IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

Energy-Efficient Distributed Task Scheduling for
Multi-Sensor IoT Networks

Elizabeth Liri, Student Member, IEEE, K. K. Ramakrishnan, Fellow, IEEE, Koushik Kar, Senior Member, IEEE,

Abstract—Multi-sensor IoT devices can gather different types
of data by executing different sensing activities or tasks. There-
fore, IoT applications are also becoming more complex in order to
process multiple data types and provide a targeted response to the
monitored phenomena. However, IoT devices which are usually
resource-constrained still face energy challenges since using each
of these sensors has an energy cost. Therefore, energy-efficient
solutions are needed to extend the device lifetime while balancing
the sensing data requirements of the IoT application. Cooperative
monitoring is one approach for managing energy and involves
reducing the duplication of sensing tasks between neighboring
IoT devices. Setting up cooperative monitoring is a scheduling
problem and is challenging in a distributed environment with
resource-constrained IoT devices.

In this work, we present our Distributed Token and Tier-
based task Scheduler (DTTS) for a multi-sensor IoT network.
Our algorithm divides the monitoring period (5 min epochs)
into a set of non-overlapping intervals called tiers and de-
termines the start deadlines for the task at each IoT device.
Then to minimize temporal sensing overlap, DTTS distributes
task executions throughout the epoch and uses tokens to share
minimal information between IoT devices. Tasks with earlier
start deadlines are scheduled in earlier tiers while tasks with
later start deadlines are scheduled in later tiers. Evaluating our
algorithm against a simple round-robin scheduler shows that
the DTTS algorithm always schedules tasks before their start
deadline expires.

Index Terms—IoT, distributed scheduler, tier-based, dynamic,
deadline-aware, task, multi-sensor.

I. INTRODUCTION

Many IoT devices are resource-constrained in terms of
energy but still need to regularly send sensing data to the
relevant IoT applications. Therefore, to maximize IoT device
operating lifetime and meet IoT application sensing data
requirements, energy-efficient solutions like cooperative mon-
itoring are required. Cooperative monitoring saves energy by
minimizing redundant data sent from neighboring IoT devices
with overlapping coverage areas. Our strategy to implement
cooperative monitoring is to develop a scheduling mechanism
minimizing temporal sensing overlap. Therefore, we present
DTTS, an energy-efficient distributed task scheduler for multi-
sensor IoT devices.

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received October 31, 2022; revised Jan 09, 2023 2022.

Elizabeth Liri and K. K. Ramakrishnan are with the University of
California Riverside, Riverside, CA 92521 USA (email: eliri001 @ucr.edu;
kk@cs.ucr.edu

Koushik Kar is with the Rensselaer Polytechnic Institute, Troy, NY 12180
USA (koushik @ecse.rpi.edu).

Multi-sensor IoT devices utilize multiple sensors to monitor
different environmental phenomena in a variety of applica-
tions like agriculture, smart cities, and disaster management
including forest fires and hurricanes. Analyzing multiple data
types from multi-sensor IoT devices requires more complex
IoT applications but improves situational awareness, helping
provide targeted responses to the monitored phenomena. For
example, in agriculture, multi-sensor IoT devices can measure
soil moisture, temperature, and capture images to observe
crop health. Precision agriculture applications use this data to
provide a response that maximizes the yield e.g., by adjusting
the irrigation cycle.

Deploying IoT devices over large areas poses several chal-
lenges. First, most IoT devices are resource-constrained with
limited memory, energy, and computing power. They typi-
cally rely on batteries and renewable energy sources, since
brown power is not always accessible or cost-effective to
provide. Therefore, careful energy management strategies are
needed to ensure the IoT devices operate as long as possible
(preferably always) while providing the data required by the
IoT applications [1]. Secondly, the IoT device deployment
pattern may have overlapping coverage areas. Therefore, it
is important to avoid data redundancy when IoT devices
monitoring the same location simultaneously transmit their
sensor data (i.e. temporal sensing overlap) and thus avoid
wasting precious energy. It can be very worthwhile to use
cooperative monitoring when deploying many IoT devices.
Cooperative monitoring reduces duplication of sensing tasks
between neighboring IoT devices and helps better utilize the
total available energy across all the IoT devices, by minimizing
temporal sensing overlap.

Cooperative sensing for energy management is used in
[2] which presents a distributed multi-sensor cooperative
scheduling model for target tracking based on the partially
observable Markov decision process. Another example is [3],
which presents an IoT network cooperative power minimiza-
tion scheme. Nodes receive task requests with estimated task
execution times and schedule the tasks by scaling the CPU
core’s operating frequency ensuring task completion within
the estimated time.

Implementing cooperative monitoring is a scheduling prob-
lem. A centralized scheduler may not be desirable in an IoT
environment, from the point of view of resiliency and the
potential need to frequently communicate every IoT device’s
state information to the central scheduler. However, setting
up an energy-efficient distributed scheduler is challenging.
First, IoT devices are resource-constrained and therefore can

0000-0000/00$00.00 © 2022 IEEE

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

only store and process a limited amount of their neighbors’
scheduling/state information. Next, since IoT devices are usu-
ally energy-constrained they typically limit communication to
conserve energy. Therefore, schedulers requiring significant
inter-device communication to share state may not be energy
efficient. Lastly, as IoT devices go to sleep or become inactive,
the network topology changes must be communicated to an
IoT device, thus consuming energy. These challenges make
designing a distributed task scheduling algorithm more com-
plex than a centralized scheme like Earliest Deadline First,
where all necessary information (deadlines) of all nodes is
known in advance.

Our main contribution in this work is our Distributed Token
and Tier-based task Scheduler (DTTS), a simple energy-
efficient distributed scheduler for an IoT network. Our DTTS
scheduler works with multi-sensor or single-sensor IoT devices
and we refer to the monitoring period (duty cycle) as an
epoch. Also, each IoT device sensor has a start deadline.
This is the latest time (from the start of the epoch) that the
sensor must begin its sensing activity (task) in order to have
all measurements completed within the epoch. To minimize
temporal sensing overlap, our algorithm divides each epoch
into a set of non-overlapping intervals called tiers. Then,
in a distributed manner and using tokens to share minimal
information between the IoT devices, our DTTS algorithm
schedules tasks with earlier start deadlines in the earlier tiers
and tasks with later start deadlines in later tiers. Comparing
DTTS against a simple periodic scheduler shows that DTTS
always schedules each task before its start deadline expires.

Some examples of distributed task schedulers are in [2]-
[6]. In [4], the authors use an energy neutrality constraint and
dynamic programming to find a task schedule that maximizes
the Quality of Service. The Lazy Scheduling Algorithm (LSA)
[5] determines whether all task deadlines can be met before
creating a schedule and uses task energy requirements, task
deadlines, and current battery capacity of rechargeable IoT
devices to make a scheduling decision. Jarvsis [6] is a dis-
tributed task scheduler that uses a hierarchy of control tasks
operating in the Cloud/Fog to control robots and IoT devices
on the ground.

The DTTS algorithm is based on [7] and is simple to
execute unlike the dynamic programming approach in [4] or
Markov decision process in [2]. DTTS does not require all
task deadlines in advance like [5]. In DTTS each IoT device
independently schedules its task execution. It is different
from [6], where nodes higher in the hierarchy control task
execution of IoT nodes lower in the hierarchy. In [3], task
execution is triggered by requests from another node. While
both DTTS and [3] are distributed and consider deadlines
when scheduling, Local [3] requires each IoT device to also
keep track of neighbor’s deadlines. DTTS instead uses tokens
for inter-device communication of minimal information, with
independent decision-making at each IoT device.

II. SYSTEM DESIGN

A. Design Concepts

A task is when an IoT device performs a sensing activity
using a particular sensor. For example, an IoT device with

period a

starta start b start ¢
AW AW

minimum
minimum ' minimum ' minimum 'task period
start start start

interval interval interval
start deadline a task execution time
l«—
loT device a 1 2 3 4 5
! start time a period a:
minimum start interval: start deadline b
|€<—> ¢ 1
loT device b| 1 b2 :
start time b ' period b
minimum start interval«—s start time ¢ period c |
IoT device ¢ 1 2 3 4
0 ISOT I1 00 I1 50 I200 250 I300

start deadline ¢ Epoch Time (s)

Fig. 1: Figure illustrating design concepts.

a camera and temperature sensors has image, video, and
temperature tasks. A task can be executed multiple times per
epoch. This number is referred to as the task parameter value
and can change every epoch. For example, if the temperature
task parameter value is 5, the temperature task is executed 5
times in the epoch.

Assuming task executions at a device are uniformly dis-
tributed in the epoch, the time interval between two consec-
utive task executions is the task period. Therefore, there is a
time limit (from the start of the epoch) to start the first task
execution so the last task execution can still be completed
within the epoch. This time limit is the task’s start deadline
(i.e. task maximum start time) and its value is determined by
subtracting the task execution time from the period.

Our algorithm sets the task start time, i.e., when the IoT
device first executes the task in the epoch, to any value from
0 up to the task start deadline. Once the IoT device knows
its start time, it automatically executes the task every period
during the epoch until it reaches the required task parameter
value (number of executions). For each task, we also record the
minimum and maximum task periods within the IoT network.

Lastly, to minimize the temporal overlap we set a minimum
start interval between the start time of the same task on any
two IoT devices e.g. if the minimum start interval is 15s and
the start time for an IoT temperature task is 60s, then the
start time for the temperature task at the next IoT device must
be 75s or later. Fig. 1 illustrates these key concepts using a
temperature task at three IoT devices a, b, and c. The task
execution time is the same in all cases (shown by the thick
black vertical lines) and the epoch duration is five minutes.
The task parameter values for a, b, and ¢ are 5, 2, and 4
giving periods 60s, 150s, and 75s, respectively. The task start
time is shown by the width of the red rectangle and takes any
value from O to start deadline. Note that IoT devices with

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

different periods have different start deadlines. In each case,
the interval between consecutive task executions at a device is
the task period (shown by the width of the blue rectangles).
The minimum task period is period a and the maximum task
period is period b.

With a, the start time is equal to the start deadline and the
task is executed five times within the epoch. With b, the start
time is less than the start deadline so the last time the task is
executed is much earlier in the epoch. With ¢, the start time
exceeds the start deadline so when the task is executed for
the last time, it is not within the epoch which is unacceptable.

The call-out above « in the figure shows how the minimum
start interval is determined. Since the minimum task period
is 60s we assume the temperature task on all IoT devices
must be scheduled from 0-60s. Evenly distributing the task
start times from all 3 IoT devices within 60s means the
interval between each start time is 20s i.e. the minimum start
interval. Therefore, the interval between the task start time at
two different IoT devices must be at least the minimum start
interval (compare start times at a, b, and c).

B. IoT Monitoring Environment

Our design is considered in the context of an IoT monitoring
solution we developed, and the important characteristics in
terms of tasks and monitoring environment requirements.

1) SEMA: An Energy Efficient Multi-Sensor loT Monitoring
Solution: One key aspect required for our DTTS scheduling
algorithm is knowing how many times a task must be executed
per epoch i.e. the task parameter value. DTTS relies on
existing algorithms to determine these values per epoch at the
IoT device and one example algorithm is SEMA.

We use SEMA [8] to provide the task parameter values
for several reasons. First, it is a solution we have built that
includes a practical low-cost and multi-sensor IoT device,
therefore we can perform on-device experiments to test the
scheduler’s performance. Next, SEMA includes two task adap-
tation algorithms of which one is distributed and can be
executed quickly on the IoT device itself. Therefore, together
with our DTTS scheduler, this provides a distributed energy
management solution. Finally, it adapts the sensor task param-
eter values every epoch based on the available energy and thus
responds quickly to energy changes in the device/environment.

SEMA is a Smart Energy Management Solution for IoT
Applications and runs on the SEMA Stick hardware unit which
is a prototype IoT device. The key hardware components
include a solar panel, lithium-ion battery, a Raspberry Pi
Zero W with a camera, and an embedded microcontroller
with multiple sensors. The SEMA Stick can run 5 tasks:
temperature, humidity, soil moisture, image, and video and
the energy cost for each task was modeled based on a single
variable parameter e.g. the temperature task uses number of
task executions per epoch.

For each SEMA Stick, the SEMA algorithm uses a heuristic
optimization, total available energy (from the battery and
solar source), and system models to determine the appropriate
parameter values for each task every epoch. SEMA maximizes
the information utility but also ensures that there is sufficient

85 4

86 5

Scheduling Token
76 1. Minimum start interval 6
2. Task original tier boundaries
3. Task current tier boundaries

77 8

68

66 28

Row

65 37

63 B 35

53 0 2 4 6 B 10 34
Column
54 Status Token 33
1. Live nodes processed
2. Minimum task period
3. Maximum task period
56 46
57 58 47

55 45

Fig. 2: Example deployment (physical and logical network).

battery energy for the SEMA Stick to operate overnight till
the battery can be recharged the next day. In deployments
over large areas with multiple SEMA Sticks, the devices may
experience different local conditions that affect the amount of
solar energy their solar panel receives, for example, there may
be obstructions like clouds, trees, or buildings. The SEMA
algorithm caters for such scenarios and therefore in the same
epoch, may generate different task parameter values for each
SEMA Stick. In this work, we focus on the independent
temperature task which has a fixed execution time, and can be
executed independently of any other task on the same SEMA
Stick. We also assume SEMA determines the task parameter
values.

2) Design of a Multi-Sensor IoT Monitoring Environment:
Leader Node We assume the network has a leader 10T device
which may change between epochs and is determined using
existing leader selection algorithms.

Inter-device Communication We assume that IoT devices
communicate with each other using a circular Distributed Hash
Table (DHT)-like network whereby all IoT devices know the
address of their nearest live neighbor [9]. Fig. 2 shows an
example deployment with 30 randomly placed IoT devices
in a deployment area covered by numbered grid points. The
central inner figure represents the physical network and the
sensing coverage areas for the temperature task (circular) and
the video/image tasks (conical) are illustrated by the blue
circles and red sectors respectively. The outer circle of nodes
represents the logical network where the leader node (2) is
white and we assume the IoT device ID is the grid point
number where it is located. In this figure, the tokens travel in
a clockwise direction and we show the contents of the Status
and Scheduling tokens. The figure shows the protocol progress,
with the Status token having been processed completely by all
the nodes (shown by the dashed node borders). The Scheduling

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

token has been processed by the first 6 nodes (shown by
the orange color) and is sent to the next node (17) in the
deployment.

SEMA currently uses WiFi for communication. However,
since we are parsimonious in using the communication for
only uploading sensor results and strive to minimize the
communication between devices, we also explore the use of
LoRaWAN (Long Range WAN), a Low Power Wide Area Net-
work (LPWAN) technology. LoRa consumes less power [10]
compared to WiFi, albeit having lower bandwidth (250 Kbps
vs. 54 Mbps for 802.11 b/g), but can be suitable for the
DTTS system e.g. in [11] for data transmission at 10Kbps
over 50 meters distance between transmitter and receiver, WiFi
uses 100mW while LoRaWAN uses 20mW. Another potential
advantage for LORAWAN is its longer range (few Kms for
LoRA compared to a few 100 meters for WiFi), which permits
larger-scale deployments.

Tokens With DTTS, each IoT device does not need to
know the sensing schedule of other IoT devices. DTTS strives
to transmit a minimal amount of data between IoT devices,
allowing each IoT device to schedule its tasks in a completely
distributed manner. However, generating the data to be shared
requires gathering some information across the entire IoT net-
work. An efficient way to first gather this information and then
share minimal data between IoT devices is through tokens.
Token passing is a well-understood technology (e.g., IEEE
802.5 [12], FDDI [13]). Challenges like handling lost/duplicate
tokens are easily resolved using existing techniques where
leader nodes handle token generation and initiate token re-
covery after failure by using timers [14], [15].

III. SCHEDULER DESIGN

Given the task parameter value for an individual sensor on a
particular IoT device, the key design goal of DTTS’s scheduler
is to distribute the task execution across the epoch and to
minimize the temporal overlap from execution of the same
sensing task across multiple IoT devices in the vicinity of
each other.

We ensure that on each IoT device, the first time the task is
executed per epoch i.e. the task start time, is before the start
deadline.

This is accomplished by using tiers in DTTS. Our algorithm
divides the epoch time into a given number of non-overlapping
intervals called tiers. Tasks are then scheduled within tiers
based on their start deadline. This ensures that tasks with
earlier start deadlines are scheduled before tasks with later
deadlines. The number of tiers required is provided in advance
and is at least one. Each tier has a lower and upper boundary
and the first tier (Tier 1) is always from O-minimum task
period. The remaining time interval from minimum task period
to maximum task period is then divided equally into the
remaining tiers. In this work, we use only two tiers so Tier 2
runs from minimum task period to maximum task period.

Our algorithm also minimizes inter-IoT device communi-
cation costs by piggy-backing minimal meta-data in tokens
that are passed around between the IoT devices arranged in a
logical ring.

Scheduling Token arrives

Token Information:

1. Original tier boundaries
2. Current tier boundaries
3. Minimum Start Interval

Epoch time (s) 0 60 100 200 300
Start
loT devicea @
Local SEMA Stick Information SEMA Stick
1. Stick ID
2. Task k Start Deadline m
[Use the task Start Deadline to find } L

original tier for task k

Set task k current tier equal to the
original tier

Is the current tier full? H Chatr;]%entgz cl::\;’reernttigfr to}
Yes | A
Is current lower boundary of the current|No
tier less than the Start Deadline?
4 Yes

NO Is the current tier number still equal to | Yes
the original tier?

A

upper boundary of the lower boundary of the
current tier. current tier.

Decrease the tier current Increase the tier current
upper boundary by lower boundary by
Minimum Start Interval. Minimum Start Interval.
A\ 4
Update the token

Scheduling Token leaves

_{ Schedule task at the J L Schedule task at the

Token Information:

1. Original tier boundaries
2. Current tier boundaries
3. Minimum Start Interval

Epoch time (s) 0 60 100 200 300
Start
loT devicea @
loT device b []®

Fig. 3: DTTS algorithm for scheduling round

In terms of operation, the DTTS algorithm relies on two
rounds of token passing each epoch traversing through the
network of IoT devices to schedule the start time for each
sensing task on each IoT device. The leader IoT node first
generates a status token that traverses the network and gathers
key information like the minimum and maximum task periods
from all the IoT devices before returning to the leader node.
The leader node first processes the information to determine
key parameters such as the tier boundaries. It then generates
a scheduling token which traverses the network and sets the
task start time for all the tasks at each IoT device it passes
through.

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

A. Status round

The first status round token is generated by the leader
node to carry three key pieces of critical information that are
updated as the token travels between IoT devices. The first is
the number of live nodes that have processed the token so far
in the Status round and the next two are the minimum task
period and maximum task period for each task seen so far.
When the token returns to the leader node, its information is
used to determine the tier boundaries and the minimum start
interval.

The tier boundaries are determined as described earlier by
using the minimum task period, maximum task period, and
the specified number of tiers. Given that we have an IoT
device in the network reporting a minimum task period, we
need to set the minimum start interval to be small enough
that all the devices start their tasks within this minimum
task period. This guarantees that no (start deadline) will be
violated. The minimum start interval is calculated by dividing
the minimum task period by the total number of active IoT
devices (see Fig. 1). Once the minimum start interval and the
tier boundaries have been determined, the scheduling token
can then be generated.

B. Scheduling round

The key steps of the scheduling round algorithm for inde-
pendent tasks are shown in Fig. 3. The leader node generates a
scheduling token, that carries three key pieces of information
per task: the minimum start interval, the original tier bound-
aries, and the current tier boundaries.

When the scheduling token arrives at an IoT device, DTTS
checks the device’s task start deadline and by looking at the
task’s original tier boundaries it determines which tier this
start deadline is in.

If the tier is full i.e., no available slots for scheduling tasks,
then DTTS finds the next lowest tier that is not full. When it
finds a tier that is not full, DTTS checks whether the current
lower boundary of the tier is lower than the device’s start
deadline. If so, then we set the task start time to the current
lower boundary value because this means the task can be
scheduled at this time without violating its start deadline.
DTTS then updates the tier’s current lower boundary value
in the token, increasing it by the minimum start interval. If
however, the tier’s current lower boundary is higher than the
IoT device’s start deadline then the task cannot be scheduled
in that tier without violating the start deadline. In this case,
DTTS moves to the next lower tier and schedules the task at
the upper boundary of this lower tier. DTTS then updates the
tier’s current upper boundary value in the token, decreasing
it by minimum start interval.

DTTS repeats this scheduling process for all device tasks
before forwarding the token to the next IoT device. By
scheduling tasks at tier boundaries and updating the current
boundaries in the token, DTTS schedules tasks in an entirely
distributed manner with minimal information being communi-
cated between IoT devices. More information is in [7]. Given
T tiers and K tasks, DTTS complexity is O(TK).

IV. EXAMPLE

We now describe the operation of DTTS using an example
with four IoT devices. Additionally, the evaluation in Section
V is with 30 devices. Consider a network with four IoT devices
a, b, ¢, and d running a temperature task with a 1 second task
execution time. The table in Fig. 4 shows the task parameter
values, periods, and start deadlines for a 5-minute epoch. For
example, the task parameter value (number of measurements
per epoch) for a is 5 and therefore has a 60s period with a start
deadline of 59s. By comparing all the periods, the minimum
task period is 60s, the maximum task period is 300s, and since
there are four devices, the minimum task period is 60s. If we
have 2 tiers, then Tier 1 runs from 0-60s, and Tier 2 runs from
60-300s.

Fig. 4 illustrates how the tasks are scheduled on the four
IoT devices. The blue and orange areas indicated slots in Tier
1 and Tier 2, respectively, that are available for scheduling
while the white slots already have tasks scheduled. As DTTS
schedules the temperature task at each additional device, the
tier boundaries are moved progressively inwards.

If a is the leader node it is the first to be scheduled. Since
its start deadline is 59s, we see that from the original tier
boundaries this is in Tier 1 which is not full. The current
lower boundary of Tier 1 is 0 (less than 59s), so we schedule
the task at the beginning of the epoch (i.e. at 0 seconds). We
then move the Tier 1 current lower boundary value up by 15s
(the minimum start interval) in the token before forwarding it
to b.

At b, its start deadline is 149s which is in Tier 2 (from
checking the task original boundaries). The current lower
boundary of Tier 2 is 60s (less than 149s) so we can schedule
the task at 60s without violating the start time deadline. The
Tier 2 current lower boundary is increased by 15s to 75s in
the token, before forwarding it to c.

At ¢, its start deadline is 299s which is in Tier 2 (from
the original boundaries). Similar to the case with b, we can
schedule this task at the current lower boundary of Tier 2.
The current lower boundary of Tier 2 is updated from 75s to
90s in the token before it is forwarded to d.

At d, its start deadline is 74s which according to the
original tier boundaries is in Tier 2. However, the current
lower boundary of Tier 2 is 90s, which is beyond this task
start deadline. Therefore, in this case, we fall back to the next
lower tier (Tier 1) and schedule the task at the current upper
boundary of Tier 1. The current upper boundary of Tier 1 is
then reduced by 15s to 45s. Since d is the last IoT device the
token returns to the leader node.

V. RESULTS

The results from experiments done via simulations show
that our DTTS algorithm schedules tasks with earlier start
deadlines in earlier tiers and tasks with later start deadlines in
later tiers. The results also show that DTTS always schedules
the task start time, before the start deadline expires.

Using 5 and 15-minute epochs we evaluated the perfor-
mance of our algorithm using simulations and 30 IoT devices.
We assume the tokens travel between IoT devices based on

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

minimum maximum
Epochtime(s) 0 0 100 200 %
Task Parameter . . poch time (s ‘ ‘
IoT ID Values Period (s) Start Deadline (s) Tier 2
a 5 60 59 loT device a
b 2 150 149 loT device b b
c 1 300 299 loT device ¢ ¢
d 4 75 74 loT device d d
Fig. 4: Temperature task scheduling example.
0 20 gotertTime (s) o 80 100 for all the IoT devices and then ran the DTTS scheduler to
Stargt o = schedule all tasks. This was done multiple times and the results
5 from the 5-minute epoch are presented in Fig. 5 for one sample
e ——— | schedule on a sunny day.
e ——— N On a sunny day, higher task parameter values correspond
g e ——

loT Device ID
“
G
iy
&

Fig. 5: DTTS temperature task schedule for a sunny day

300
—— DTTS —®— Periodic Max start time

250 /Q/@/e/g
200 5/(5/5

-7
150 b/a/e/gz/e/@/?
prsal

s

Time(s)

50

u/v\' ﬂ/éK@]&.
. WWW 2,0
NP >0 0N 7 6 6 Y
>4 PPP PP SRS PP PP

loT Devices

Fig. 6: Comparing start deadline and start time with DTTS
and the periodic schedulers

increasing device IDs. Here we show the results for the
temperature task only, while in [7] we considered tasks like
image and video with different parameters e.g. duration, not
just the number of executions per epoch. We used 3 different
types of epochs to represent cloudy, sunny, and hybrid days.
Based on the SEMA work, the maximum task parameter value
for a temperature sensing task during a 5 min epoch is 5.
Therefore on a sunny day, task parameter values range from 3-
5 due to sufficient energy to charge the IoT device and execute
more sensing activities. On a cloudy day, task parameter values
range from 1-2 since the IoT device is conserving energy due
to low solar to recharge the battery. On a hybrid day, task
parameter values range from 1-5 since the solar energy varies.

For each day type, we generated the task parameter values

to a shorter task period and smaller tiers for the temperature
sensing task. From Fig. 5, we see Tier 1 is from 0-60s and
Tier 2 is from 60-100s. Task start times are set to earlier in
the epoch, i.e., all task start times are set within the first 100s
even though the epoch duration is 300s.

On a cloudy day, however, lower task parameter values
correspond to a longer task period and larger tiers so tasks
are spread throughout the entire epoch.

We also compare our DTTS scheduler with a simple round-
robin periodic scheduler which calculates its minimum start
interval by dividing the total epoch time by the number of
live IoT devices. All the IoT devices are then scheduled one
after another with the start times separated by an interval of
minimum start interval seconds.

Fig. 6 compares the scheduled start times and start dead-
lines between DTTS and the periodic scheduler at the IoT
devices during a sunny epoch. The results show that DTTS
always sets the start time before the start deadline expires
while the periodic scheduler frequently exceeds that deadline.

If multiple devices in a deployment area simultaneously
send their data to the sink (due to independent scheduling),
there is a high risk of congestion loss at the sink, result-
ing in retransmissions by IoT devices, potentially wasting
energy. In addition, if multiple devices have overlapping
coverage areas, simultaneous sensing results in duplicate data,
wasting device energy and unnecessary processing upstream
for deduplication. DTTS mitigates this by coordinating the
scheduling across all devices, reducing redundant data, reduc-
ing simultaneous transmission, and minimizing the need for
retransmissions. DTTS is thus more energy efficient compared
with independent scheduling.

VI. CONCLUSION

Cooperative monitoring among multiple IoT devices helps
manage their energy consumption while monitoring large
physical areas. Our Distributed Token and Tier-based task
Scheduler scheduling protocol (DTTS) presented here is an
energy-efficient distributed scheduler suitable for an IoT net-
work. Using a simple protocol with minimal information
sharing between IoT devices, DTTS works with multi-sensor
IoT devices utilizing start deadlines to distribute task start

IEEE NETWORK MAGAZINE, VOL. 14, NO. 8, MARCH 2023

times every epoch to minimize temporal overlap. Experiments
show DTTS always schedules the IoT device’s task start time
before its start deadline expires.

[1]

[2]

[3]
[4]

[51

[6]
[71

[8]
[9]
[10]

(11]

[12]
[13]

[14]

[15]

REFERENCES

F. K. Shaikh and S. Zeadally, “Energy Harvesting in Wireless Sensor
Networks: A Comprehensive Review.”, Renewable and Sustainable
Energy Reviews, vol. 55, 2016, pp. 1041-1054.

Z. Zhang et al., "Research on Distributed Multi-Sensor Cooperative
Scheduling Model Based on Partially Observable Markov Decision
Process.” Sensors, vol. 22, 2022, no. 8, pp. 3001.

S. R. Sarangi, S. Goel, and B. Singh, “Energy Efficient Scheduling in
IoT Networks”, in Proc. ACM SAC’18, 2018, pp. 733-740.

A. Caruso, et al., A Dynamic Programming Algorithm for High-Level
Task Scheduling in Energy Harvesting 10T”, IEEE IoT Journal, vol. 5,
no. 3, 2018, pp. 2234-2248.

C. Moser, J. J. Chen, and L. Thiele, "Dynamic Power Management in
Environmentally Powered Systems”, IEEE ASP-DAC, 1IEEE, 2010, pp.
81-88.

M. De Benedetti, et al., ”JarvSis: A Distributed Scheduler for iloT
Applications.”, Cluster Computing, vol. 20, no. 2, 2017, pp. 1775-1790.
E. Liri, K. K. Ramakrishnan, and K. Kar, ”A Renewable Energy-Aware
Distributed Task Scheduler for Multi-Sensor IoT Networks.”, Proc. ACM
SIGCOMM Workshop on NET4us’22, 2022, pp. 26-32.

E. Liri, et al, ”An Efficient Energy Management Solution for Renewable
Energy Based IoT Devices.”, Proc. ICDCN’23, IEEE, 2023, pp. 20-27.
I. Stoica, et al, "Chord: A Scalable Peer-to-Peer Lookup Protocol for
Internet Applications.”, IEEE/ACM ToN, vol. 11, no. 1, 2003, pp. 17-32.
M. Afaneh, "Wireless Connectivity Options for IoT Applications - Tech-
nology Comparison.”, 2020, https://www.bluetooth.com/blog/wireless-
connectivity-options-for-iot-applications-technology-comparison/,
accessed Sept, 23 2022.

Voler Systems, "Which wireless standard makes sense for your applica-
tion?”, 2022, https://www.volersystems.com/guide-wireless-technology,
accessed Feb 01, 2023.

ANSI, "Local Area Networks: Token Ring Access Method and Physical
Layer Specifications—802.5”, John Wiley & Sons, Inc., 1985.

M. S. Kingley, ”ANSI Fiber Distributed Data Interface (FDDI) Stan-
dards”, Feb 1996, https://tinyurl.com/2yu9x25r, accessed June 26, 2022.
H. Yang, and K. K. Ramakrishnan. ”A Ring Purger for the FDDI Token
Ring.”’, [1991] Proc. 16th Conf. on Local Computer Networks, IEEE
Comput. Soc., 1991, pp. 503-504.

M. J. Johnson, “Reliability Mechanisms of the FDDI High Bandwidth
Token Ring Protocol.”, Computer Networks and ISDN Systems, vol. 11,
no. 2, 1986, pp. 121-131, 1986.

VII. ACKNOWLEDGEMENT

This work was supported by the US National Science Foun-
dation grant CNS-1818971 and the US Dept. of Commerce,
NIST PSIAP award 70NANB17H188.

VIII. BIOGRAPHY SECTION

Elizabeth Liri [Student Member,
IEEE](eliri0O01 @ucr.edu) is currently working
towards a Ph.D degree in Computer Science at
the University of California, Riverside, USA. Her
research interests include developing communication
protocols for the Internet of Things to improve
energy efficiency and network resiliency and
integration of IoT with edge computing.

K. K. Ramakrishnan [Life Fellow,
IEEE](kk@cs.ucr.edu) is a Distinguished Professor
at the University of California, Riverside. Earlier,
he was at Digital Equipment Corporation, and then
AT&T Labs-Research. He is an ACM and AT&T
Fellow. He has an MTech. from IISc, India, and
MS, Ph.D. from University of Maryland, College
Park.

Koushik Kar (Senior Member,
IEEE)(kk@cs.ucr.edu) received his Ph.D. in
electrical and computer engineering from the
University of Maryland at College Park in 2002
and has been a faculty member at Rensselaer
Polytechnic Institute since then. His primary
research expertise is in developing and analyzing
low-complexity optimization algorithms for
computer networks.

