′
xzi

Cxzi
Ai(A′iCzi

Ai)−1]

=
n∑

i=1

Ji(Ai)

where

Ji(Ai) = tr[A′iC
′
xzi

Cxzi
Ai(A′iCzi

Ai)−1]

Now the constrained optimization problem (2) con-
cerning J(A) can be divided into the following n in-
dividual constrained optimization problems

Ai = arg max
Ai

Ji(Ai), i = 1, 2, . . . , n (8)

s.t. dim(Ai) = ni × di

For each Ai, the optimization problem is the same as
the single sensor case, and so we have the optimal so-
lution Ãi = C+

zi
K̄i, where the column vectors of K̄i are

the eigenvectors corresponding to the di largest eigen-
values of C ′xzi

CxziC
+
zi

or ÃD with any nonsingular ma-
trix D, and Ji is the sum of the di eigenvalues.

4.2 Perfectly correlated sensors

In this case, Czizj = Cz1 and Cxzj = Cxz1 for i, j =
1, . . . , n. It happens if local sensors receive statistically
the same observations. Now

A′CzA =




A′1
...

A′n


 Cz1




A′1
...

A′n




′

A′C ′xzCxzA =




A′1
...

A′n


 CT

xz1
Cxz1




A′1
...

A′n




′

Let Anew = [A1, · · · , An]. Then the objective function
(3) is

J(Anew) = tr[A′newC ′xz1
Cxz1Anew(A′newCz1Anew)−1]

and the constrained optimization problem is

Anew = arg max
Anew

J(Anew) (9)

s.t. dim(Anew) = n1 × d

where d =
∑n

i=1 di. Now the optimization problem
(9) is the same as the single sensor case (5). So the
optimal solution is Ãnew = C+

z1
K̄1, where the column



vectors of K̄1 are the eigenvectors corresponding to
the d largest eigenvalues of C ′xz1

Cxz1C
+
z1

or ÃD with
any nonsingular matrix D, and J is the sum of the d
eigenvalues.

It is obvious that when the total dimensional re-
quirement of all sensors (i.e., d) is not smaller than
m =rank(C ′xz1

Cxz1C
+
z1

), there is no information loss
for the estimation at the fusion center.

4.3 Sensor dimensional requirement
larger than rank of C ′

xzCxzC
+
z

When the dimensional requirement for each sensor is
equal to or larger than m =rank(C ′xzCxzC

+
z ), we can

simply create the sensor data compression yi = A′izi

such that di = m (i = 1, . . . , n). We will see there is
no information loss for estimation fusion at the center
with this sensor data compression.

Since all Ai have the same number of columns, we
can define

Anew = [A′1, A
′
2, . . . , A

′
n]′

Then the objective function (3) is equivalent to

J(Anew) = tr[A′newC ′xzCxzAnew(A′newCzAnew)−1]

Now the constrained optimization problem for this case
is the same as for the single sensor case, that is,

Anew = arg max
A

J(Anew)

s.t. dim(Anew) = (
n∑

i=1

ni)×m

Then the optimal solution is Ãnew = C+
z K̄, where

the m column vectors of K̄ are the eigenvectors
corresponding to the m nonzero eigenvalues of
C ′xzCxzC

+
z or ÃD with any nonsingular matrix D,

and J is the sum of the m eigenvalues. Obviously
J(Anew) =tr(C ′xzCxzC

+
z ) = J(I), and so there is no

information loss with this sensor data compression.
Observations may have a higher dimension than that

of the estimatee. So there is no estimation accuracy
degradation if all sensors compress their observations
to the dimension of the estimatee. However this data
compression needs to consider correlation between sen-
sors. This means that if a sensor compresses its ob-
servations by only considering its local information,
generally there is information loss. This is related to
the fact that the standard distributed fusion can not
achieve the same performance as the centralized fusion
in many cases [5].

4.4 Arbitrary sensor dimensional re-
quirement

The general case has an arbitrary sensor dimensional
requirement. The sensors have different dimensional

requirements according to the system restriction. In
particular, some have a demanding dimensional re-
quirement of di < m =rank(C ′xzCxzC

+
z ). So we can

not construct the same sensor data compression as
above, and data compression generally has information
loss.

By (2), the optimal sensor compression is the solu-
tion of the following constrained optimization problem:

A = arg max
A

J(A)

A = diag[A1, . . . , An] and dim(Ai) = ni × di

where

J(A) = tr[CxzA(A′CzA)−1A′C ′xz]

Although the objective function J(A) has the same
form as the single-sensor case, we can not directly bor-
row the solution there, because there is one more con-
straint for the matrix A which requires A to be block
diagonal. In the single-sensor case, if we look at the ob-
jective function J(A1) as a single variable function of
A1, the objective function J(A1, A2, . . . , An) for the n-
sensor case should be a multivariate function. Now the
problem become a multivariable optimization problem.

For each i = 1, . . . , n, we denote

y(i) =
[
y′1, . . . , y

′
i−1, y

′
i+1, . . . , y

′
n

]′

z(i) =
[
z′1, . . . , z

′
i−1, z

′
i+1, . . . , z

′
n

]′
A(i) = diag[A1, . . . , Ai−1, Ai, . . . , An]

At the fusion center, based on the BLUE fusion and
the recursive BLUE formulas, we have

x̂BLUE = E∗(x|y) = E∗(x|y(i), yi)

= E∗(x|y(i)) + Cxỹi|y(i)
C−1

ỹi|y(i)
ỹi|y(i)

MSE(x̂BLUE) = Cx|y(i)
− Cxỹi|y(i)

C−1
ỹi|y(i)

C ′xỹi|y(i)

where ỹ(i) = y(i)− ȳ(i), z̃(i) = z(i)− z̄(i), ȳ(i) = E(y(i)),
z̄(i) = E(z(i)), and

ỹi|y(i)
= A′iz̃i|y(i)

z̃i|y(i)
= zi − E∗(zi|y(i))

= zi − z̄i − Cziy(i)C
−1
y(i)

ỹ(i)

= (zi − z̄i)− Cziz(i)A(i)(A′(i)Cz(i)A(i))−1A′(i)z̃(i)

So

MSE(x̂BLUE)

= Cx|y(i)
− Cxz̃i|y(i)

Ai[A′iCz̃i|y(i)
Ai]−1A′iC

′
xz̃i|y(i)



where

Cx|y(i)
= Cx − Cxz(i)A(i)(A′(i)Cz(i)A(i))−1A′(i)C

′
xz(i)

Cxz̃i|y(i)
= Cxzi

− Cxz(i)A(i)(A′(i)Cz(i)A(i))−1A′(i)C
′
ziz(i)

Cz̃i|y(i)
= Czi − Cziz(i)A(i)(A′(i)Cz(i)A(i))−1A′(i)C

′
ziz(i)

Let

Ji(Ai) = tr[Cxz̃i|y(i)
Ai(A′iCz̃i|y(i)

Ai)−1A′iC
′
xz̃i|y(i)

]

Then

J(A) = J(A(i), Ai)

= tr[Cxz(i)A(i)(A′(i)Cz(i)A(i))−1A′(i)C
′
xz(i)

]

+ Ji(Ai)

The objective function J is a multivariate function of
A1, . . . , An. According to the necessary conditions for
its extreme points, Ai must be the optimal solution of
the following optimization problem

Ai = arg max
Ai

Ji(Ai)

s.t. dim(Ai) = ni × di

This problem is same as that for the single-sensor case.
Then the optimal solution is

Ãi = C+
z̃i|y(i)

K̄i

where the column vector of K̄i is the di eigenvec-
tors corresponding to the di largest eigenvalues of
C ′xz̃i|y(i)

Cxz̃i|y(i)
C+

z̃i|y(i)
. Note, however, that the op-

timal solution Ãi depends on the value of A(i) through
z̃i|y(i)

. It is not easy to give an explicit solution for each
Ai. In the following, we give an iterative algorithm to
search for the optimal Ã.

Define the operator Γ = (Γ1, . . . , Γn), for i =
1, . . . , n

Γi(A1, . . . , Ai−1, Ai+1, . . . , An) = C+
z̃i|y(i)

K̄i

Then we can construct a Gauss-Seidel iteration to
search for the optimal solution (A1, . . . , An). Suppose
the nonzero initial value is (A(0)

1 , . . . , A
(0)
n ). At each

iteration k = 1, 2, . . .,

A
(k+1)
1 = Γ1(A

(k)
2 , . . . , A(k)

n )

A
(k+1)
2 = Γ2(A

(k+1)
1 , A

(k)
3 , . . . , A(k)

n ) (10)
...

A(k+1)
n = Γn(A(k+1)

1 , . . . , A
(k+1)
n−1 )

After each iteration (10), we have

A(k) = diag[A(k)
1 , . . . , A(k)

n ]

The iteration stops once the objective function J(A)
satisfies

J(A(k+1))− J(A(k)) < ε

where ε is some predetermined small number.
Since each step maximizes one term of J while fixing

the other terms, we have, for each i = 1, . . . n,

J(A(k+1)
1 , . . . , A

(k+1)
i , A

(k)
i+1, . . . , A

(k)
n )

≥ J(A(k+1)
1 , . . . , A

(k+1)
i−1 , A

(k)
i , . . . , A(k)

n )

This implies,

J(A(k)) ≥ J(A(k−1))

The equality holds if and only if A
(k+1)
i = A

(k)
i Di,

where Di is any nonsingular matrix. Thus the sequence
{J(A(k))} is monotonically increasing.
Lemma 4.1 Function J(A) has an upper bound.

Proof: Omitted.
Since {J(A(k))} is monotonically increasing and has

an upper bound, it has a limit ζ:

lim
k→∞

J(A(k)) = ζ

Combined with the continuity of function J(A(k))
without considering the point at which A′CzA becomes
singular, there exists Ã such that

lim
k→∞

J(A(k)) = J(Ã)

So Ã is a limit of {A(k)}.
Theorem 4.1 The limit point Ã in Theorem 4.1
is a stationary point of the objective function, i.e.,

∂
∂Ai

J(A)|A=Ã = 0 for i = 1, . . . , n.
Proof: Omitted.
Theorem 4.1 is important. It implies that when the

iteration ends, the solution is a stationary point of the
objective function J . It may be a maximizer because
extreme points are critical points. Unfortunately we
are not able to provide further theoretical results con-
cerning the convergence of {A(k)} to the globally opti-
mal solution at this stage, because the objective func-
tion J(A) is too complex to analyze for block diagonal
matrix A. However, we found from simulation that al-
most every time we achieve the globally optimal solu-
tion, which means starting from different initial points,
the iteration will end with the same value of J and the
same estimator x̂.



5 Simulation
Several simple numerical examples are given in this

section to verify formulas presented and the optimality
of our Gauss-Seidel iteration based search solutions.
All examples are for the following multi-sensor target
tracking system:

We consider a constant-velocity moving target in
2-dimensional x-y space. The estimatee x(t) is the
state process, consisting of position and velocity com-
ponents: x = [x, ẋ, y, ẏ]′. We set up 6 observation sta-
tions Si, i = 1, ..., 6, of 3 types. The first two stations
have a linear observation model: zi(t) = Hix(t)+vi(t),
where Hi = I4. The third and fourth stations have
the same linear observation model but with Hi =[

1 0 0 0
0 0 1 0

]
, that is, they only observe position

of the target. The last two stations have a nonlinear
observation model:

zi(t) =

[ √
x(t)2 + y(t)2

tan−1( y(t)
x(t) )

]
+ vi(t)

In the above, vi(t) is zero-mean white noise with co-
variance Ri =cov(vi(t)), i = 1, .., 6.

R1 = 10




1000 20 10 5
20 100 5 10
10 5 4000 50
5 10 50 300


 ,

R2 = 1000




40 2 0 0
2 6 0 0
0 0 10 1
0 0 1 5




R3 = 1000
[

20 1
1 30

]
, R4 = 1000

[
15 4
4 10

]

R5 =
[

0.004 0
0 90000

]
, R6 =

[
1 0
0 1.6× 108

]

In this setting, the estimatee is 4-dimensional and
the observations of the six sensors at each sampling
interval Ti (i = 1, . . . , 6) have the dimensions 4, 4,
2, 2, 2, 2, respectively. It is not realistic that each
sensor’s data transmitting rate is the same as sam-
pling rate according to the channel capability. The
most often case is that each sensor transmits infor-
mation to the fusion center every Ni sampling inter-
vals. Then the stacked observations sent by each sen-
sor have dimensions 4N1, 4N2, 2N3, 2N4, 2N5, 2N6, re-
spectively. We use Monte Calro method to calculate
the covariance matrices Cxz and Cz with conversion of
data to the same time [5], since we use nonlinear ob-
servation models for sensors 5 and 6. In the following,

we try to get the optimal compression y = A′z for sev-
eral fusion systems and compare the mean-square error
mse(x̂(y)) =tr(Cx − CxzA(A′CzA)−1A′C ′xz) with the
minimum possible mse(x̂(z)) =tr(Cx − CxzC

−1
z C ′xz),

in order to check if the compression lose information
or not.

5.1 Single Sensor

In this case, we only use sensor 1, 3 or 5. Here
N1 = N3 = N5 = 10, which means every 10 obser-
vations are stacked in each sensor to be compressed.
At the fusion center, we use the compressed data to
estimate the state. By (6) we can get the optimal
compression for each system with different data di-
mensional requirement d. In Table 1, we compare the
mse for all cases: The estimation accuracy improves

Table 1: mse of estimates using compressed data from
a single sensor

mse(x̂(y)) with S1 with S3 with S5

d = 1 506.1702 511.8113 603.4013
d = 2 483.3577 498.4204 596.2738
d = 3 483.3381 498.4161 596.2643
d = 4 483.3308 498.4141 596.2609

mse(x̂(z)) 483.3308 498.4141 596.2609

if data of a higher dimension are allowed to be sent.
Since rank(C ′xzCxzC

−1
z ) = 4, our analysis states that

mse(x̂(y)) =mse(x̂(z)) if and only if d ≥ 4 for the op-
timal compression y = A′z. This is verified by Table
1.

It is also interesting to note that the compression
to d = 2 loses little estimation accuracies in terms of
mse.

5.2 Multi-Sensor Fusion System

In this case, we construct the fusion system by using
some combinations of the 6 sensors. Vector (d1, d2, d3,
d4, d5, d6) denotes the dimensional requirement for the
sensors. So di = 0 means sensor i does not send out any
information. Here Ni = 10, that is, each sensor stacks
10 observations. The Gauss-Seidel iteration was used
to get the optimal solution. In Table 2, we compare the
mse for all cases, where x̂(z) denotes the centralized
fusion by using all observations from all active (di 6= 0)
sensors. We also label the required iteration steps for
searching for the optimal solution with the proposed
Gauss-Seidel algorithm to reach ε ≤ 0.0001.

In Fig.2, we plot for the (1, 2, 3, 4, 1, 3) case the
mse ratio= mse(x̂(z))

mse(x̂(y)) of the centralized fusion to dis-
tributed fusion versus iteration number k to demon-



Table 2: mse for multi-sensor system

(d1,d2,d3,

d4,d5,d6)
Gauss-Seidel

Solution:mse(x̂(y)) mse(x̂(z))

(1, 1, 1, 1, 0, 0) 369.6550 (step=11) 291.1871

(2, 2, 2, 2, 0, 0) 291.2524 (step=9) 291.1871

(3, 3, 3, 3, 0, 0) 291.2082 (step=9) 291.1871

(1, 2, 3, 4, 0, 0) 308.1658 (step=9) 291.1871

(4, 4, 4, 4, 0, 0) 291.1871 (step=8) 291.1871

(1, 1, 1, 1, 1, 1) 348.9785 (step=12) 265.0382

(2, 2, 2, 2, 2, 2) 265.1296 (step=13) 265.0382

(3, 3, 3, 3, 3, 3) 265.0646 (step=13) 265.0382

(1, 2, 3, 4, 1, 3) 289.2232 (step=12) 265.0382

(4, 4, 4, 4, 4, 4) 265.0382 (step=12) 265.0382

strate the convergence rate and optimality of the search
method. The three lines are for three different initial-
izations A(0).

0 2 4 6 8 10 12
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Iteration Number

ra
tio

initial 1
initial 2
initial 3

Figure 2: mse ratio for different initializations A(0)

From Table 2 and Fig.2, we see that the Gaussian-
Seidel iterative search for the optimal sensor data com-
pression is efficient and yields the optimal solution, be-
cause it always converges to the same estimator for any
initialization A(0), and the convergence rate is high.

6 Conclusions
In this paper, we propose that in a multi-sensor

distributed estimation fusion system, the local sensor
data processing should be based on the fusion rule at
the center, the channel capacity between sensors and
the center and the processing capability of the cen-
ter. We formulate the system restriction as the sen-
sor data dimensional requirement. Based on BLUE
fusion, we present linear sensor compression rules. Ex-
plicit solution for local sensor data compression is given
for single-sensor systems and some particular multiple-
sensor systems. An algorithm based on Gaussion Sei-
del iteration is presented for searching the optimal

compression rule for general multiple-sensor system
with a sensor dimensional requirement.

Theoretically, our analysis concludes that there is
no estimation accuracy degradation if the dimensional
requirement for sensor data compression is not smaller
than the dimension of the estimatee. But the BLUE
fusion given by a standard distributed fusion system
generally suffers from accuracy loss when local sensors
are correlated.

Simulation results demonstrate that the algorithm
for searching the optimal sensor compression rule for
general multiple-sensor systems with Gaussion-Seidel
iteration is efficient. In the future, we would like to
provide further theoretical support for the optimality
of the searching algorithm.
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