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Abstract

This paper describes a novel real-time 3D gaze estimation system.
The system consists of two cameras and two IR light sources. There
are three novelties in this method. First, in our system, two IR
lights are mounted near the centers of the stereo cameras, respec-
tively. Based on this specific configuration, the 3D position of the
corneal center can be simply derived by the 3D reconstruction tech-
nique. Then, after extracting the 3D position of the “virtual pupil”
correctly, the optical axis of the eye can be obtained directly by con-
necting the “virtual pupil” with the corneal center. Second, we sys-
tematically analyze the noise in our 3D gaze estimation algorithm
and propose an effective constraint to reduce this noise. Third, to
estimate the user-dependent parameters (i.e. the constraint parame-
ters and the eye parameters), a simple calibration method is pro-
posed by gazing at four positions on the screen. Experimental re-
sults show that our system can accurately estimate and track eye
gaze under natural head movement.

Keywords: Gaze estimation, stereo cameras, noise reduction

1 Introduction

Gaze tracking is the procedure of determining the point-of-gaze in
the space, or the visual axis of the eye. Gaze tracking systems are
primarily used in the Human Computer Interaction (HCI) and in
the analysis of visual scanning pattern. In HCI, the eye gaze can be
served as an advanced computer input [Jacob 1991] to replace the
traditional input devices such as mouse pointer [Zhai et al. 1999].
Also, the graphic display on the screen can be controlled by the
eye gaze interactively [Zhu and Ji 2004]. Since the visual scanning
patterns are closely related to the the person’s attentional focus, the
cognitive scientists use the gaze tracking system to study human’s
cognitive processes [Liversedge and Findlay 2000],[Mason et al.
2004].

In general, the eye gaze estimation algorithms can be classified into
two groups: 2D mapping based gaze estimation methods and 3D
direct gaze estimation methods. For the 2D mapping-based gaze
estimation methods, the eye gaze is estimated from a mapping func-
tion by inputting a set of 2D eye features which are extracted from
the eye images. For example, the widely used Pupil Center Corneal
Reflection(PCCR) technique ([Huchinson et al. 1989], [Morimoto
and Mimica 2005], [LC 2005], [ASL 2006], [SM 2007]) is based
on the relative position between the centers of corneal reflection
(glint) generated by the light source and the pupil. After the pupil
and the glint are extracted from the image, the 2D pupil-glint vector
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is mapped to the gaze point on the screen by a mapping function.
PCCR technique has been proved to be the most popular and has
the advantage over the other methods in that the eye features can be
easily and robustly extracted [C.H.Morimoto et al. 2000].

However, most of existing eye gaze tracking systems based on the
2D PCCR method have two common drawbacks: first, because
the mapping function is person-dependent, the user has to perform
complex experiment to calibrate the parameters of the mapping
functions. For example, in the calibration procedure of [LC 2005],
the subject need to gaze at 9 evenly distributed points on the screen
or gaze at 12 points for higher accuracy. Second, if the head moves
away from the original position where the user performed the gaze
calibration, the accuracy of the these gaze tracking systems drops
dramatically. In [Morimoto and Mimica 2005], they report detailed
data showing how the calibrated gaze tracking systems decay as the
head moves away from original position. So, the user has to keep
his head unnaturally still.

In order to improve the tolerance of the head movement, some
methods have been proposed to adapt the 2D mapping function to
different head positions. In [Zhu and Ji 2004], the head position is
included as an input into the mapping function implicitly, but low
accuracy around 5° is achieved. In [Zhu and Ji 2005], a compli-
cated model is proposed to eliminate the head motion effect on the
gaze mapping function so that the 2D mapping-based method can
work under natural head movement with a much better accuracy,
around 1°.

Different from the 2D mapping-based gaze estimation, the 3D gaze
estimation method is based on the structure of the eyeball and di-
rectly extracts the 3D direction of the gaze (visual axis). In our
proposed method, the 3D eye features (the corneal center and the
pupil center) can be estimated directly by the 3D reconstruction
technique. Then, we propose a method to effectively reduce the er-
ror in the 3D eye features. Finally, the visual axis is estimated from
the refined 3D features, and the gaze point on the screen is directly
obtained by intersecting the visual axis with the screen. Since this
method is not constrained by the head position, the complicated
head motion elimination model can be avoided.

2 Related Work

Several techniques have been proposed to estimate the 3D direction
of gaze directly, such as [Zhu and Ji 2007], [Morimoto et al. 2002],
[Beymer and Flickner 2003], [Wang and Sung 2002], [Shih and Liu
2004], [Guestrin and Eizenman 2006].

A simple method for estimating eye gaze under free head move-
ment, and without calibration is suggested by Morimoto et al [Mo-
rimoto et al. 2002]. They use one camera and two IR light sources
: one light source is used to generate the bright pupil image, and
the other one is used to generate the dark pupil image. Because
the corneal surface can be modeled as a sphere convex mirror, by
assuming the paraxial rays from the light sources, it is possible to
compute the 3D corneal center. A set of user dependent parameters
are used in this method, but they don’t give a method to estimate
these parameters. Furthermore, no working system is built from
the proposed technique. Only the accuracy of about 3° is reported
using synthetic images.

In [Zhu and Ji 2007], they also assume the sphere convex corneal



surface and the paraxial rays. They use a set of stereo cameras and
two IR light sources with known positions. First, they compute the
3D positions of two “virtual lights” inside the cornea. Then the
“virtual lights” are connected with the actual lights, respectively.
The corneal center position is derived from the intersection of the
two lines. This method allows free head movement. However, its
accuracy drops very fast when the subject leaves away from the
camera and the image resolution decreases as a result.

[Shih and Liu 2004] propose a novel method to estimate the 3D
gaze direction by using multiple cameras and multiple light sources.
In their method, there is no need to know the user-dependent para-
meters of the eye. However, because the glints and the pupil center
need to be extracted very accurately to reduce the noise, they use
very narrow view zoom-in cameras to focus on the eye and get high
resolution eye image. However, this will limit the space of head
movement.

To allow free head movement, some 3D gaze estimation systems
combine the wide view face camera with the narrow view eye cam-
era. For example, Wang and Sung [Wang and Sung 2002] combine
a face pose estimation system with a narrow FOV zoom-in camera
(focal length=55mm) to compute the gaze direction. In [Beymer
and Flickner 2003], Beymer and Flicker use a more complicated
system, which includes two sets of stereo system. One wide an-
gle stereo system for head detection, and one narrow FOV stereo
system for high resolution eye tracking. After a set of eye image
features are extracted, a complicated 3D eye model is fitted to these
features via a nonlinear estimation technique. However, this numer-
ical fitting process is very complicated in computation.

In [Guestrin and Eizenman 2006], they summarize the previous
3D estimation methods and give a general mathematical model for
gaze estimation system that utilized the estimates of the centers of
the pupil and one or more glints. However, in their mathemati-
cal model, there are many non-linear equations. They solve these
equations with numerical method. It is not only complicated but
also unstable when there is some noise.

In summary, most of the existing 3D gaze tracking techniques have
the following limitations. (1) First, because the 3D gaze estimation
is very sensitive to the image noise, it need to extract the eye fea-
tures very accurately. Most of these systems use zoom-in cameras
to capture high-resolution eye images. However, this narrow FOV
camera will limit the head movement. Although another wide FOV
system can be used to control the eye camera to allow a larger head
movement, the system is very complicated. (2) Second, most of the
3D gaze algorithms need to solve non-linear equations. The numer-
ical solutions for these non-linear equations are usually complicated
and sensitive to noise.

In our 3D gaze tracking system, we propose to use a simple stereo
camera system with 8mm lens to get the image of the whole face,
so that the head can move in a large region without losing the eye.
In addition, we located two IR lights near the camera centers. This
system configuration not only allows easy pupil and glint detection
due to the bright/black pupil effect, but also simplify the equations
to estimate the 3D corneal center. Finally, to accurately estimate the
3D virtual axis, we impose a constraint to refine the extracted 3D
eye features from the stereo camera system. We will show that the
constraint can effectively improve the final gaze estimation result.

This new system is an extension to [Zhu and Ji 2007]. Compared
with the previous work, our new system has three improvements :
(1) Based on our special configuration of the lights and the cameras,
the 3D corneal center position can be derived directly by linear tri-
angulation method. (2) In previous work [Shih and Liu 2004], the
noise analysis of the 3D point estimation was proposed. However,
they didn’t analyze the subsequent noise in gaze estimation. In our
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work, we analytically show that even the small noise in 3D point
estimation will cause very large noise in gaze estimation. So, we
propose a constraint to reduce the noise in gaze estimation. Because
of this noise reduction method, our gaze estimation can work even
on low-resolution eye image. (3) To estimate the user dependent
parameters, a simple 4-point calibration procedure is proposed.

3 3D gaze estimation algorithm
3.1 Eyeball structure

As shown in Figure 1, the eyeball is made up of the segments of
two spheres with different sizes [Oyster 1999]. The anterior smaller
segment is the cornea. The cornea is transparent, and the pupil is
inside the cornea. Optical axis of the eye is defined as the 3D line
connecting the center of the pupil (p*) and the center of the cornea
(c). The visual axis is the 3D line connecting the corneal center
(c) and the center of the fovea (i.e. the highest acuity region of the
retina). Since the gaze point is defined as the intersection of visual
axis rather than the optical axis with the scene, the relation between
these two axes has to be modeled. The angle between the optical
axis and visual axis is named as kappa, which is a constant value
for each person.

Eyeball

Cornea

) i s I —
. cal axis— .
. ")Af) Op
Visual axis—— |

Screen

Figure 1: The structure of the eyeball.
3.2 Computing the 3D corneal center

Our system is composed of a set of stereo cameras and two IR lights
which are mounted near the camera centers, respectively (Figure 2).
The reflection ray diagram of our system is shown in Figure 3. (In
this diagram, the lights are located on the camera centers.) When
light passes through the eye, the sphere surface of the cornea will
act like a reflective surface, and the reflection point on the corneal
surface is called glint.

Figure 2: Our stereo gaze tracking system.

In Figure 3, ¢ is the corneal center. ,, and q,, are the corneal
reflections (glints) on the corneal surface. uy; and uo2 are the glint
centers in the image. According to the properties of the convex mir-
ror, an incident ray that is directed towards the center of curvature
of a mirror is reflected back along its own path (since it is normally



Light 2 Image of glint g;

Glint of Light 2
Cornea
Center

Nodal point of camera 2

Nodal point of camera 1

Glint of Light 1

Figure 3: Ray diagram to estimate Corneal Center. (c)

incident on the mirror). Therefore, as shown in Figure 3, because
the two LED light 1; and 1> are located at the origin of the camera
01 and o> respectively, the glint image u11 (u22), the origin of the
camera 01(02) and the curvature center of the cornea ¢ will be co-
linear. Thus, the 3D location of the corneal center ¢ can be obtained
by intersecting the line u;107 and U2202 as follows:

{ ¢ =01+ k11101 (1

¢ = 02 + koli2202

Actually, u;1 and uz2 can be seen as the images of the 3D point ¢ in
two cameras. So we can obtain ¢ using traditional 3D reconstruc-
tion techniques. In practice, we use triangulation 3D reconstruction
method known as triangulation [Trucco and Verri 1998] to obtain c.

Here, we make an important assumption : the LED light is located
at the origin of the camera. This assumption is validated in Appen-
dix B.1.

3.3 Computing the 3D pupil center

As discussed earlier, the optical axis can be obtained by connecting
the corneal center ¢ and the pupil center p*. However, due to the
refraction on the corneal surface, we can only see the virtual image
of the pupil (p), instead of the pupil itself (p*), as shown in Figure
4.

Image of virtual pupil

Pupil Virtual Pupil

. normal at the
point of refraction

Image of virtual pupil

Figure 4: Ray diagram to estimate virual pupil(p) and optical axis.

vi and vo are images of the virtual pupil (p) in the two cam-
eras. From these two image, we can also use the 3D reconstruction
method to estimate the 3D position of p. Due to the symmetry of
the pupil, the virtual pupil (p) is still in the optical axis of the eye.
As a result, the virtual pupil (p) and the corneal center (c¢) can be
used to estimate the optical axis directly.

Here, we make another important assumption: the virtual pupil is
on the optical axis. This assumption is validated in Appendix B.2.

3.4 Reducing noise in 3D reconstruction

After we obtain the virtual pupil and the corneal center positions,
we can connect them to get the optical axis. However the 3D re-
construction method in Section 3.2 and 3.3 is not accurate. There
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is a noise (=1mm, see Appendix A.1) in the estimated 3D virtual
pupil and corneal center positions. Because the typical distance
between the pupil and the corneal center is only 4.2mm ([Guestrin
and Eizenman 2006]), 1mm noise will cause significant noise in the
estimated optical axis and the subsequent gaze estimation. (Please
refer to Appendix A for the detailed noise analysis.) In this section,
we will present a method to reduce this kind of 3D reconstruction
noise.

In our experiment, the subject is asked to fixate on 9 points on the
screen sequentially, and 60 estimates of point-of-gaze are obtained
for each fixation point. If we directly compute the virtual pupil and
corneal center positions by 3D reconstruction, the result is shown
as Figure 5(A). The solid circles are the intended fixation points,
and the small crosses are the estimated gaze points. We can see that
there is a significant noise for each fixation point, as indicated by a
large spread in the estimated gaze position. (Here, eye parameters
for this subject are already obtained through the calibration proce-
dure in Section 4.2. And the results of Figure 5(A) and 5(B) are
using the same parameters.)

This noise comes from the 3D reconstruction noise. In Appendix
A.1, we analytically show that this 3D noise is mainly on the z
direction and that it will cause the gaze estimation noise like Figure
5(A).
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(A) Experimental result without constraint (B) Experimential result with constraint
Figure 5: Gaze estimation result before and after using K con-
straint. The solid circles are different fixation points and “+” s are
the estimated gaze points.

To minimize the 3D reconstruction error, we impose a constraint
on the virtual pupil-cornea distance: we assume this distance is a
constant (K) for each person. Then we change the virtual pupil’s
z-coordinate while keeping x and y coordinates fixed to satisfy this
constraint. For example, given the estimated corneal center ¢ =
(e, Ye, ze)” and the virtual pupil center p = (2p, yp, 2p) ", We
can recompute the z-coordinate of p as follows:

Z;: = Zc — \/K2 - (xc - xp)Q - (yc - yp)2 2)
Thus, the refined pupil is p’ = (7, yp, z)"
There are two reasons for setting this constraint:

1. First, for each person, the distance between the corneal center
and the pupil center is a constant. Although we actually use
virtual pupil instead of pupil in our algorithm, the experiment
result in Appendix B.2 shows that the refraction effect will not
cause the distance between the corneal center and the virtual
pupil change too much (<0.1mm)

2. Second, the noise of 3D reconstruction is mainly on the z-
coordinate (see Appendix A.1). So we assume the x and y co-
ordinates are accurate, and thus only refine the z-coordinate.

For example, when we set this distance (K) to be 5.5mm, we see
that the noise is reduced effectively as shown in Figure 5.B. The



constraint K is a subject-specific parameter. We will estimate it by
a calibration procedure in section 4.2.

3.5 Visual axis estimation

After we use the constraint to refine the optical axis, we try to use
the Kappa angle to transfer the optical axis to visual axis. Here,
we use the same method as in [Guestrin and Eizenman 2006]. The
optical axis is transferred to visual axis by adding a horizontal angle
(a) and a vertical angle (3). The two angles are subject dependent,
and can be obtained by the calibration process in section 4.2.

4 Parameter Estimation

4.1 System (camera & screen) parameters estimation

Two steps are performed to calibrate the system. First, the para-
meters of the stereo camera system are obtained through camera
calibration [Zhang 2000]. The second step is to obtain the 3D posi-
tions of the computer screen. Since the screen is located behind the
view of the stereo camera system, it cannot be observed directly by
the cameras. Therefore, similar to [Beymer and Flickner 2003], a
planar mirror with a set of fiducial markers attached to the mirror
surface is utilized. With the help of the planar mirror, the virtual
images of the screen reflected by the mirror can be observed by the
cameras. Thus, the 3D location of the screen can be calibrated after
knowing the virtual image of it.

4.2 Subject-specific eye parameters estimation

The three subject-specific eye parameters (K, «, [3) are obtained
through a calibration procedure that is preformed once for each sub-
ject.

In the calibration procedure, the subject is asked to fixate on 4
evenly distributed reference points that are presented on the screen
sequentially (Theoretically, we only need 2 points to do calibration.
Because of noise, we finally use 4 points to add redundancy and
improve the robustness). During calibration, the subject is not al-
lowed to move head. For each fixation point, 8 estimates of each
gaze points are obtained and their median is computed. Using the
median gaze points, the three eye parameters are optimized to min-
imize the error between the reference points on the screen and the
estimated gaze points.

But in practice, if we optimize the three parameters together, this
non-linear optimization problem is very slow to converge, and it can
converge to different local minima. So, to solve this optimization
problem more efficiently and robustly, we take the following 3 steps
to optimize K and «, ( separately.

4.2.1 Step 1: K Calibration

First, we fix both the « and 3 as zero, and optimize K to minimize
the relative distance error.

As shown in Figure 6, the four “o0”s indicate the reference points
which are displayed on the screen. To show the effect of K, we
fix (a, ) = (0,0) and only change the K value from 4.5 to 6.5
(Figure 6 (a)). The “*”’s are the estimated gaze points on the screen
when using different K values (The subject fixates on each refer-
ence point for 8 frames, we just show the “median” gaze point for
each reference point.) The estimated gaze points with K=4.5, 5.1,
and 6.5 are indicated. Obviously, when the K increases, the relative
distance between the 4 gaze points decreases. So we can select the
best K which can keep the true relative distance, as shown in Figure
6 (b)

Let the coordinates of the 4 reference points be
r; = (z;,9,.),i = 1..4 and the coordinates of the four esti-
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Figure 6: (a) The estimated points with different K ((o, 8) =
(0,0)). The gaze points when K=4.5, 5.1 and 6.1 are pointed
out. (b) The selected K=5.1 can minimize the relative distance er-
ror (Eq.3). (c) The estimated gaze points after Kappa calibration.
(“0”s show the reference points which are displayed on the screen
and “*”s show the estimated median gaze points.)

mated gaze points be p;, = (z5,y.),i = 1...4. We optimize K to
minimize the relative distance error in Eq. 3. Figure 6(b) shows the
selected K, and the estimated gaze points with the selected K.

4
Err:ZH(I‘i*l‘l)*(Pi*pl)H G
i=2

4.2.2 Step 2: Kappa(a,() Calibration

After we obtained K, we just need to optimize « and 3 to minimize

the distance between the gaze points to the reference points:
4

Err =" |ri—p,]| @

i=1

In calibration procedure, the distance between the eyeball and the
screen is a constant (D). So, adding the small angles « and (§ will
cause the estimated gaze point move an approximately constant dis-
tance oD horizontally and 5D vertically on the screen.

For example, based on the K value in Figure 6(b), we finally obtain
the optimized o« = —3.9°, 8 = 1.0°. Using these angles, we can
estimate the gaze points which are shown as “*”s in Figure 6(c).
Compared with Figure 6(b), we can see that all the four gaze points
undergo almost the same shift.

4.2.3 Step 3: Global Calibration

Finally, we use the estimated K, o and (3 above as our initial values,
and optimize them together according to the objective function in
Eq. 4. Because the parameters are already optimized separately,
this non-linear optimization procedure can converge to the closest
minimum very quickly using simplex search [Lagarias et al. 1998].

Finally, the optimized parameters are K= 5.06, « = —4.11°, 5 =
1.22°. We see that they are very closed to their initial values. With
these parameters, the average error between the estimated gaze
points and the reference points is about 13 pixels (= 3.7mm). Con-
sidering the distance from the subject to the screen (500mm), the
calibration error is 0.42°.

5 Pupil and Glint Tracking

Our gaze tracking system starts with the detection and tracking of
the user’s pupil, as well as glints. In previous sections, we show that
the special setup of our system (two lights located on the camera
centers) can simplify the gaze estimation procedure. In this section,
we will show that this setup can also make it convenient to perform
pupil/glint tracking.

5.1 Pupil Detection and Tracking

Based on the differential lighting scheme [Haro et al. 2000], the
pupil can be detected robustly by using the difference image be-
tween the dark pupil image and the bright pupil image.
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In order to achieve the proposed differential lighting scheme for our
stereo camera system, a circuitry has been developed to synchronize
the two IR lights with the even and odd fields of the two interlaced
images from the two cameras, so that one light can be either on-axis
or off-axis light for different cameras.

Specifically, when the left light is on, the even fields of the images
are grabbed by the cameras (Figure 7(a) and (b)). Because the left
left light is the on-axis light for left camera and the off-axis light
for right camera, the even field of the left camera captures a bright
pupil image (Figure 7(a)), while the even field of the right camera
captures a dark pupil image ( Figure 7(b)). On the other hand, when
the right light is on, the odd field of the left camera captures the
dark pupil image, and the odd field of the right camera captures the
bright pupil image.

(@ ) (b)

Figure 7: Even field from stereo cameras (Left light is on): (a) a
bright pupil in the even field of the left camera, and (b) a dark pupil
in the even field of the right camera.

Similar to the image subtraction method proposed in [Haro et al.
2000], the pupil blob can be located efficiently in the difference
image between the even-field and the odd-field images. In practice,
there are some non-pupil blobs in the difference image due to the
image noise. Therefore, an appearance-based SVM classification
technique [Zhu and Ji 2005] is utilized to identify the pupil blob
successfully. Once the pupil blob is detected, the pupil center can
be estimated accurately by ellipse fitting.

5.2 Glint Detection and Tracking

Via the proposed differential lighting scheme, the two glints can be
effectively separated into different field images. Therefore, unlike
most of other methods that will have more than one glints in the eye
image [Morimoto et al. 2002; Beymer and Flickner 2003; Shih and
Liu 2004], the difficulty of identifying these ambiguous glints can
be avoided by our method.

Actually, in our gaze estimation algorithm, we only use the lights’
own glints. For example, for the left camera, we only use the glint
of the left light. So, we only need to detect the glints in the two
bright pupil images from the left and the right cameras, respectively.

6 Gaze Estimation Accuracy

A prototype gaze system is built as shown in Figure 2. This sys-
tem uses two CCD cameras (MINTRON MTV-03K9HE) with 8mm
lenses. And two infrared lights (875nm) are attached on the cam-
eras. The image resolution of the cameras is 640 x 480 pixels, and
our system can run at approximately 25 fps on a PC with a Xeon
(TM) 2.80GHz CPU. In order to test the accuracy of the gaze track-
ing system, we did the following experiment.

First, the 4-point calibration procedure in Section 4.2 is needed for
each subject. After the calibration, a marker will display at nine
fixed locations on the screen randomly, and the user is asked to gaze
at the marker when it appears at each location. The nine marker
locations and the gaze points are shown in Figure 8. In order to test
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the accuracy in different distance. The experiment contains several
1-minute sessions. At each session, the user is required to position
his head at a different position. The allowed head movement region
is approximately 140 x 140 x 220 mm (widthxheight xdepth).
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Figure 8: Experiment result for the first subject. The nine circles
(8mm radius) indicate the maker locations on the screen and the
estimated gaze points are shown as “*”s. (X,Y axes are in mm)

6.1 Gaze estimation accuracy under head movement

The gaze estimation result accuracy (RMS error) for the first sub-
ject is summarized in Table 1. We can see that the most accurate
region is from 380mm to 500mm (< 1°). This is because the depth-
of-view of the camera is in this region. When the eye is too close
(< 360mm) or too far (> 520mm) from the camera, the eye im-
age will be blurred, and as a result, the glint and the pupil center
cannot be extracted accurately. Also, the vertical accuracy is lower
than the horizontal accuracy due to lower vertical image resolution.
Compared with Zhu et al’s 3D method [Zhu and Ji 2007], which
is shown in Table 2, we can see that our new 3D gaze estimation
algorithm is more accurate in the 380mm-500mm region. The av-
erage horizontal and vertical angular accuracies in the whole head
movement range are 0.76° and 0.95° respectively. In addition, in
this experiment, the allowed head movement in the X,Y directions
is around 140mm, respectively. So, our system can accurately esti-
mate the eye gaze under natural head movement.

Table 1: The 3D Gaze Estimation Accuracy for the First Subject

Distance to | Horizontal Vertical Total

the Camera | accuracy accuracy accuracy
360mm 7.4mm (0.91°) | 9.7mm (1.21°) 12.2mm (1.5°)
380mm 4.3mm(0.51°) 6.1mm(0.73°) 7.4mm (0.89°)
410mm 4.1mm(0.46°) 7.2mm(0.80°) 8.2mm (0.93°)
440mm 4.2mm(0.45°) 6.7mm(0.71°) 7.9mm (0.84°)
470mm 8.8mm(0.88° ) 6.6mm(0.67°) 11mm (1.1°)
500mm 7.4mm(0.70°) 7.9mm(0.75°) 10.8mm (1.0°)
520mm 12.5mm(1.15%) | 16.2mm(1.45°) | 20.4mm (1.9°)
580mm 12.1mm(1.03°) | 15.Imm(1.29°) | 19.3mm (1.7°)

Table 2: Zhu's 3D gaze estimation result

Distance to the Camera | Horizontal Accuracy | Vertical accuracy |

280mm 5.02mm (0.72°) 6.40mm (0.92°)
320mm 7.20mm(0.92°) 9.63mm(1.22°)

370mm 9.74mm(1.24°) 13.24mm(1.68°)
390mm 12.47mm(1.37°) 17.30mm(1.90°)
440mm 19.60mm(1.97°) 24.32mm(2.45° )

6.2 Gaze estimation accuracy on different subjects




To estimate the accuracy of the gaze estimation algorithm, we also
do the same experiment on 3 other subjects and none of them wears
glasses. The average gaze estimation accuracy for each subject is
shown in Table 3. In addition, the average horizontal and vertical
angular accuracies for all the 4 subjects are 0.77° and 0.95° re-
spectively, which is acceptable for many HCI applications, allowing
natural head movements.

Table 3: The Gaze Estimation Accuracy for Four Subjects

Subject | Horizontal | Vertical Total
accuracy | accuracy | accuracy

1 0.76° 0.95° 1.22°

2 0.93° 0.93° 1.32°

3 0.68° 0.74° 1.0°

4 0.73% 1.17° 1.38°

7 Conclusion

In this paper, a simple but robust method is proposed to estimate
the 3D gaze direction of the user under natural head movement in
real time. Via the properties of the convex mirror, we use a special
configured stereo camera system to estimate the 3D position of the
corneal center and pupil center. To reduce the noise of the estimated
3D position and the subsequent gaze estimation, we propose to use
a constraint to refine the result. Compared with other 3D gaze es-
timation systems, our system can avoid the complicated nonlinear
equations and the expensive zoom-in high resolution cameras. Af-
ter a simple 4 point calibration procedure, accurate eye gaze points
can be estimated under natural head movement.
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A Noise analysis in 3D gaze estimation

Due to the low resolution of the image, the detected glint and the
corneal center positions are not accurate. In this section, we will
discuss how these positional inaccuracies affect the estimated 3D
pupil and corneal center position, and the subsequent gaze estima-
tion.

A.1 Noise analysis in 3D reconstruction

In our algorithm, both the 3D pupil and corneal center are recon-
structed by triangulation method (section 3.2 and 3.3). So, first we
will discuss the 3D reconstruction noise in this method.

For simplicity, we make some assumptions on our stereo system
as shown in Figure 9. In our system, the two cameras are pinhole
cameras with the same focus length f. The two image planes are
on the same plane and at the same height. So a 3D point projected
on the same horizontal scan line in each of the two images. 0., 0;
are the origins of right and left camera respectively. In our system,
we use the right camera coordinate as our 3D coordinate system. b
denotes the distance between optical axes of the two cameras and
is usually referred to as the baseline of the system. S = (z,y, 2)
is the 3D point. It is projected onto the image coordinates (u,, v;)
and (ug,v;) in right and left camera respectively (Due to our as-
sumption, the vertical coordinates are the same: v, = wv;). The
pixel space of the image is d.

Thus, the 3D coordinates of S can be easily derived as:

T = buzujur
v =ty ®)
= bé-(ulfur)
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Right image

Left image

Figure 9: Stereo camera setup.

We can simulate the image noise by adding the same independent
gaussian noise to u,, vy, u;, v; respectively. Suppose the gaussian
noise has zero mean and variance o. Then, we try to compute the
resultant noise in 3D coordinates.

For example, the z coordinate depends only on u; and u,. By com-
puting the first-order Taylor expansion, we have:

s du
z—z+Jz(duT> (6)
. . . _ oz 9z _
where J, is the Jacobian matrix of z as J, = ( Bur  ou ) =
(s st )
6 (up—ur)? 6(up—ur)?

So the noise of z can be presented as its variance (u., u; have inde-
pendent gaussian noise with variance o2):

2 2712 r2
ainz<" 02>JT—2"” ™

0 o 2 02(u —up)d
Similarly, we can compute the noise in « and y coordinates as:

2 20°0(u +u?)

®)

(= )

2 2020%[(ug — ur)? 4 207]
v = (=, ) ©)

Since the equations in (5) are nonlinear, these expressions do not
hold exactly, but we use them as satisfactory approximations.

From Figure 9, we can also present the 2D image using 3D coordi-

nate as follows:
f

Uy = gx
w=L(b+2) (10)
U = 5—fzy

Combing 7, 8, 9 and 10, we can compute the noise as:

2 2525224
i
Oy _ T +(b+x) 1
o'g - 222 (1 )
2
7y _ b4y’
0'3 222

In our experiment, the distance between two camera is b = 70mm,
the typical distance between the camera and the subject is about
z = 450mm, and the allowed head movement in this distance is
x ~ (—105mm, 35mm),y ~ (—70mm, 70mm). Thus, the max-
imum ratio are max(Z=) = 0.17, max(2¥) = 0.19. It means the

Oz



noise on the z-axis is much larger than the noise on the x-axis and y-
axis. Note that this is the maximum noise ratio. If the 3D point is in
other position, the noise on x-axis and y-axis will be even smaller.
For example, if the reconstructed 3D point is S = (—35, 0,450),
the noise ratios are max(%=) = 0.078, max(3%) = 0.11.

Also, the camera parameter in our system is f/§ = 2200. So, if we
add gaussian noise o = 0.2, the resultant noise on z-axis is about
o, = 0.37mm. (Actually o = 0.2 is a very small image noise. In
practical, even using sub-pixel pupil and glint detection, we cannot
avoid such a small image noise.)

A.2 Noise analysis in gaze estimation

As shown in A.1, only a small ¢ = 0.2 gaussian noise in the image
will cause the noise in the reconstructed 3D point. In this section,
we will show how this 3D reconstruct noise affect the gaze estima-
tion result. To compute the resultant gaze noise exactly, we have
to consider the screen position, eyeball position, optical axis, etc.
Here, we only give a simple example to show this noise. For sim-

screen

Estimated optical axis

/ - (uv+Av)
Az =T
< AX. ,A—f;\_;'ﬂi.; Intersecting point
ES 4~ of optical axis
c ] 3 (uv)
A8 ¢ Optical axis
L

Figure 10: Gaze estimation noise analysis.

plicity, suppose the subject is looking straight forward, as shown in
Figure 10, and the optical axis is perpendicular to the screen plane
(We only shown the Y-Z plane). In our system the camera is lo-
cated under the screen and looking up at the subject’s eye. In our
system, the angle between the screen plane and the camera’s Z-axis
is ¢ = 24°. So the angle between the camera’s Z-axis and the eye’s
optical axis is . Suppose the true position of the 3D pupil center
and the corneal center are p = (xc, Y, zc) and ¢ = (2p, Yp, 2p), Ie-
spectively. Based on the analysis in section A.1, there is a noise on
the reconstructed 3D points. So, we can define the reconstructed co-
ordinates of the 3D points are ¢ = (zc + Azc, Yo + Aye, zc + Azc)
and p = (zp + Axp, yp + Ayp, 2p + Azp), respectively.

Thus, we can easily derive the vertical angle between the estimated
optical axis and the true optical axis as:
(Azp — Azc) - singp + (Axp — Azxe) - cos

A0 =
Ip —cf

(12)

Because the difference between optical axis and the visual axis is
just a constant angle, and A@ is a small angle. So the resultant
vertical error between the true gaze point and the estimated gaze
point is

Av=1L-A0 (13)

Based on the noise analysis in A.l1, we assume the independent
gaussian distribution with zero mean and standard deviation of
0z = 0.037 and 0, = 0.37 for Az, Az, and Az, Azp, respec-
tively. The typical distance from the screen is L = 450mm, and
the typical distance for ||p — ¢|| is 4.8mm (section B.2). From Eq.
12 and Eq. 14, we can easily derive the noise on Af and Awv as:

og = 0.077

oy =35 (14)
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We see that the resultant vertical noise on the gaze estimation is
very big (o, = 35mm). Remember that all the noise comes from
a small gaussian noise (¢ = 0.2) in the image. Even such a small
noise will finally cause a very big noise on the gaze estimation re-
sult. (Actually the gaze estimation noise changes, when the subject
moves their head and fixates at different directions. Here we just
want to show that the small 2D image noise can cause big gaze es-
timation noise.) In section 3.4, we give the method to reduce this
noise.

B Assumptions validation

In our algorithm, there are two important assumptions about the
light and the virtual pupil. In this section, we will show that the
bias that is introduced by these assumptions is too small to affect
the gaze estimation result.

B.1 Validation of light assumption

In section 3.2, we assume that the LED light is located at the cam-
era’s origin point. So the light ray to the corneal surface will be
reflected back along its own path. Then, we can use our algorithm
to estimate the corneal center. However in practice, we can put the
light close to the camera center, but cannot put the light exactly on
the camera’s origin point. In our system, the light is located at about
20mm in front of the camera. In this section, we will use synthetic
data to test the effect of this 20mm bias of the light location.

Different from Figure 3 in section 3.2, the ray diagram is shown as
Figure 11 to demonstrate the reflections, when lights are not on the
camera centers.

Light 2 Image of glint gza

Normal at the Glint of Light 2
point of reflection
Cornea

Center ™a---"
5=

Nodal point of camera 2

Nodal point of camera 1

Light 1

Image of glint gy

Figure 11: Ray diagram to show the reflection when the lights are
not on the camera centers.

In this experiment, we generate the synthetic corneal center position
¢ = (—35,0,450) and use the typical corneal radius R = 7.8mm
([Guestrin and Eizenman 2006]). The two lights are located at
20mm in front of the left and right camera, respectively. Then based
on the law of reflection, we can compute the image of the glint ui;
and uo2. Then from w11 and w22, we still use the method in section
3.2 to reconstruct the corneal center ¢ and estimate the gaze point.
The estimated corneal center is ¢ = (—35.0003, 0,450.1875) and
the estimated gaze points are shown in Figure 12. We see that the
20mm bias of the light position will not cause big bias to the gaze
estimation result, the average error between the estimates and the
ground truth is only 0.089mm. It can be ignored in our algorithm.

B.2 Validation of virtual pupil assumption

In section 3.3, we make the assumption that the virtual pupil is also
on the optical axis. In section 3.4, we make the assumption that the
distance from the virtual pupil and the corneal center is a constant.
Actually, only the pupil position satisfies these two assumptions. In
this section, we will show that they are also suitable for the virtual
pupil position.

Our experiment is based on the ray diagram of Figure 4 in section
3.3. We generate the synthetic corneal center ¢ = (—35,0,450)
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Figure 12: The gaze estimation bias caused by the light position

assumption. The nine ground truth gaze points are shown as “o’’s,
and their estimations with bias are shown as “*”.

and nine synthetic pupil positions p*. The distance between p*
and c is a constant value: K = 4.2mm ([Guestrin and Eizenman
2006]). Then, by connecting p* with ¢, the optical axis is obtained
and the ground truth gaze points can be estimated. The nine ground
truth gaze points are shown as “o” in Figure 13.

Then, given the corneal radius R = 7.8mm and the index of refrac-
tion of the cornea n = 1.3375, we can compute the refracted ray
and the images of the virtual pupil vi; and va2. Given the virtual
pupil images, we still use the method in section 3.3 to reconstruct
the virtual pupil position and then estimate the gaze points. The
result is shown in Figure 13.

We see that the distance between the virtual pupil and the corneal
center (K = ||p — ¢||) changes when the subject fixates on different
position. But the change is limited (<0.1mm). We also notice that
(K ) is larger than the pupil-cornea distance K = 4.2. It means
that the pupil is behind the virtual pupil. By connecting ¢ and p
to estimate the optical axis, the resultant gaze estimates are shown
as “*”s. The average error for these nine gaze points is 0.623mm.
This error is very small. So in our algorithm, we just ignore this
error and assume the virtual pupil is also on the optical axis.

0

20+ 48677 *-4.8409 &-4.8551
40
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80
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120
140
160
180 %-4.8036 #-4.7769 ®-4.7932

200 L L L L '
50 100 150 200 250 300

Figure 13: The gaze estimation bias caused by the virtual pupil
assumption. The nine ground truth gaze points are shown as “o’s,
and their estimations with bias are shown as “*”. The distance
between virtual pupil and the corneal center is also shown near

each gaze point.
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