
Exploiting Qualitative Domain Knowledge for Learning Bayesian
Network Parameters with Incomplete Data

Wenhui Liao
Thomson-Reuters Corporation

wenhui.liao@thomsonreuters.com

Qiang Ji
Rensselaer Polytechnic Institute

qji@ecse.rpi.edu

Abstract

When a large amount of data are missing, or when
multiple hidden nodes exist, learning parameters in
Bayesian networks (BNs) becomes extremely difficult.
This paper presents a learning algorithm to incorpo-
rate qualitative domain knowledge to regularize the
otherwise ill-posed problem, limit the search space,
and avoid local optima. Specifically, the problem
is formulated as a constrained optimization problem,
where an objective function is defined as a combina-
tion of the likelihood function and penalty functions
constructed from the qualitative domain knowledge.
Then, a gradient-descent procedure is systematically in-
tegrated with the E-step and M-step of the EM algo-
rithm, to estimate the parameters iteratively until it con-
verges. The experiments show our algorithm improves
the accuracy of the learned BN parameters significantly
over the conventional EM algorithm.

1 Introduction

Many real applications need to automatically learn
BN parameters from data due to the difficulty and
time requirement of manually setting up the parame-
ters. In reality, training data are usually incomplete,
or complete but spares because some events rarely hap-
pen. Various approaches have been proposed to learn
parameters when data is missing. The classical ap-
proaches include the Expectation-Maximization (EM)
algorithm [1] and Gibbs Sampling [5]. Other methods
are proposed to overcome the disadvantages of EM and
Gibbs sampling, including the AI&M procedure [6], the
RBE algorithm [9], the Information-bottleneck EM al-
gorithm [3], data perturbation method [4], and others.

The above methods deal with different aspects of pa-
rameter learning, however, when data are missing com-
pletely at random, in other words, when several hidden
(unobserved) nodes exist, the learned parameters could

be quite different from the true parameters. Further-
more, most methods do not emphasize domain knowl-
edge or lack a systematic strategy to incorporate the do-
main knowledge into the machine learning methods. In
most domains, at least some information, either from
literature or from domain experts, is available about the
model to be constructed. However, many forms of prior
knowledge that an expert might have are difficult to be
directly used by existing machine learning algorithms.
Therefore, it is important to formalize the knowledge
clearly and incorporate it into learning.

This motivates us to propose a BN learning algo-
rithm for the case when multiple hidden nodes exist
by systematically combining domain knowledge during
learning. Instead of using quantitative domain knowl-
edge, which is often hard to obtain, we propose to ex-
ploit qualitative domain knowledge. Qualitative domain
knowledge impose approximated constraints on some
parameters or on the relationships among some param-
eters. These kinds of qualitative knowledge are of-
ten readily available. Specifically, two qualitative con-
straints are considered, the range of parameters, and the
relative relationships between different parameters. In-
stead of using the likelihood function as the objective
to maximize during learning, we define the objective
function as a combination of the likelihood function and
the penalty functions constructed from the constraints.
Then, a gradient-descent procedure is systematically in-
tegrated with the E-step and M-step of the EM algo-
rithm, to estimate the parameters iteratively until it con-
verges. The experiments show the proposed algorithm
is promising to improve the accuracy of the learned BN
parameters over the EM method.

2 Learning BN Parameters

2.1 Qualitative Constraints with Confidence

Let G be a BN with nodes X1, ..., Xn. We use θ to
denote the entire vector of parameter value θijk, θijk =

p(xk
i |paj

i), where i (i = 1, ..., n) ranges over all the
variables in the BN, j (j = 1, ..., qi) ranges over all
the possible parent configurations of Xi, and k (k =
1, ..., ri) ranges over all the possible states of Xi. Given
the data set D, the goal of parameter learning is to find
the most probable values θ̂ for θ that can maximize the
log likelihood LD.

In many real-world applications, domain experts
usually have valuable information about model parame-
ters θijk. We consider two types of constraints: type-I is
about the range of a parameter; and type-II is about the
relative relationships (>,<, =) between different pa-
rameters. One of our goals is to make the constraints
as simple as possible, so that the experts can easily for-
malize their knowledge into these constraints.

The range of a parameter allows domain experts to
specify an upper bound and a lower bound for the pa-
rameter, instead of defining the specific values. In ad-
dition to assessing the ranges of parameters, the do-
main experts may also know the relative relationships
between some parameters. For each type-II constraint,
if the two associated parameters are in the same CPT of
a node, we call it an inner-relationship constraint; if the
two parameters come from CPTs of different nodes, we
call it an outer-relationship constraint.

Let A be the set that includes the parameters whose
ranges are known based on the domain knowledge. For
each θijk ∈ A, we define the range as lijk ≤ θijk ≤
uijk. Obviously, lijk ≥ 0, and uijk ≤ 1. Let B be
the set that includes the parameters whose relative re-
lationships are known based on the domain knowledge.
For each θijk ∈ B, we can find another θi′j′k′ so that
θijk ≥ θi′j′k′ , or/and, θijk = θi′j′k′ , where i 6= i′, or
j 6= j′, or k 6= k′. However, the domain knowledge
may not be reliable all the time. We thus associate con-
fidence levels λijk, λi′j′k′

ijk to each constraint in the sets
A and B respectively. The value of each λ is between 0
and 1 (1 indicates high confidence).

2.2 Parameter Learning with Qualitative
Constraints

Our goal is to find the optimal parameter θ̂ that max-
imizes log likelihood LD(θ) (D is training data) given
the three constraints as below:

Maximize LD(θ) (1)

Subject to
∑

k

θijk = 1,

1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ qi

lijk ≤ θijk ≤ uijk, θijk ∈ A

θijk ≥ θi′j′k′ , θijk, θi′j′k′ ∈ B

For each inequality constraint, we define the follow-
ing penalty functions:

g′(θijk) = [θijk − lijk]−, ∀ θijk ∈ A (2)

g′′(θijk) = [uijk − θijk]−, ∀ θijk ∈ A (3)

g′′′(θijk, θi′j′k′) = [θijk − θi′j′k′]
−, ∀ θijk, θi′j′k′ ∈ B(4)

where [x]− = max(0,−x).
Therefore, we can rephrase Equation 1 as follows:

Maximize
J(θ) = LD(θ)− w1

2

∑
θijk∈A

λijk[(g′(θijk))2 + (g′′(θijk))2]

−w2
2

∑
θijk∈B

λi′j′k′
ijk (g′′′(θijk, θi′j′k′))

2

Subject to
∑

k

θijk = 1

(5)

where wi is the penalty weight, which is decided empir-
ically. Obviously, the penalty varies with the confidence
level for each constraint.

In order to solve the constrained optimization prob-
lem, first, we eliminate the constraint

∑

k

θijk = 1 by

reparameterizing θijk so that the new parameters auto-
matically respect the constraint on θijk no matter what
their values are. We define a new parameter βijk such
that

θijk ≡ exp(βijk)
ri∑

k′=1

exp(βijk′)

(6)

In this way, a local maximum w.r.t. to βijk is also a local
maximum w.r.t. θijk, and vice versa. Most importantly,
the constraint is automatically satisfied.

Next is to get the derivative of J(θ) w.r.t. β.
∇θijk

LD(θ) can be expressed below [7]:

∇θijk
LD(θ) =

∑N
l=1 p(xk

i , paj
i |Dl, θ)

θijk
(7)

Therefore, based on the chain rule,

∇βijkLD(θ) =
∂LD(θ)

∂θijk

∂θijk

∂βijk

= ∇θijkLD(θ)(θijk − θ2
ijk)

=

N∑
l=1

p(xk
i , paj

i |Dl, θ)(1− θijk) (8)

Similarly, for g′(θijk), g′′(θijk), and g′′′(θijk), the
derivatives are:

∇βijk
g′(θijk) =

{
θ2

ijk − θijk; if θijk ≤ lijk

0; otherwise
(9)

∇βijk
g′′(θijk) =

{
θijk − θ2

ijk; if θijk ≥ uijk

0; otherwise
(10)

∇βijkg′′′(θijk, θi′j′k′) =

θ2
ijk − θijk;

if θijk < θi′j′k′ , i 6= i′, or j 6= j′

θ2
ijk − θijk − θijkθi′j′k′ ;

if θijk < θi′j′k′ , i = i′, j = j′

0; otherwise
(11)

Therefore, the derivative of J(θijk) w.r.t. βijk is:

∇βijkJ(θijk) =
∑N

l=1
P (xk

i , paj
i |Dl, θ)(1− θijk)

−w1λijk[g′(θijk)∇βijkg′(θijk) + g′′(θijk)∇βijkg′′(θijk)]

−w2

∑

B+(θijk)

[λi′j′k′
ijk g′′′(θijk, θi′j′k′)∇βijkg′′′(θijk, θi′j′k′)]

+w2

∑

B−(θijk)

[λi′j′k′
ijk g′′′(θi′j′k′ , θijk)∇βijkg′′′(θi′j′k′ , θijk)]

(12)

where B+(θijk) is the set of the constraints whose first
term is θijk, while B−(θijk) is the set of the con-
straints whose second term is θijk. Both B+(θijk) and
B−(θijk) belong to the set B.

Table 1. A constrained EM (CEM) learning
algorithm

Repeat until it converges
Step 1: E-Step to compute the conditional expectation of the

log-likelihood function;
Step 2: M-step to find the parameter θ′ that maximizes the

expected log-likelihood;
Step 3: Perform the following optimization procedure based

on the gradient descent method:
θt = θ′; map θt to βt based on Equation 6

Repeat until ∆βt ' 0
∆θt = 0
for each variable i, parent configuration j, value k

for each Dl ∈ D

∆θt+1
ijk = ∆θt

ijk + p(xk
i , paj

i |Dl, θt)

∆βt+1
ijk = ∆θt+1

ijk (1− θijk) + K

(K represents the last three terms in Eq. 12)
βt+1 = βt + ∆βt+1

map βt+1 to θt+1 based on Equation 6
θt = θt+1

Go to Step 1
Return θt

Now, we are ready to present the constrained EM
(CEM) learning algorithm as summarized in Table 1.
The algorithm consists of three steps. The first two steps
are the same as the E-step and M-step in the EM algo-
rithm. However, in the third step, a gradient-based up-
date is used to force the solutions to move towards the
direction of reducing constraint violations.

3 An Illustrative Application

In recent years, a variety of approaches are proposed
to recognize facial expressions. Instead of recognizing
only six basic facial expressions directly, people also
developed techniques to automatically recognize facial
action units (AUs) [2], which could compose a rich col-
lection of facial expressions. Since different AUs are
closely related with each other, instead of recognizing
each AU alone, a BN can be used to model the proba-
bilistic relationships among different AUs. Figure 1(a)
illustrates such a BN to model 14 AUs.

In the model, each AU is connected with a measure-
ment node (unshaded node), which encodes the mea-
surement obtained from Adaboost classifers[10]. To
learn the model parameters, complete training samples
consisting of the true AU labels and the obtained mea-
surements are desired. However, manually labeling
AUs is usually time consuming and difficult. Some-
times, the labeled data could be wrong due to human
subjective. In addition, some AU events rarely happen
in the collected data. Therefore, the training data could
be incomplete, biased, or spare for certain events. We
thus apply our algorithm to learn the parameters.

We first generate constraints. For each AU node,
the domain experts are able to figure out the ranges
for most of the parameters. For each measurement
node, since the performance of each Adaboost classi-
fier for each AU varies, we can rank their performance
and transfer such a ranking into the outer-relationships
between these measurement nodes. For example, the
Adaboost classifier performs better recognition of AU2
(outer brow raiser) than AU23 (lip tighten), then we can
get constraints like p(O2 = 0|AU2 = 0) > p(O23 =
0|AU23 = 0), p(O2 = 1|AU2 = 1) > p(O23 =
1|AU23 = 1), where 0 means an AU is absent, and 1
means an AU is present.

More type-II constraints can be obtained based on
the properties of different AUs. For example, for AU6
(cheek raiser) and AU12 (lip corner puller), the proba-
bility of AU12 being absent if AU6 is absent, is smaller
than the probability of AU6 being present if AU12 is
present, p(AU12 = 0|AU6 = 0) < p(AU12 =
1|AU6 = 1). For AU1 (inner brow raiser), the influ-
ence of AU2 (outer brow raiser) is larger than the in-
fluence of AU5 (upper lid raiser), p(AU1 = 1|AU2 =
1, AU5 = 0) > p(AU1 = 1|AU2 = 0, AU5 = 1).

We use 8000 images collected from Cohan and
Kanade’s DFAT-504 database [8], where 80% are used
for training and 20% data are used for testing. We first
use MLE to learn parameters from the complete data,
which consists both the true AU labels and the AU mea-
surements. Then, we use the EM and CEM algorithms

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AU Index

P
os

iti
ve

 R
at

e

MLE

EM

CEM

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AU Index

F
al

se
 A

la
rm

MLE

EM

CEM

(a) (b) (c)
Figure 1. (a) A Bayesian network for AU modeling. We adapted it from [10]. The unshaded
nodes are measurement nodes. AU1: inner-brow raiser, AU2: outer-brow raiser, AU4: brow
lowerer, AU5: upper-lid raiser, AU6: cheek raiser, AU7: lid tighten, AU9: nose wrinkle, AU12:
lip-corner depressor, AU17: chin raiser, AU23:lip tighten, AU24: lip presser, AU25: lips part,
AU27: mouth stretch. (b)(c)AU recognition results with the BNs learned from MLE, EM, and
CEM respectively: (b) positive rate; (c) false alarm. MLE uses complete data, while EM and
CEM use incomplete data that only include AU measurements.

to learn parameters from the incomplete data, which
only includes the AU measurements.

Figure 1 compares the AU recognition results with
BNs learned from MLE, EM, and CEM in terms of pos-
itive rate and false alarm. CEM performs similarly to
MLE (based on complete data), but much better than
EM. The positive rate increases from 0.69 (EM) to 0.82
(CEM), and the false alarm decreases from 0.32 (EM)
to 0.1 (CEM). For EM, some AUs totally fail, such as
AU2, AU7, and AU23. But CEM has a fair perfor-
mance for all the AUs even it is learned from the unla-
beled data. This again shows the importance of domain
knowledge. Compared to MLE that is based on the la-
beled data, the CEM has comparable performance but
without using any labeled AUs.

4 Conclusion

We present a constrained EM algorithm to learn BN
parameters when a large amount of data are missing
in the training data. The algorithm fully utilizes qual-
itative domain knowledge to regularize the otherwise
ill-posed problem. Compared with the quantitative do-
main knowledge such as prior probability distribution
typically used by the existing methods, the qualitative
domain knowledge is local (only concerned with some
parameters), easy to specify, and does not need strong
assumption. The experiments show that our algorithm
improves the accuracy of the learned parameters signif-
icantly over the traditional EM.

5 Acknowledgement

This work is supported in part by a grant from
the U.S. Army Research Office under grant number
W911NF-06-1-0331.

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the em algo-
rithm. The Royal Statistical Society Series B, 39:1–38,
1977.

[2] P. Ekman and W. Friesen. Facial Action Coding System:
A Technique for the Measurement of Facial Movement.
Consulting Psychologists Press, Palo Alto, CA, 1978.

[3] G. Elidan and N. Friedman. The information bottleneck
em algorithm. UAI, pages 200–209, 2003.

[4] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans.
Data perturbation for escaping local maxima in learning.
AAAI, 2002.

[5] S. Geman and D. Geman. Stochastic relaxation, gibbs
distribution and the bayesian restoration of images.
PAMI, 6, 1984.

[6] M. Jaeger. The ai&m procedure for learning from in-
complete data. UAI, pages 225–232, 2006.

[7] J.Binder, D. Koller, S. Russell, and K. Kanazawa. Adap-
tive probabilistic networks with hidden variables. Ma-
chine Learning, pages 213–244, 1997.

[8] T. Kanade, J. F. Cohn, and Y. Tian. Comprehensive
database for facial expression analysis. Proc. of FG00,
2000.

[9] M. Ramoni and P. Sebastiani. Robust learning with
missing data. Machine Learning, 45(2):147–170, 2001.

[10] Y. Tong, W. Liao, and Q. Ji. Inerring faical action units
with causal relations. CVPR, 2006.

