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Abstract

Active fusion is a process that purposively selects the most in-
formative information from multiple sources as well as com-
bines these information for achieving a reliable result effi-
ciently. This paper presents a general mathematical frame-
work based on Influence Diagrams (IDs) for active fusion and
timely decision making. Within this framework, an approx-
imation algorithm is proposed to efficiently compute non-
myopic value-of-information (VOI) for multiple sensory ac-
tions. Meanwhile a sensor selection algorithm is proposed to
choose optimal sensory action sets efficiently. Both the exper-
iments with synthetic data and real data from a real-world ap-
plication demonstrate that the proposed framework together
with the algorithms are well suited to applications where the
decision must be made efficiently and timely from dynami-
cally available information of diverse and disparate sources.

Introduction

Active fusion extends the paradigm of information fusion,
being not only concerned with the methodology of combin-
ing information, but also introducing mechanisms in order
to select the information sources to be combined (Pinz et
al. 1996). By purposively choosing an optimal subset from
multiple information sources and fusing these information,
it can save computational time and physical cost, reduce re-
dundancy, and increase the chances of making correct deci-
sions. Due to these benefits, it plays an especially important
role for timely and effective decision-making.

To model active fusion for timely decision-making, we
explore a decision-theoretic paradigm, namely Influence Di-
agram (ID), to actively fuse information by viewing it as
a decision-making problem. Such a model provides a fully
unified hierarchical probabilistic framework for representa-
tion, integration, and inference of uncertain sensory infor-
mation of different modalities at multiple levels of abstrac-
tion. In addition, it embeds both the sensors’ contributions to
decision-making and their operating cost in one framework
to choose the optimal sensory action set by exploiting utility
theory and probability theory.

Within the framework, one key challenge is to efficiently
decide an optimal sensory action set. Two issues impede this
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target: 1) the computation of sensory action selection crite-
ria could have exponential time complexity; 2) the number
of sensory action subsets grows exponentially as the total
number of sensory actions.

For the first issue, to rate the usefulness of various sensors,
a popular criterion is Value-of-Information (VOI), which is
defined as the difference of the maximum expected utilities
with and without observing certain information in an ID.
It is one of the most useful sensitivity analysis techniques
for decision analysis. In the past several years, a few meth-
ods have been proposed to compute VOI in IDs (Dittmer
& Jensen 1997; Shachter 1999; Zhang, Qi, & Poole 1993;
Poh & Horvitz 1996). However, they only focus on com-
puting myopic VOI for each individual sensor, instead of
non-myopic VOI for a sensor set. In fact, it is usually too
cumbersome to compute non-myopic VOI for any practical
use since the number of the observation sequences grows
exponentially as the number of available sensors. Hecker-
man et. al. (Heckerman, Horvitz, & Middleton 1993) may
be the only one that proposed a solution to this problem.
However their method assumes that all the random nodes
and decision nodes are binary, and the sensors are condition-
ally independent given the hypothesis. Motivated by their
method, we propose an approximation algorithm to compute
non-myopic VOI efficiently by exploiting the central-limit
theory. Especially, it doesn’t need the assumptions made by
Heckerman’s method. The efficiency of the algorithm makes
it feasible to various applications where efficiently evaluat-
ing a large amount of information sources is necessary.

For the second issue, in practice, most work (Wang et al.
2004; Ertin, Fisher, & Potter 2004) selects the best sensor
myopically, or select the first m sensors by simply rank-
ing individual sensors. But the selected sensors could lead
to bad results since the selection methods cannot provide
performance guarantees. Other groups (Kalandros, Pao, &
Ho 1999; Fassinut-Mombot & Choquel 2004) develop more
complex algorithms for achieving global optimal solutions
such as searching-based approach. Such algorithms could
suffer from speed and end up at local optimum. We present
an improved greedy approach for sensory action set selec-
tion. Together with the approximation algorithm for VOI
computation, it reduces the time complexity significantly.

Overall, with the proposed framework and the compu-
tational algorithms, timely and effective decisions can be



made based on a selective set of sensors with the optimal
trade-off between their cost and benefit.

Active Fusion Modeling

An Influence Diagram, as shown in Figure 1, is presented
to model active fusion as a decision-making problem. The
top node O represents the target hypothesis variable. It can
also be generalized to indicate a set of hypothesis variables.
Each bottom node O; indicates the possible observations
from each sensor. Each node I; associated with O; repre-
sents the sensory information measured by O;, and the link
between them reflects the reliability of sensor measurement.
The big ellipse indicates all the chance nodes between the ©
node and I nodes. These nodes are collectively called hidden
nodes. They model the probabilistic relationships between
the © node and I nodes at different abstraction levels.

Precedence
i link

Figure 1: A dynamic ID model for active information fusion. El-
lipses denote chance nodes, rectangles denote decision nodes, and
diamonds denote utility nodes.

There are two types of decision nodes. One is the decision
node D indicating the possible actions associated with the
hypothesis node ©. Another type is the sensory action node
S;. It controls whether to activate a sensor for collecting ob-
servation O; or not. The arcs connecting each sensory node
S; to the decision node D indicate the time precedence order.
Corresponding to the decision nodes, there are two types of
utility nodes. The utility node connected with both node ©
and D indicates the benefit (penalty) of taking appropriate
(inappropriate) actions with respect to a particular hypothe-
sis state. Each utility node U; connected with a sensory node
defines the cost of obtaining data from the sensor.

Such a model provides a coherent and fully unified hi-
erarchical probabilistic framework for realizing three main
functions: deciding a sensory action set that achieves opti-
mal trade-off between the cost and benefit of sensors, apply-
ing a fusion model for efficient combining the information
from the sensor set, and making decisions based on the fu-
sion results. We focus on the first function in this paper.

Non-myopic VOI Computation

In this section, we present the approximation algorithm for
non-myopic VOI computation based on the ID framework.

Value-of-Information

As one of the most useful sensitivity analysis techniques of
decision analysis, VOI is used to rate the usefulness of var-
ious information sources and to decide whether pieces of
evidence are worth acquiring before actually using the in-
formation sources (Pearl 1988). Let O = {O;,...,O, } be a
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subset of observation variables, the value-of-information of
0O, VOI(O), can be defined as:

VOI(O) = EU(O)-Co— EU(O) 1)

EU0) = Y ploymaxy p(loju(6,d) ()
@) [S)

@) = 3)

max ; p(0)u(8,d

where u() denotes the utility function, EU(O) denotes the
expected utility to the decision maker if O were observed,
EU(O) denotes the expected utility to the decision maker
without observing O, and Co = > u(Si), which denotes
the total cost to collect observations in O.

As shown in Equation 1, to compute VOI(O), it is nec-
essary to compute EU(O) and EU(O) respectively. Obvi-
ously, EU(O) is easy to compute, whereas directly comput-
ing EU(O) could be cumbersome. If the decision maker has
the option to observe a subset of observations {Oy, ..., O, }
and each O; has m possible values, then there are m” in-
stantiations of the observations in this set. Thus, to compute
EU(O), there are m™ inferences to be performed. It makes
it infeasible to compute the VOI when n is not small.

It is noticed that each instantiation of O corresponds to
a specific optimal action for the decision node D. There-
fore we can divide all the instantiations of O into several
subsets, where the optimal action is the same for those
instantiations in the same subset. Specifically, if D has
g decision rules, {d,...,dq}, all the instantiations of O
can be divided into ¢ subsets, og4,, ... ,04,, Where dr =

arg max Zp(0|o)u

e
tion 1, EU(O) can be further derived as:

(0,dy) for o € o04. Thus, from Equa-

EU(O) = ZmaXZp p(0]@)u(0, d)
- TS S s
D o€oq,
Therefore, the key is to compute Z (0|0) efficiently.
oeodk

Decision Boundaries
To compute Z p(0|0), first we need to know how to di-

0€0q,
vide the instantiations of O into the ¢ subsets, 04, ..., 0d,-
We fist focus on the case that © has only two states, 6, —|9
and then extend it to the general case later.

Based on the definition, the expected utility of taking ac-
tion di is Fu(dg) = p(0) x uix + p(—0) * ugg, where
urg = u(f,dy), and ugr, = u(—6,dy). If dj, is the optimal
action, E'u(dy) must be larger than or equal to the expected
utility of any other action:

Bu(dk) > Eu(d;),forVj,j # k (5)
P(0) * urk + p(=0) * uzk > p(0) * u1j + p(=0) * uz; (6)
p(0) > rjk,if j > k; otherwise, p(0) < 7ji

=
=

U2k —U2j5

where 7, = ———=2~—=1
ik upj—uiptHugy —ug;

O]

We assume w1, > Ulj, U2k < Uy if £ < 7 and U —
U1k + U2k — ug; # 0 without loss of generality. Thus, based



on the above equation, the optimal action is dj, iff p(6) >
max 7 and p(f) < min ;1. Let the lower threshold for
k<i<q 1<j<k

di be pj; = kn<1a<x Tk, and the upper threshold be p;,, =
lI<nlnk ik, then, if pf, < p(#) < p;,. dr is the optimal
1<
decision. If K = 1, p},, = 1.
Therefore, p(p}; < p(flo) < pj,) actually indicates the
probability that dy, is the optimal decision given certain ob-

servation o. On the other hand, Z
oeodk
probability of each o € og4, being observed given § and each

o makes dy, be the optimal decision. Thus, Z p(o]f) also
oeodk
indicates the expected probability of dj being the optimal

action given some observations.
Therefore,

> p(olf) = p(pia < p(6]0) < piu)

oEodiC

(0|0) is the sum of the

(®)
Thus, the problem of computing Z (0]0) transfers to
oeodk

the problem of computing p(py; < p(lo) < pi,,)-

Approximation with Central Limit Theorem

To compute p(p;; < p(flo) < pf,), one way is to treat
p(0]o) as a random variable. If such a random variable sat-
isfies certain standard probability distributions, it will be
easy to compute p(py; < p(flo) < pj,). However, it is
hard to get such a distribution directly. But we notice that

0o M
p(pjy < p(8lo) < pf,) = p(E < FE2 < L) In
the next, we show that p((90||) can be approximated with a

Log normal distribution.
If all the O; nodes are conditionally independent with
each other given ©, based on the chain rule:

p(0|0)
p(=0|0)

p(0110)  p(On|0)
p(O1]—0) "p

p(9)
(On|=0) p(—0)

©))

However, usually some O;s may not be conditionally in-
dependent given ©. To be able to get the similar format to
Equation 9, we first divide O into several groups, where the
nodes in one group are conditionally independent with the
nodes in other groups. Based on the d-separation concept
(Jensen 2001) in Bayesian Networks, O; and O; are condi-
tionally independent given © if © is the only common an-
cestor that is not instantiated for O; and O;. Therefore, with
the grouping procedure, O can be automatically divided into
several sets, named O®', O%2, ..., O%9, where g is the number
of the groups. Thus, Equation 9 can be modified as:

p(9l0) _ p(O0)  p(O*|0) p(0)

p(=0|0) (Osllﬂﬁ)’" (O29]=0) p(=0)

p(6|0) p(0*'|0) p(9)

= I =00) Zl 20 -0) "0y
:>ln¢:2wi—|—c,

i=1
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p(910) p(O%10) . p(®)
p(=010)’ p(O*|-0)’ p(=0)
In the above equation, ¢ can be regarded as a constant re-
flecting the state of © before any new observation is ob-
tained and any new decision is taken.

From the previous analysis, we know dj, is the optimal

action with the probability p( pi L -), which

where ¢ = w; = In (10)

pku

ki S L-py,

kl
1-p7,

is equivalent as p(py;, < p(flo) < p;,)- Let 95, =
Py , thus dy, is the optimal decision if and only

and ¢j;,, =
if o < & < ¢,

. Thus, the following equations stand:

> p(0l0) = p(dis < & < $7ul0) (1)
OGodk
> plo=0) = p(éi < ¢ < diul-0) (12)
OGodk

To compute the probabilities in the above equations, the
probability distribution of ¢ must be known. Let W =
g

Z w;, the sum of w;. If W satisfies a Gaussian distribution,

i=1
¢ will be Log normal distribution based on Equation 10. The
central limit theorem states that the sum of independent vari-
ables approaches a normal distribution when the number of
variables becomes large. Also, the expectation and variance
of the sum is the sum of the expectation and variance of
each individual random variable. Thus, regarding each w;
as an independent variable, W then follows a Gaussian dis-
tribution. In the following, we first compute the mean and
variance of each w; so that to get the distribution of W,
then obtain the distrubution for ¢ so that the probabilities
in Equation 11 can be easily achieved.

Assume O*® has r instantiations, {05’ ..., 03¢}, where r is
the product of the state number of each node in the group
O%¢. The following table gives the value and probability dis-
tribution for w;:

w; (wi]0) | p(w;|-0)
(01'16) St Si

lnpzzoii\ﬁe) p(ol |9) p(ol je) (13)
N I

in % | p(03'16) | plos'|-0)

Based on the table, the expected value u, and the variance
o for each w; can be computed as:

N i, p(05110)
w(wil0) = E p(o; ‘G)an(oﬁi\ﬁe) a4
2 . _ sz 2 p Sll ) .
o*(wil0) = E (o5 10 S - P2 (wil6)  (a5)

By the central limit theorem, the expected value and the
variance of W are:
> )

ZO’ (w;]0)

w(W)0) = (16)

o2(W10) = (17)



From Equation 10, for W ~ N(u(W),o?(W)), ¢ ~

LogN (u(W) + ¢,0%(W)), where LogN denotes Log nor-
mal distribution. Thus,

p(dr < & < Prul)

1 /¢Zu
o(W|0)V2rx o1,

p(o5; < ¢ < ¢5,,|~0) can be computed in the same way by
replacing € with —6 in the previous equations.

By combining Equation 1, 4, 11, and 18, VOI can be
computed efficiently.

—(Inz—p(W[9)—c)?
202 (W |0)

dr (18)

e

‘ VORO)= ELAD)— Co— EU(D) ‘

EUO)=3 POy ¥ plo| 0)dB,d,)
® D seo,,

i
2 ple|0) =plg; < d<dp|D

Decision
Boundaries

> plo| —8) = pld, < < g, | —6)
T
P om—»;tmaJ—cf

P <d< g, 160)= e EE gy -

O ] - [E

.~ r—p(W]~8)-c)

T P N - p——— P ¥

P <d< | 0)= a(mﬁe)mxf

Figure 2: The key equations to compute VOI

As shown in Figure 2, to compute VOI(O) efficiently,
the key is to compute EU(O), which leads to approximate

Z p(0]@) with Log normal distributions by exploiting the

0€oq &
central limit theorem and decision boundaries.

Generalization

In the previous algorithm, the node © only allows two states
although there is no such a limitation for the other nodes. In
this subsection, we extend the algorithm to the case that ©
can have several states. Assume © has h states, 01, ..., 0,
and still, d has ¢ rules, d1, ..., d4, similarly to Equation 10,

p(0:10) _ p(O™16:)  p(O*|6:) p(8:) .
p(64|0) (OSllé’h) p(O°910r) p(6n)’

p(6:|0) p(0**6:) p(6:)
p(0:10) Z p(0F10n) " p(0n)

i#h

2(040) .
p(0nI0)’

p(O°*|6:)

_ 1 P09
p(O%*10r)’

;= In
p(eh)

where ¢; =

19)

g
Let W; = Z w,i, i # h, W; still has a Gaussian distribu-
k=1
tion. The similar method in the previous subsections can be
used to compute the variance and mean. For the new defined
wj,, Table 13 can be modified as follows:

1183

W p(w|6h) p(wy|0n)
03%0; s R
lnﬁ((o%k\‘eh,)) p(0¥]61) p(03¥|65) 20)
R " "
e e O N S G )
Thus,
i, _ sk Oz |9)
n(wilo;) = Zp o 10,in TS on
: - o*10, .
P = Yo Wﬁéogkﬂe,f)—mm

=1

Similar to Equation 16, the expected value and the vari-
ance of W, can be obtained as follows:

g
E wwil0;),1<i<h—1,1<j<h (23

w(Wild;) =
k=1
g9

CWile,) = Y o*(wilo) e
k=1

Let fo,(¢;) denote the probability density function of ¢;
given 0;, therefore, fo,(¢;) ~ logN ((W;l0;), 02 (W;]6;)).

Even though fy, (¢;) can be easily obtained, it is still nec-
essary to get the decision boundaries for each optimal de-
cision in order to efficiently compute Z p(o]d;). A set

OEOdk

of linear inequality functions need to be solved. For exam-
ple, if dy, is the optimal action, Eu(d}) must be larger than
or equal to the expected utility of taking any other action;
through which, a set of linear inequality functions can be
obtained:

p(01)urk + p(02)uzk + ... + p(Op)unk
> p(01)urj + ... + p(On)un;, V5,1 <j < q,j #k

= p(0)urk + ...+ (1 —p(01) — ... — p(Oh—1))unk
>p(01)ur; + ... + (1 —p(01) — ... — p(On—1))un;
Uik Y15 | p(01) Uh—1)k "¥%(h—1)j  PEnr_1)

= upj—upk  POp) Tt Uhj~Uhk p(0p) 21 @5

We assume up; — upr > 0; otherwise, just change “>” to
“<” in the last equation.

Let Ay, be the solution region of the linear inequality sys-
tem, then

3 plolty) =

oeodk

fo;(91)-.-fo,; (Pn—1)d Ay (26)
Ak

From this, VOI(O) can be computed by combining Equa-
tion 1, 4, and 26.

Now, we analyze the computational complexity of the
proposed approximation algorithm compared to the exact
computation method. For simplicity, assume the state num-
ber of each O; node is m and there are n nodes in the set
O. Then the computational complexity of the exact VOI
computation method is O(hm™), where h is the state num-
ber of the © node. With the approximation algorithm, the
computational complexity is reduced to O(qghm*), where
q is the number of decision rules for the decision node D,
and k is the number of O; nodes in the maximum group



among {O*!, ..., O%}. In the best case, if all the O; nodes
are conditionally independent given O, the time complexity
is just O(ghm), which is linear. In the worst case, if all the
O; nodes are dependent, the time complexity is O(ghm'™).
However, usually, in most real-world applications, k will be
much less than n, thus the approximate algorithm tends to
be very efficient, as will be shown in the experiments.

Active Sensory Action Selection

Till now, we have presented the approximation algorithm
for efficiently computing non-myopic VOI. Let A
{41, ..., A} be a collection of sets over O. To get an opti-
mal sensor set, we can enumerate all the sensor sets in A and
compare their VOIs. However, it is impractical in this way
since the size of A is increasing exponentially as the number
of sensors. In practice, we use the algorithm as follows:

Algorithm 1: SensorSelect(ID,m)
LetG = {A; : [Ai] =m, A; € A},
AT — argmax{VOI(A;) : |Ai] <m,A; € A}
A — 0
for each A; € G do
G' — O\ A;; maz — VOI(Ay);
while G’ # () do
O* «— argmax{VOI(O; U A;): 0; € G'};
if VOI(O* U A;) > max then
A; — O" U Aj; maz — VOI(Ay);
G' — G'"\O%;
if VOI(A;) > VOI(A3) then A — Aj;
Return A™ = argmax(VOI(AY), VOI(A3)),

As shown in the above pseudo code, on the first phase,
Algorithm 1 gets a solution A} by enumerating all possible
I-element (I < m) subsets for some constant m. On the sec-
ond phase, Algorithm 1 starts from all possible m-element
subsets and then uses a greedy approach to supplement these
sets so that to get a solution A3. Finally, the algorithm out-
puts AT if VOI(A}) > VOI(A}%) and A} otherwise. The
time complexity of the algorithm is O(n™*!logn). It also
requires to compute VOI for the sets whose size could be
as large as n. If without the VOI approximation algorithm,
even the greedy approach with m=1 could be very slow due
to the computation of VOI. Fortunately, the proposed VOI
approximation algorithm can significantly speed up the se-
lection procedure.

Experiments

We perform experiments to demonstrate the performance of
the VOI approximation algorithm and the sensor selection
algorithm in the proposed active fusion framework respec-
tively. Each ID is generated with random structure (but satis-
fies the general structure of Figure 1) and parameters, whose
maximal number of nodes is 50. The number of sensors is
limited to 11 due to the exponential computational time be-
hind the brute-force approach to get the ground-truth.

Efficient Non-myopic VOI Computation

50 different IDs are generated. Each ID is parameterized
with 20 sets of different conditional probability tables and
utility functions, which yields 1000 test cases. For each test
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case, the VOIs for different O subsets with the size from 3
to 11 are computed. Among half of the 1000 test cases, the
O node has binary states, and in the other half © has three
states. All the other random nodes and decision nodes have
four states.

Figure 3 illustrates the results of the 1000 test cases.
Chart(a) shows the average error rates while chart (c) shows
the VOISs for one specific case, where the error rate is defined
as the the difference of the approximated VOI and exact VOI
divided by the exact VOI. As the size of the O set increases,
the error rate decreases. We could run several much larger
IDs with much more O nodes, and the curve would be more
and more closer to zero. Here, we intend to show the trend
and the capability of this algorithm. Chart(b) shows the av-
erage computational time with the exact computation vs ap-
proximation computation. When the size of O node is small,
the computational time is similar. However, as the size be-
comes larger, the computational time of exact computation
increases exponentially, while the computational time of the
approximation algorithm increases almost linearly. Thus, the
larger the O set size is, the more time the approximation al-
gorithm can save. If the state number of each O; node is
larger than 4, the saving would be more obvious.

Active Sensor Selection

The same 1000 testing cases are used for testing the sensor
selection algorithm. The ground-truth of the optimal sensor
subset is obtained by a brute-force approach. The value of
m in Algorithm 1 is set as 3 in the experiments. Overall,
the average VOI rate (the ratio between the VOI of the se-
lected sensor set and that of the ground-truth optimal sen-
sor set) is 0.97, and the running time rate (the ratio between
the computational time with the proposed sensor selection
algorithm and that with the brute-force method) is 0.02. Fig-
ure 3(d) displays the sensor selection results in 50 testing
cases. Obviously, with a random selection method, the VOI
of the selected sensor set is much less than the VOI of the
optimal sensor set in most cases, while the proposed sensor
selection can always select a good sensor set.

An Illustrative Application

We use a real-world application to demonstrate the advan-
tages of the proposed framework and the algorithms. Fig-
ure 4(a) is a reflection of the proposed active fusion model
for stress recognition and user assistance in a real-time sys-
tem. The system decides an optimal sensory action set to col-
lect evidence with the proposed sensor selection algorithm.
The collected evidence is then propagated through the model
and the posterior probabilities of user stress is computed
with the dynamic inference technique. In the meanwhile, the
system determines the optimal assistance that maximizes the
overall expected utility.

Figure 4(b)(c) shows the experimental results of the VOI
approximation algorithm for the stress model. We enumer-
ate all the possible sensor sets and then compute the VOI for
each set. Chart(b) illustrates the average VOI error rates for
different sensor sets with the same size and chart (c) displays
the computational time. Similarly to the simulation experi-
ments, the error decreases as the size of O set increases, and
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Figure 3: Results for the 1000 test cases: (a) average error rates with the VOI approximation algorithm; (b) computational time (log(t), unit
is second); (c¢) VOIt vs VOI for one test case; (d) performance of the proposed sensor selection algorithm vs random selection.
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Figure 4: (a) An Influence Diagram for recognizing human stress and providing user assistance. More detail please refer to (Liao er al. 2005);
(b)VOI error rate; (c)computational time(log(t), unit is second).

the computational time increases almost linearly with the
VOI approximation algorithm. Furthermore, based on the
approximated VOlIs, the sensor selection algorithm can al-
ways return an optimal or near-optimal sensor set efficiently.

Conclusions

We adapt an Influence Diagram as an active fusion model for
representation, integration, and inference of uncertain sen-
sory information of different modalities at multiple levels of
abstraction. Based on this framework, we present an approx-
imation algorithm to compute non-myopic VOI of sensor
sets efficiently by exploring the central-limit theory. Such
an algorithm, together with the improved greedy approach,
make it feasible to choose an optimal sensor set with signif-
icantly reduced time complexity. Both the experiments with
synthetic data and real data from a real-world application
demonstrate the proposed framework together with the pro-
posed algorithms are able to efficiently and effectively select
the optimal sensory actions for timely decision-making.
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