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Abstract

Most eye trackers based on active IR illumination require distinctive bright pupil
effect to work well. However, due to a variety of factors such as eye closure, eye occlu-
sion, and external illumination interference, pupils are not bright enough for these
methods to work well. This tends to significantly limit their scope of application.
In this paper, we present an integrated eye tracker to overcome these limitations.
By combining the latest technologies in appearance-based object recognition and
tracking with active IR illumination, our eye tracker can robustly track eyes un-
der variable and realistic lighting conditions and under various face orientations.
In addition, our integrated eye tracker is able to handle occlusion, glasses, and to
simultaneously track multiple people with different distances and poses to the cam-
era. Results from an extensive experiment shows a significant improvement of our
technique over existing eye tracking techniques.
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1 Introduction

As one of the salient features of the human face, human eyes play an im-
portant role in face detection, face recognition and facial expression analysis.
Robust non-intrusive eye detection and tracking is a crucial step for vision
based man-machine interaction technology to be widely accepted in common
environments such as homes and offices. Eye tracking has also found applica-
tions in other areas including monitoring human vigilance [1], gaze-contingent
smart graphics [2], and assisting people with disability. The existing work in
eye detection and tracking can be classified into two categories: traditional im-
age based passive approaches and the active IR based approaches. The former
approaches detect eyes based on the unique intensity distribution or shape of
the eyes. The underlying assumption is that the eyes appear different from
the rest of the face both in shape and intensity. Eyes can be detected and
tracked based on exploiting these differences. The active IR based approach,
on the other hand, exploits the spectral (reflective) properties of pupils under
near IR illumination to produce the bright/dark pupil effect. Eye detection
and tracking is accomplished by detecting and tracking pupils.

The traditional methods can be broadly classified into three categories: tem-
plate based methods [3–9,8,10,11], appearance based methods [12–14] and
feature based methods [15–23]. In the template based methods, a generic eye
model, based on the eye shape, is designed first. Template matching is then
used to search the image for the eyes. Nixon [10] proposed an approach for
accurate measurement of eye spacing using Hough transform. The eye is mod-
eled by a circle for the iris and a “tailored” ellipse for the sclera boundary.
Their method, however, is time-consuming, needs a high contrast eye image,
and only works with frontal faces. Deformable templates are commonly used
[3–5]. First, an eye model, which is allowed to translate, rotate and deform to
fit the best representation of the eye shape in the image, is designed. Then,
the eye position can be obtained through a recursive process in an energy
minimization sense. While this method can detect eyes accurately, it requires
the eye model be properly initialized near the eyes. Furthermore, it is com-
putationally expensive, and requires good image contrast for the method to
converge correctly.

The appearance based methods [12],[13], [14] detect eyes based on their pho-
tometric appearance. These methods usually need to collect a large amount of
training data, representing the eyes of different subjects, under different face
orientations, and under different illumination conditions. These data are used
to train a classifier such as a neural network or the Support Vector Machine
and detection is achieved via classification. In [12], Pentland et al. extended the
eigenface technique to the description and coding of facial features, yielding
eigeneyes, eigennoses and eigenmouths. For eye detection, they extracted an
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appropriate eye templates for training and constructed a principal component
projective space called “Eigeneyes”. Eye detection is accomplished by compar-
ing a query image with an eye image in the eigeneyes space. Huang et al. [13]
also employed the eigeneyes to perform initial eye positions detection. Huang
et al. [14] presented a method to represent eye image using wavelets and to
perform eye detection using RBF NN classifier. Reinders et al. [21] proposed
several improvements on the neural network based eye detector. The trained
neural network eye detector can detect rotated or scaled eyes under different
lighting conditions. But it is trained for the frontal view face image only.

Feature based methods explore the characteristics (such as edge and intensity
of iris, the color distributions of the sclera and the flesh) of the eyes to identify
some distinctive features around the eyes. Kawato et al [16] proposed a feature
based method for eyes detection and tracking. Instead of detecting eyes, they
propose to detect the point between two eyes. The authors believe the point is
more stable and easier to detect than the eyes. Eyes are subsequently detected
as two dark parts, symmetrically located on each side of the between-eye-
point. Feng et al. [8,9] designed a new eye model consisting of six landmarks
(eye corner points). Their technique first locates the eye landmarks based on
the variance projection function (VPF) and the located landmarks are then
employed to guide the eye detection. Experiment shows their method will fail
if the eye is closed or partially occluded by hair or face orientation. In addition,
their technique may mistake eyebrows for eyes. Tian et al. [19] proposed a new
method to track the eye and recover the eye parameters. The method requires
to manually initialize the eye model in the first frame. The eye’s inner corner
and eyelids are tracked using a modified version of the Lucas-Kanade tracking
algorithm [24]. The edge and intensity of iris are used to extract the shape
information of the eye. Their method, however, requires a high contrast image
to detect and track eye corners and to obtain a good edge image.

In summary, the traditional image based eye tracking approaches detect and
track the eyes by exploiting eyes’ differences in appearance and shape from the
rest of the face. The special characteristics of the eye such as dark pupil, white
sclera, circular iris, eye corners, eye shape, etc. are utilized to distinguish the
human eye from other objects. But due to eye closure, eye occlusion, variabil-
ity in scale and location, different lighting conditions, and face orientations,
these differences will often diminish or even disappear. Wavelet filtering [25,26]
has been commonly used in computer vision to reduce illumination effect by
removing subbands sensitive to illumination change. But it only works under
slight illumination variation. Illumination variation for eye tracking applica-
tions could be significant. Hence, the eye image will not look much different
in appearance or shape from the rest of the face, and the traditional image
based approaches can not work very well, especially for faces with non-frontal
orientations, under different illuminations, and for different subjects.

3



Eye detection and tracking based on the active remote IR illumination is a
simple yet effective approach. It exploits the spectral (reflective) properties
of the pupil under near IR illumination. Numerous techniques [27–31,1] have
been developed based on this principle, including some commercial eye trackers
[32,33]. They all rely on an active IR light source to produce the dark or bright
pupil effects. Ebisawa et al. [27] generate the bright/dark pupil images based
on a differential lighting scheme using two IR light sources (on and off camera
axis). The eye can be tracked effectively by tracking the bright pupils in the
difference image resulting from subtracting the dark pupil image from the
bright pupil image. Later in [28], they further improved their method by using
pupil brightness stabilization to eliminate the glass reflection. Morimoto et al.
[29] also utilize the differential lighting scheme to generate the bright/dark
pupil images, and pupil detection is done after thresholding the difference
image. A larger temporal support is used to reduce artifacts caused mostly by
head motion, and geometric constraints are used to group the pupils.

Most of these methods require distinctive bright/dark pupil effect to work
well. The success of such a system strongly depends on the brightness and
size of the pupils, which are often affected by several factors including eye
closure, eye occlusion due to face rotation, external illumination interferences,
and the distances of the subjects to the camera. Figures 1 and 2 summarize
different conditions under which the pupils may not appear very bright or even
disappear. These conditions include eye closure (Figure 1 (a)) and oblique face
orientations (Figure 1 (b) (c) and (d)), presence of other bright objects (due
to either eye glasses glares or motion) as shown in Figure 2 (a) and (b), and
external illumination interference as shown in Figure 2 (c).

(a) (b)

(c) (d)

Fig. 1. The disappearance of the bright pupils due to eye closure (a) and oblique
face orientations (b), (c), and (d).

The absence of the bright pupils or even weak pupil intensity poses serious
problems to the existing eye tracking methods using IR for they all require
relatively stable lighting conditions, users close to the camera, small out-of-
plane face rotations, and open and un-occluded eyes. These conditions impose

4



(a) (b) (c)

Fig. 2. (a)original image, (b)the corresponding thresholded difference image, which
contains other bright regions around the real pupil blobs due to either eye glasses
glares and rapid head motion, (c) Weak pupils intensity due to strong external
illumination interference.

serious restrictions on the part of their systems as well as on the user, and
therefore limit their application scope. Realistically, however, lighting can be
variable in many application domains, the natural movement of head often
involves out-of-plane rotation, eye closures due to blinking and winking are
physiological necessities for humans. Furthermore, thick eye glasses tend to
disturb the infrared light so much that the pupils appear very weak. It is
therefore very important for the eye tracking system to be able to robustly
and accurately track eyes under these conditions as well.

To alleviate some of these problems, Ebisawa [28] proposed an image differ-
ence method based on two light sources to perform pupil detection under
various lighting conditions. The background can be eliminated using the im-
age difference method and the pupils can be easily detected by setting the
threshold as low as possible in the difference image. They also proposed an ad
hoc algorithm for eliminating the glares on the glasses, based on thresholding
and morphological operations. However, the automatic determination of the
threshold and the structure element size for morphological operations is diffi-
cult; and the threshold value cannot be set as low as possible considering the
efficiency of the algorithm. Also, eliminating the noise blobs just according to
their sizes is not enough. Haro[31] proposed to perform pupil tracking based
on combining eye appearance, the bright pupil effect, and motion character-
istics so that pupils can be separated from other equally bright objects in the
scene. To do so, they proposed to verify the pupil blobs using conventional ap-
pearance based matching method and the motion characteristics of the eyes.
But their method can not track the closed or occluded eyes or eyes with weak
pupil intensity due to external illuminations interference. Ji et al. [1] proposed
a real time subtraction and a special filter to eliminate the external light inter-
ferences. But their technique fails to track the closed/occluded eyes. To handle
the presence of other bright objects, their method performs pupil verification
based on the shape and size of pupil blobs to eliminate spurious pupils blobs.
But usually, spurious blobs have similar shape and size to those of the pupil
blobs as shown in Figure 2 and make it difficult to distinguish the real pupil
blobs from the noise blobs based on only shape and size.
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In this paper, we propose a real-time robust method for eye tracking under
variable lighting conditions and face orientations, based on combining the
appearance-based methods and the active IR illumination approach. Combin-
ing the respective strengths of different complementary techniques and over-
coming their shortcomings, the proposed method uses an active infrared illu-
mination to brighten subject’s faces to produce the bright pupil effect. The
bright pupil effect and the appearance of eyes are utilized simultaneously for
eyes detection and tracking. The latest technologies in pattern classification
recognition (the Support Vector Machine) and in object tracking (the mean-
shift) are employed for pupil detection and tracking based on eyes appearance.
Some of the ideas presented in this paper have been briefly reported in [34],[35].
In this paper, we report our algorithm in details.

Our method consists of two parts: eye detection and eye tracking. Eye detec-
tion is accomplished by simultaneously utilizing the bright/dark pupil effect
under active IR illumination and the eye appearance pattern under ambient
illumination via the Support Vector Machine. Eye tracking is composed of two
major modules. The first module is a conventional Kalman filtering tracker
based on the bright pupil. The Kalman filtering tracker is augmented with
the Support Vector Machine classifier [36,37] to perform verification of the
detected eyes. In case Kalman eye tracker fails due to either weak pupil in-
tensity or the absence of the bright pupils, eye tracking based the on mean
shift is activated [38] to continue tracking the eyes. Eye tracking returns to
the Kalman filtering tracker as soon as the bright pupils reappear since eye
tracking using bright pupils is much more robust than the mean shift tracker,
which, we find, tends to drift away. The two trackers alternate, complement-
ing each other and overcoming their limitations. Figure 3 summarizes our eye
tracking algorithm.

2 Eye Detection

To facilitate subsequent image processing, the person’s face is illuminated us-
ing a near-infrared illuminator. The use of infrared illuminator serves three
purposes: first it minimizes the impact of different ambient light conditions,
therefore ensuring image quality under varying real-world conditions including
poor illumination, day, and night; second, it allows to produce the bright/dark
pupil effect, which constitutes the foundation for the proposed eye detection
and tracking algorithm. Third, since near infrared is barely visible to the user,
this will minimize any interference with the user’s work. According to the
original patent from Hutchinson [39], a bright pupil can be obtained if the
eyes are illuminated with a near infrared illuminator beaming light along the
camera optical axis at certain wavelength. At the near infrared wavelength,
pupils reflect almost all infrared light they receive along the path back to the

6



Eye Detection

Based on SVM


Success?


Kalman Filter Based

Bright Pupil Eye Tracker


Yes


Success?


 Update the

Target Model for

the Mean Shift

Eye Tracker


Yes


Yes


No


Mean Shift Eye Tracker


Success?


No


No


Input IR Images


Fig. 3. The Combined Eye Tracking Flowchart

camera, producing the bright pupil effect, very much similar to the red eye
effect in photography. If illuminated off the camera optical axis, the pupils
appear dark since the reflected light will not enter the camera lens. This pro-
duces the so called dark pupil effects. An example of the bright/dark pupils
is given in Figure 4. Details about the construction of the IR illuminator and
its configuration may be found in [40].

(a) (b)

Fig. 4. The bright (a) and dark (b) pupils images.

Given the IR illuminated eye images, eye detection is accomplished via pupil
detection. Pupil detection is accomplished based on both the intensity of the
pupils (the bright and dark pupils) and on the appearance of the eyes using the
Support Vector Machine. Specifically, pupil detection starts with preprocessing
to remove external illumination interference, followed by searching the whole
image for pupils in terms of pupil intensity and eye appearance. Therefore,
multiple pupils can be detected if there exist more than one person. The use

7



of Support Vector Machine (SVM) avoids falsely identifying a bright region
as a pupil. Figure 5 gives an overview of the eye detection module.

Image
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Fig. 5. Eye Detection Block Diagram

2.1 Initial Eye Position Detection

The detection algorithm starts with a preprocessing to minimize interference
from illumination sources other than the IR illuminator. This includes sunlight
and ambient light interference. A differential method is used to remove the
background interference by subtracting the dark eye image (odd field) from
the bright eye image (even field), producing a difference image, with most of
the background and external illumination effects removed, as shown in Figure
6. For real time eye tracking, the image subtraction must be implemented
efficiently in real time. To achieve this, we developed circuitry to synchronize
the outer ring of LEDs and inner ring of LEDs with the even and odd fields
of the interlaced image respectively so that they can be turned on and off
alternately. When the even field is being scanned, the inner ring of LEDs is on
and the outer ring of LEDs is off and vice versa when the even filed is scanned.
The interlaced input image is subsequently de-interlaced via a video decoder,
producing the even and odd field images as shown in Figure 6 (a) and (b).
More on our image subtraction circuitry may be found in [40].

(a) (b) (c)

Fig. 6. Background illumination interference removal (a) the even image field ob-
tained with both ambient and IR light; (b) the odd image field obtained with only
ambient light; (c) the image resulted from subtraction (b) from (a).

The difference image is subsequently thresholded automatically based on its
histogram, producing a binary image. Connected component analysis is then
applied to the binary image to identify the binary blobs. Our task is then to
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find out which of the blobs actually is the real pupil blob. Initially, we mark
all the blobs as potential candidates for pupils as shown in Figure 7.

Fig. 7. The thresholded difference image marked with pupil candidates

2.2 Eye Verification Using Support Vector Machine

As shown in Figure 7, there are usually many potential candidates of pupils.
Typically, pupils are found among the binary blobs. However, it is usually not
possible to isolate the pupil blob only by picking the right threshold value,
since pupils are often small and not bright enough compared with other noise
blobs. Thus, we will have to make use of information other than intensity to
correctly identify them. One initial way to distinguish the pupil blobs from
other noise blobs is based on their geometric shapes. Usually, the pupil is an
ellipse-like blob and we can use an ellipse fitting method [41] to extract the
shape of each blob and use the shape and size to remove some blobs from
further consideration. It must be noted, however, that due to scale change
(distance to the camera) and to variability in individual pupil size, size is not
a reliable criterion. It is only used to to remove very large or very small blobs.
Shape criterion, on the other hand, is scale-invariant. Nevertheless, shape alone
is not sufficient since there are often present other non-pupil blobs with similar
shape and size as shown in Figure 8, where we can see that there are still
several non pupil blobs left because they are so similar in shape and size that
we can’t distinguish the real pupil blobs from them. So we have to use other
features. We observed that the eye region surrounding pupils has a unique
intensity distribution. They appear different from other parts of the face in
the dark pupil image as shown in Figure 4 (b). The appearance of an eye can
therefore be utilized to separate it from non-eyes. We map the locations of the
remaining binary blobs to the dark pupil images and then apply the Support
Vector Machine (SVM) classifier [36,37] to automatically identify the binary
blobs that correspond to eyes as discussed below.

9



Fig. 8. The thresholded difference image after removing some blobs based on their
geometric properties (shape and size). The blobs marked with circles are selected
for further consideration.

2.2.1 The Support Vector Machine

SVM is a two-class classification method that finds the optimal decision hyper-
plane based on the concept of structural risk minimization. Ever since its in-
troduction, SVM [36] has become increasingly popular. The theory of SVM
can be briefly summarized as follows. For the case of two-class pattern recog-
nition, the task of predictive learning from examples can be formulated as
follows. Given a set of functions fα and an input domain RN of N dimensions:

{fα : α ∈ Λ}, fα : RN −→ {−1, +1},

(Λ is an index set) and a set of l examples:

(x1, y1), ...(xi, yi), ..., (xl, yl), xi ∈ RN , yi ∈ {−1, +1},

where xi is an input feature vector and yi represents the class, which has only
two values -1 and +1. Each (xi, yi) is generated from an unknown probability
distribution p(x, y), the goal is to find a particular function f ∗

α which provides
the smallest possible value for the risk:

R(α) =
∫

|fα(x)− y|dp(x, y) (1)

Suppose that there is a separating hyper-plane that separates the positive class
from the negative class. The data characterizing the boundary between the
two classes are called the support vectors since they alone define the optimal
hyper-plane. First, a set (xi, yi) of labeled training data are collected as the
input to the SVM. Then, a trained SVM will be characterized by a set of Ns

support vectors si, coefficient weights αi for the support vectors, class labels
yi of the support vectors, and a constant term w0.
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For the linearly separable case, the linear decision surface (the hyperplane) is
defined as

w · x + w0 = 0, (2)

where x is a point the hyperplane, “·” denotes dot product, w is the normal
of the hyperplane, and w0 is the distance to the hyperplane from the origin.
Through the use of training data, w can be estimated by

w =
Ns
∑

i=1

αiyisi, (3)

Given w and w0, an input vector xi can be classified into one of the two classes,
depending on if w · x + w0 is larger or smaller than 0.

Classes are often not linearly separable. In this case, SVM can be extended by
using a kernel K(., .), which performs a nonlinear mapping of the feature space
to a higher dimension, where classes are linearly separable. The most common
SVM kernels include Gaussian kernel, Radial-based kernel, and polynomial
kernel. The decision rule with a kernel can be expressed as

Ns
∑

i=1

αiyiK(si, x) + w0 = 0 (4)

2.2.2 SVM Training

To use SVM, training data are needed to obtain the optimal hyper-plane. An
eye image is represented as a vector I consisting of the original pixel values.
For this project, after obtaining the positions of pupil candidates using the
methods mentioned above, we obtain the sub-images from the dark image
according to those positions as shown in Figure 9.

Usually, the eyes are included in those cropped images of 20× 20 pixels. The
cropped image data are processed using histogram equalization and normal-
ized to a [0, 1] range before training. The eye training images were divided
into two sets: positive set and negative set. In the positive image set, we in-
clude eye images of different gazes, different degrees of opening, different face
poses, different subjects, and with/without glasses. The non-eye images were
placed in the negative image set. Figures 10 and 11 contain examples of eye
and non-eye images in the training sets, respectively.

After finishing the above step, we get a training set, which has 558 positive
images and 560 negative images. In order to obtain the best accuracy, we
need to identify the best parameters for the SVM. In Table 2.2.2, we list three
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(a)

(b)

Fig. 9. (a) The thresholded difference image superimposed with possible pupil can-
didates (b) The dark image marked with possible eye candidates according to the
positions of pupil candidates in (a).

Fig. 10. The eye images in the positive training set.

different SVM kernels with various parameter settings and each SVM was
tested on 1757 eye candidate images obtained from different persons.

From the above table, we can see that the best accuracy we can achieve is
95.5037%, using a Gaussian kernel with a σ of 3.

2.2.3 Retraining Using Mis-labeled Data

Usually, supervised learning machines rely only on the limited labeled training
examples and can not reach very high learning accuracy. So we have to test on
thousands of unlabeled data and pick up the mis-labeled data, then put them
into the correct training sets and retrain the classifier again. After performing
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Fig. 11. The non-eye images in the negative training set

Table 1
Experiment results using 3 kernels with different parameters

Kernel Type Deg Sigma # Support Accuracy

σ Vectors

Linear 376 0.914058

Polynomial 2 334 0.912351

Polynomial 3 358 0.936255

Polynomial 4 336 0.895845

Gaussian 1 1087 0.500285

Gaussian 2 712 0.936255

Gaussian 3 511 0.955037

Gaussian 4 432 0.9465

Gaussian 5 403 0.941377

this procedure on the unlabeled data obtained from different conditions several
times, we can boost the accuracy of the learning machine at the cost of extra
time needed for re-training.

Specifically, we have eye data set from ten people, which are obtained using
the same method. We choose the first person’s data set and label the eye
images and non-eye images manually, then we train the Gaussian SVM on
this training set and test Gaussian SVM on the second person’s data set. We
check the second person’s data one by one, pick up all the mis-labeled data,
label them correctly and add them into the training set. After finishing the
above step, we retrain the SVM on this increased training set and repeat the
above step on the next person’s data set. The whole process then repeats
until the classification errors stabilize. Through the retraining process, we can
significantly boost the accuracy of the Gaussian SVM.
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2.2.4 Eye Detection with SVM

During eye detection, we crop the regions in the dark pupil image according
to the locations of pupil candidates in the difference image as shown in Figure
9 (b). After some preprocessing on these eye candidate images, they will be
provided to the trained SVM for classification. The trained SVM will classify
the input vector I into eye class or non-eye class. Figure 12 shows that the
SVM eye classifier correctly identifies the real eye regions as marked.

(a) (b)

Fig. 12. (a) (b) The images marked with identified eyes. Compared with images in
Figure 9 (b), many false alarms have been removed.

Pupil verification with SVM works reasonably well and can generalize to peo-
ple of the same race. However, for people from a race that is significantly
different from those in training images, the SVM may fail and need to be
retrained. SVM can work under different illumination conditions due to the
intensity normalization for the training images via histogram equalization.

3 Eye Tracking Algorithm

Given the detected eyes in the initial frames, the eyes in subsequent frames
can be tracked from frame to frame. Eye tracking can be done by performing
pupil detection in each frame. This brute force method, however, will signifi-
cantly slow down the speed of pupil tracking, making real time pupil tracking
impossible since it needs to search the entire image for each frame. This can
be done more efficiently by using the scheme of prediction and detection.
Kalman filtering [42] provides a mechanism to accomplish this. The Kalman
pupil tracker, however, may fail if pupils are not bright enough under the
conditions mentioned previously. In addition, rapid head movement may also
cause the tracker to lose the eyes. This problem is addressed by augmenting
the Kalman tracker with the mean shift tracker. Figure 13 summarizes our
eye tracking scheme. Specifically, after locating the eyes in the initial frames,
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Kalman filtering is activated to track bright pupils. If it fails in a frame due to
disappearance of bright pupils, eye tracking based on the mean shift will take
over. Our eye tracker will return to bright pupil tracking as soon as bright
pupil appears again since it is much more robust and reliable tracking. Pupil
detection will be activated if the mean shift tracking fails. These two stage
eye trackers work together and they complement each other. The robustness
of the eye tracker is improved significantly. The Kalman tracking, the mean
shift tracking, and their integration are briefly discussed below.

Eye detection


Success?


Kalman filter based bright pupil eye tracker


Yes


Success?


No


Update the eye target

model for Mean shift


eye tracker


Yes


Initialize estimated center (y0) with

Kalman filter, then y1=y0


Calculate the combined  weights

(bright pupil image and dark pupil
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value?


y1=y0


No
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Bhattacharyya coefficient <
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Yes


No


Yes


Mean Shift Tracker


Fig. 13. The Combined Eye Tracking Flowchart

15



3.1 Eye (pupil) Tracking with Kalman Filtering

A Kalman filter is a set of recursive algorithms that estimate the position and
uncertainty of moving targets in the next time frame, that is, where to look for
the targets, and how large a region should be searched in the next frame around
the predicted position in order to find the targets with certain confidence. It
recursively conditions current estimate on all of the past measurements and
the process is repeated with the previous posterior estimates used to project
the new a priori estimates. This recursive nature is one of the very appealing
features of the Kalman filter since it makes practical implementation much
more feasible.

Our pupil tracking method based on Kalman filtering can be formalized as
follows. The state of a pupil at each time instance (frame) t can be character-
ized by its position and velocity. Let (ct, rt) represent the pupil pixel position
(its centroid) at time t and (ut, vt) be its velocity at time t in c and r direc-
tions respectively. The state vector at time t can therefore be represented as
Xt = (ct rt ut vt)

t.

According to the theory of Kalman filtering [43], Xt+1, the state vector at the
next time frame t+1, linearly relates to current state Xt by the system model
as follows

Xt+1 = ΦXt + Wt (5)

where Φ is the state transition matrix and Wt represents system perturbation.
Wt is normally distributed as p(Wt) ∼ N(0, Q), and Q represents the process
noise covariance.

We further assume that a fast feature extractor estimates Zt = (ĉt, r̂t), the
detected pupil position at time t. Therefore, the measurement model in the
form needed by the Kalman filter is

Zt = HXt + Mt (6)

where matrix H relates current state to current measurement and Mt rep-
resents measurement uncertainty. Mt is normally distributed as p(Mt) ∼
N(0, R), and R is the measurement noise covariance. For simplicity and since
Zt only involves position, H can be represented as

H =







1 0 0 0

0 1 0 0






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The feature detector (e.g., thresholding or correlation) searches the region as
determined by the projected pupil position and its uncertainty to find the
feature point at time t + 1. The detected point is then combined with the
prediction estimation to produce the final estimate.

Specifically, given the state model in equation 5 and measurement model in
equation 6 as well as some initial conditions, the state vector Xt+1, along with
its covariance matrix Σt+1, can be updated as follows. For subsequent discus-
sion, let us define a few more variables. Let X−

t+1 be the estimated state at
time t+1, resulting from using the system model only. It is often referred to as
the prior state estimate. Xt+1 differs from X−

t+1 in that it is estimated using
both the system model (equation 5) and the measurement model (equation
6). Xt+1 is usually referred as the posterior state estimate. Let Σ−

t+1 and Σt+1

be the covariance matrices for the state estimates X−

t+1 and Xt+1 respectively.
They characterize the uncertainties associated with the prior and posterior
state estimates. The goal of Kalman filtering is therefore to estimate Xt+1 and
Σt+1 given Xt, Σt, Zt, and the system and measurement models. The Kalman
filtering algorithm for state prediction and updating may be summarized be-
low.

(1) State prediction
Given current state Xt and its covariance matrix Σt, state prediction

involves two steps: state projection (X−

t+1) and error covariance estimation
(Σ−

t+1) as summarized in Eq. 7 and Eq. 8.

X−

t+1 = ΦXt (7)

Σ−

t+1 = ΦΣtΦ
t + Qt (8)

Given the prior estimate X−

t+1, its covariance matrix Σ−

t+1, pupil de-
tection is performed to detect the pupil around X−

t+1, with the search
area determined by Σ−

t+1. In practice, to speed up the computation, the
values of Σ−

t+1[0][0] and Σ−

t+1[1][1] are used to compute the search area
size. Specifically, the search area size is chosen as 20+2*Σ−

t+1[0][0] pixels
and 20+2*Σ−

t+1[1][1] pixels, where 20 by 20 pixels is the basic window
size. This means the larger the Σ−

t+1[0][0] and Σ−

t+1[1][1] are, the more
uncertainty of the estimation is, and the larger the search area is. The
search area is therefore adaptively adjusted. Therefore, the pupil can be
located quickly.

(2) State updating
The detected pupil position is represented by Zt+1. Then, state updat-

ing can be performed to derive the final state and its covariance matrix.
The first task during state updating is to compute the Kalman gain Kt+1.
It is done as follows
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Kt+1 =
Σ−

t+1H
T

HΣ−

t+1H
T + R

(9)

The gain matrix K can be physically interpreted as a weighting factor to
determine the contribution of measurement Zt+1 and prediction HX−

t+1

to the posterior state estimate Xt+1. The next step is to to generate
a posteriori state estimate Xt+1 by incorporating the measurement into
equation 5. Xt+1 is computed as follows

Xt+1 = X−

t+1 + Kt+1(Zt+1 −HX−

t+1) (10)

The final step is to obtain the posteriori error covariance estimate. It is
computed as follows

Σt+1 = (I −Kt+1H)Σ−

t+1 (11)

After each time and measurement update pair, the Kalman filter recursively
conditions current estimate on all of the past measurements and the process is
repeated with the previous posterior estimates used to project a new a priori
estimate.

The Kalman filter pupil tracker works reasonably well under frontal face ro-
tation with the eye open. However, it will fail if the pupils are not bright due
to either face orientation or external illumination interferences. The Kalman
filter also fails when a sudden head movement occurs due to incorrect pre-
diction because the assumption of smooth head motion has been violated. In
each case, Kalman filtering fails because the Kalman filter detector can not
detect pupils. We propose to use the mean shift tracking to augment Kalman
filtering tracking to overcome this limitation.

3.2 Mean Shift Eye Tracking

Due to the IR illumination, the eye region in the dark and bright pupil images
exhibits strong and unique visual patterns such as the dark iris in the white
part. This unique pattern should be utilized to track eyes in case the bright
pupils fail to appear on the difference images. This is accomplished via the use
of the mean shift tracking. Mean shift tracking is an appearance based object
tracking method. It employs mean shift analysis to identify a target candidate
region, which has the most similar appearance to the target model in terms
of intensity distribution.
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3.2.1 Similarity Measure

The similarity of two distributions can be expressed by a metric based on the
Bhattacharyya coefficient as described in [38]. The derivation of the Bhat-
tacharyya coefficient from sample data involves the estimation of the tar-
get density q and the candidate density p, for which we employ the his-
togram formulation. Therefore, the discrete density q̂ = {q̂u}u=1...m (with
∑m

u=1 q̂u = 1 ) is estimated from the m-bin histogram of the target model,
while p̂(y) = {p̂u(y)}u=1...m (with

∑m
u=1 p̂u = 1 ) is estimated at a given loca-

tion y from the m-bin histogram of the target candidate. Then at location y,
the sample estimate of the Bhattacharyya coefficient for target density q and
candidate density p(y) is given by

ρ(y) ≡ ρ [p̂(y), q̂] =
m

∑

u=1

√

p̂uq̂u (12)

The distance between two distributions can be defined as

d(y) =
√

1− ρ [p̂(y), q̂] (13)

3.2.2 Eye Appearance Model

To reliably characterize the intensity distribution of eyes and non-eyes, the
intensity distribution is characterized by two images: even and odd field im-
ages, resulting from de-interlacing the original input images. They are under
different illuminations, with one producing bright pupils and the other pro-
ducing dark pupils as shown in Figure 14. The use of two channel images to
characterize eye appearance represents a new contribution and can therefore
improve the accuracy of eye detection.

(a) (b) (c) (d)

Fig. 14. The eye images: (a)(b) left and right bright pupil eyes; (c)(d) corresponding
left and right dark pupil eyes

Thus, there are two different feature probability distributions of the eye target
corresponding to dark pupil and bright pupil images respectively. We use a
2D joint histogram, which is derived from the grey level dark pupil and bright
pupil image spaces with m = l × l bins, to represent the feature probability
distribution of the eyes. Before calculating the histogram, we employ a convex
and monotonic decreasing kernel profile k to assign a smaller weight to the
locations that are farther from the center of the target. Let us denote by
{xi}i=1...nh

the pixel locations of a target candidate that has nh pixels, centered
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at y in the current frame. The probability distribution of the intensity vector
I = (Ib, Id), where Id and Ib represent the intensities in the dark and bright
images respectively, in the target candidate is given by

p̂u(y) =

∑nh

i=1 k(‖y−xi

h
‖

2
)δ[b(xi)− u]

∑nh

i=1 k(‖y−xi

h
‖

2
)

where u=1,2,..,m (14)

in which the b(xi) is the index to a bin in the joint histogram of the intensity
vector I at location xi, h is the radius of the kernel profile and δ is the Kro-
necker delta function. The eye model distribution q can be built in a similar
fashion.

3.2.3 Algorithm

After locating the eyes in the previous frame, we construct an eye model q̂
using Equation 14 based on the detected eyes in the previous frame. We then
predict the locations y0 of eyes at current frame using the Kalman filter. Then
we treat y0 as the initial position and use the mean shift iterations to find the
most similar eye candidate to the eye target model in the current frame using
the following algorithm.

(1) Initialize the location of the target in the current frame with y0, then
compute the distribution {p̂u(y0)}u=1...m using Equation 14 and evaluate
similarity measure (Bhattacharyya coefficient) between the model density
q̂ and target candidate density p̂

ρ[p̂(y0), q̂] =
m

∑

u=1

√

p̂u(y0)q̂u (15)

(2) Derive the weights {wi}i=1...nh
according to

wi =
m

∑

u=1

δ[b(xi)− u]

√

q̂u

p̂u(y0)
(16)

(3) Based on the mean shift vector, derive the new location of the eye target

y1 =

∑nh

i=1 xiwig(‖y0−xi

h
‖

2
)

∑nh

i=1 wig(‖y0−xi

h
‖

2
)

(17)

where g(x) = −k′(x) and then update {p̂u(y1)}u=1...m, and evaluate

ρ[p̂(y1), q̂] =
m

∑

u=1

√

p̂u(y1)q̂u (18)
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(4) While ρ[p̂(y1), q̂] < ρ[p̂(y0), q̂]
Do y1 ← 0.5(y0 + y1)
This is necessary to avoid the mean shift tracker moving to an incorrect
location.

(5) If ‖y1 − y0‖ < ε, stop, where ε is the termination threshold
Otherwise, set y0 ← y1 and go to step 1.

The new eye locations in the current frame can be achieved in a few iterations
compared to the correlation based approaches, which must perform an ex-
haustive search around the previous eye location. Due to the simplicity of the
calculations, it’s much faster than correlation. Figure 15(b) plots the surface
for the Bhattacharyya coefficient of the large rectangle marked in Figure 15(a).
The mean shift algorithm exploits the gradient of the surface to climb, from
its initial position, to the closest peak that represents the maximum value of
the similarity measure.

(a) (b)

Fig. 15. (a) The image frame 13; (b) Values of Bhattacharyya coefficient correspond-
ing to the marked region(40×40 pixels) around the left eye in frame 13. Mean shift
algorithm converges from the initial location(∗) to the convergence point(◦), which
is a mode of the Bhattacharyya surface.

3.2.4 Mean Shift Tracking Parameters

The mean shift algorithm is sensitive to the window size and the histogram
quantization value. In order to obtain the best performance of the mean shift
tracker for a specific task, we have to find the appropriate histogram quanti-
zation value and the proper window size. We choose several image sequences
and manually locate the left eye positions in these frames. Then we run the
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mean shift eye tracker under different window sizes and different histogram
quantization values, we evaluate the performance of mean shift eye tracker
under those conditions using the following criterion:

αerror =
N

∑

i=1

√

(yi(tracked)− y
′

i(manual))2/N (19)

where N is the number of image frames and yi(tracked) is the left eye location
tracked by mean shift tracker in the image frame i; y

′

i(manual) is the left eye
location manually located by the person in the image frame i. We treat the
manually selected eye locations as the correct left eye locations.

(a) (b)

Fig. 16. The error distribution of tracking results: (a) error distribution vs. intensity
quantization values and different window sizes; (b) error distribution vs. quantiza-
tion levels only.

The intensity histogram is scaled in the range of 0 to 255/(2q), q is the quan-
tization value. The results are plotted in Fig. 16. From figure 16 (a) and (b),
we can determine the optimal quantization level to be 25 while the optimal
window size is 20*20 pixels. Figure 17 shows some tracking results with these
parameters.

The mean-shift tracker, however, is sensitive to its initial placement. It may
not converge or converge to a local minimum if placed initially far from the
optimal location. It usually converges to the mode, closest to its initial posi-
tion. If the initial location is in the valley between two modes, the mean shift
may not converge to any (local maxima) peaks as shown in Figure 18. This
demonstrates the sensitivity of mean-shift tracker to initial placement of the
detector.
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(frame 1) (frame 13)

(frame 27) (frame 46)

(frame 63) (frame 88)

(frame 100) (frame 130)

Fig. 17. Mean shift tracking both eyes with initial search area of 40*40 pixels, as
represented by the large black rectangle. The eyes marked with white rectangles in
frame 1 are used as the eye model and the tracked eyes in the following frames are
marked by the smaller black rectangles.

3.2.5 Experiments On the Mean Shift Eye Tracking

In order to study the performance of the mean-shift tracker, we apply it to
sequences that contain images with weak or partially occluded or no bright
pupils. We noticed when bright pupils disappear due to either eye closure or
face rotations as shown in Figure 19, the Kalman filter fails because there are
no bright pupil blobs in the difference images. However the mean shift tracker
compensates for the failure of bright pupil tracker because it is an appear-
ance based tracker that tracks the eyes according to the intensity statistical
distributions of the eye regions and does not need bright pupils. The black
rectangles in Figure 19 represent the eye locations tracked by the mean shift
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(a) (b)

Fig. 18. (a) Image of frame 135, with the initial eye position marked and initial search
area outlined by the large black rectangle. (b) Values of Bhattacharyya coefficient
corresponding to the marked region(40×40 pixels) around the left eye in (a). Mean
shift algorithm can not converge from the initial location(◦)(which is in the valley
of two modes) to the correct mode of the surface. Instead, it is trapped in the valley.

tracker.

(a) (b)

(c) (d)

Fig. 19. Bright pupil based Kalman tracker fails to track eyes due to absence of bright
pupils caused by either eye closure or oblique face orientations. The mean shift eye
tracker, however, tracks eyes successfully as indicated by the black rectangles.
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4 Combining Kalman Filtering Tracking with Mean Shift Tracking

The mean shift tracking is fast and handles noise well. But it is easily distracted
by nearby similar targets such as the nearby region that appears similar to
the eyes. This is partially because of the histogram representation of the eyes
appearance, which does not contain any information about the relative spa-
tial relationships among pixels. The distraction manifests primarily as errors
in the calculated center of the eyes. The mean shift tracker does not have
the capability of self-correction and the errors therefore tend to accumulate
and propagate to subsequent frames as tracking progresses and eventually the
tracker drifts away. Another factor that could lead to errors with eye tracking
based on mean shift is that the mean shift tracker can not continuously update
its eye model despite the fact that the eyes look significantly different under
different face orientations and lighting conditions as demonstrated in the left
column of Figure 20. We can see that the mean shift eye tracker can not iden-
tify the correct eye location when the eyes appear significantly different from
the model eyes images due to face orientation change.

To overcome these limitations with mean shift tracker, we propose to combine
the Kalman filter tracking with the mean shift tracking to overcome their re-
spective limitations and to take advantage their strengths. The two trackers
are activated alternately. The Kalman tracker is first initiated, assuming the
presence of the bright pupils. When the bright pupils appear weak or dis-
appear, the mean shift tracker is activated to take over the tracking. Mean
shift tracking continues until the reappearance of the bright pupils, when the
Kalman tracker takes over. To avoid the mean shift tracker drift away, the
target eye model is continuously updated by the eyes successfully detected
by the Kalman tracker. The right column of Figure 20 shows the results of
tracking the same sequence with the integrated eye tracker as the one shown
on left column. It is apparent that the integrated tracker can correct the drift
problem of the mean shift tracker.

5 Experimental Results

In this section, we will present results from an extensive experiment we con-
ducted to validate the performance of our integrated eye tracker under different
conditions.
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5.1 Eye tracking Under Significant Head Pose Changes

Here, we show some qualitative and quantitative results to demonstrate the
performance our tracker under different face orientations. Figure 21 visually
shows the typical tracking results for a person undergoing significant face pose
changes, where the black rectangles represent the mean-shift tracker while the
white rectangles represent the Kalman filter tracker.

Additional results for different subjects under significant head rotations are
shown in Figure 22. We can see that under significant head pose changes,
the eyes will be either partially occluded or the appearance of eyes will be
significantly different from the eyes with frontal faces. But the two eye trackers
alternate reliably, detecting the eyes under different head orientations, with
eyes either open, closed or partially occluded.

To further confirm this quantitatively, we manually located the positions of the
eyes for two typical sequences and they serve as the ground-truth eye positions.
The tracked eye positions are then compared with the ground-truth data. The
results are summarized in Tables 2 and 3. From the tracking statistics in
Tables 2 and 3, we can conclude that the integrated eye tracker is much more
accurate than the Kalman filter pupil tracker, especially for the closed eyes and
partially occluded eyes due to face rotations. These results demonstrate that
this combination of two tracking techniques produces much better tracking
results than using either of them individually.

5.2 Eye Tracking Under Different Illuminations

In this experiment, we demonstrate the performance of our integrated tracker
under different illumination conditions. We vary the light conditions during
the tracking. The experiment included first turning off the ambient lights,
followed by using a mobile light source and positioning it close to the people to
produce strong external light interference. The external mobile light produces
significant shadows as well as intensity saturation on the subject’s faces. Figure
23 visually shows the sample tracking results for two individuals. Despite
these somewhat extreme conditions, our eye tracker managed to track the eyes
correctly. Because of the use of IR, the faces are still visible and eyes are tracked
even under darkness. It is apparent that illumination change does not adversely
affect the performance of our technique as much. This may be attributed to
the simultaneous use of active IR sensing, image intensity normalization for
eye detection using SVM, and the dynamic eye model updating for the mean
shift tracker.

26



Table 2
Tracking statistics comparison for both trackers under different eyes conditions
(open, closed, occluded) on the first person

Image Bright pupil Combined

600 frames tracker tracker

Left eye (open)

452 frames 400/452 452/452

Left eye (closed)

66 frames 0/66 66/66

Left eye (occluded)

82 frames 0/82 82/82

Right eye (open)

425 frames 389/425 425/425

Right eye (closed)

66 frames 0/66 66/66

Right eye (occluded)

109 frames 0/109 109/109

5.3 Eye tracking with glasses

The significant eye appearance changes with glasses. Furthermore, the glares
on the glasses caused by light reflections present significant challenges to eye
tracking with glasses. In Figure 24, we show the results of applying our eye
tracker to persons wearing glasses. We can see that our eye tracker can still
detect and track eyes robustly and accurately for people with glasses. How-
ever, our study shows that when the head orientation is such that the glares
completely occludes the pupils, our tracker will fail. This is a problem that we
will tackle in the future.

5.4 Eye tracking with multiple people

Our eye tracker not only can track the eyes of one person but also can track
multiple people’s eyes simultaneously. Here, we show the results of applying
our eye tracker to simultaneously track multiple people’s eyes with different
distances and face poses to the camera. The result is presented in Figure 25.
This experiment demonstrates the versatility of our eye tracker.
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Table 3
Tracking statistics comparison for both trackers under different eyes conditions
(open, closed, occluded) on the second person

Image Sequence 1 Bright pupil Combined

600 frames tracker tracker

Left eye (open)

421 frames 300/421 410/421

Left eye (closed)

78 frames 0/78 60/78

Left eye (occluded)

101 frames 0/101 60/101

Right eye (open)

463 frames 336/463 453/463

Right eye (closed)

78 frames 0/78 78/78

Right eye (occluded)

59 frames 0/59 59/59

5.5 Occlusion Handling

Eyes are often partially or completely occluded either by face due to oblique
face orientations or by hands or by other objects. A good eye tracker should
be able to track eyes under partial occlusion and be able to detect complete
occlusion and re-detect the eyes after the complete occlusion is removed. In
Figure 26, two persons are moving in front of the camera, and one person’s
eyes are occluded by another’s head when they are crossing. As shown in
Figure 26, when the rear person moves from right to left, the head of the
front person starts to occlude his eyes, beginning with one and then two eyes
getting completely occluded. As shown, our tracker can still correctly track
an eye even though it is partially occluded. When both eyes are completely
occluded, our tracker detects this situation. As soon as the eyes reappear in
the image, our eye tracker will capture the eyes one by one immediately as
shown in Figure 26. This experiment shows the robustness of our method to
occlusions.
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6 Summary

In this paper, we present an integrated eye tracker to track eyes robustly under
various illuminations and face orientations. Our method performs well regard-
less of whether the pupils are directly visible or not. This has been achieved
by combining an appearance based pattern recognition method (SVM) and
object tracking (Mean Shift) with a bright-pupil eye tracker based on Kalman
filtering. Specifically, we take the following measures. First, the use of SVM for
pupil detection complements with eyes detection based on bright pupils from
IR illumination, allowing to detect eyes in the presence of other bright ob-
jects; second, two channels (dark-pupil and bright-pupil eye images) are used
to characterize the statistical distributions of the eye, based on which a Mean
Shift eye tracker is developed. Third, the eye model is continuously updated by
the eye successfully detected from the last Kalman tracker to avoid error prop-
agation with the mean shift tracker. Finally, the experimental determination of
the optimal window size and quantization level for mean shift tracking further
enhances the performance of our technique. Experiments show these enhance-
ments have led to a significant improvement in eye tracking robustness and
accuracy over existing eye trackers, especially under various conditions iden-
tified in section 1. Furthermore, our integrated eye tracker is demonstrated to
be able to handle occlusion, people with glasses, and to simultaneously track
multiple people of different poses and scales.

The lessons we learn from this research are: 1) perform active vision (e.g.
active IR illumination) to produce quality input images and to simplify the
subsequent image processing; 2) combine different complementary techniques
to utilize their respective strengths and to overcome their limitations, leading
to a much more robust technique than using each technique individually.
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(a) (A)

(b) (B)

(d) (D)

(e) (E)

(f) (F)

Fig. 20. An image sequence to demonstrate the drift-away problem of the mean shift
tracker as well as the correction of the problem by the integrated eye tracker. Frames
(a)(b)(d)(e)(f) show the drift away case of the mean Shift eye tracker; for the same
image sequences, (A)(B)(D)(E)(F) shows the improved results of the combined eye
tracker. White rectangles show the eyes tracked by the Kalman tracker while the
black rectangles show the tracked eyes by the mean shift tracker.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 21. Tracking results of the combined eye tracker for a person undergoing sig-
nificant face pose change. White rectangles show the eyes tracked by the Kalman
tracker while the black rectangles show the eyes tracked by the mean shift tracker.
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(a)

(b)

(c)

(d)

Fig. 22. Tracking results of the combined eye tracker for four image sequences
(a),(b),(c) and (d) under significant head pose changes. White rectangles show the
eyes tracked by the Kalman tracker while the black rectangles show the eyes tracked
by the mean shift tracker.
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(a)

(b)

Fig. 23. Tracking results of the combined eye tracker for two image sequences (a) and
(b) under significant illumination changes. White rectangles show the eyes tracked
by the Kalman tracker while the black rectangles show the eyes tracked by the mean
shift tracker.

(a)

(b)

Fig. 24. Tracking results of the combined eye tracker for two image sequences (a),
(b) with persons wearing glasses. White rectangles show the eyes tracked by the
Kalman tracker while the black rectangles show the eyes tracked by the mean shift
tracker.
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Fig. 25. Tracking results of the combined mean eye tracker for multiple persons.
White rectangles show the eyes tracked by the Kalman tracker while the black
rectangles show the eyes tracked by the mean shift tracker.

Fig. 26. Tracking results of combined eye tracker for an image sequence involving
multiple persons occluding each other’s eyes. White rectangles show the eyes tracked
by the Kalman tracker while the black rectangles show the eyes tracked by the mean
shift tracker.
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