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Abstract—Wireless networks (including wireless mesh net-
works) provide opportunities for using multiple paths. Multi-
homing of hosts, possibly using different technologies and
providers, also makes it attractive for end-to-end transport
connections to exploit multiple paths. In this paper, we pro-
pose a multi-path transport protocol, based on a carefully
crafted set of enhancements to TCP, that effectively utilizes the
available bandwidth and diversity provided by heterogeneous,
lossy wireless paths. Our Multi-Path LOss-Tolerant (MPLOT)
transport protocol can be used to obtain significant goodput
gains in wireless networks, subject to bursty, correlated losses
with average loss-rates as high as 50%. MPLOT is built around
the principle of separability of reliability and congestion control
functions in an end-to-end transport protocol. Congestion control
is performed separately on individual paths and the reliability
mechanism works over the aggregate set of paths available for
an end-to-end session.

MPLOT distinguishes between congestion and link losses
through Explicit Congestion Notification (ECN), and uses For-
ward Error Correction (FEC) coding to recover from data
losses. MPLOT uses a dynamic packet mapping based on the
current path characteristics to choose a path for a packet.
Use of erasure codes and block level recovery ensures that in
MPLOT, the receiving transport entity can recover all data as
long as a necessary number of packets in the block are received,
irrespective of which packets are lost. We present a theoretical
analysis of the different design choices of MPLOT, and show that
MPLOT chooses its policies and parameters such that a desirable
tradeoff between goodput with data recovery delay is attained.
We evaluate MPLOT, through simulations, under a variety of
test scenarios and demonstrate that it effectively exploits path
diversity in addition to efficiently aggregating path bandwidths,
while remaining fair to a conventional TCP flow on each path.

Index Terms—Transport protocols, TCP, multi-hop wireless
networks, lossy environments, multi-path, diversity gain.

I. INTRODUCTION

THE past decade has witnessed a tremendous interest and
growth in wireless networking. Wireless mesh networks

are being used to provide communication access to remote
areas, and increasingly being deployed in domains traditionally
dominated by wired networks. Projects like AT&T Metro
Wifi, Google Wifi and municipal deployments seek to replace
traditional wired backhaul networks with multi-hop wireless
networks. Wireless networks (especially meshed networks)
provide increased opportunities to establish multiple paths
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between source-destination pairs. End-systems that are multi-
homed (i.e., can make use of multiple access technologies or
service providers for connectivity to the network), or capable
of directional transmission, have additional opportunities of
using multiple paths in parallel. A transport protocol can
potentially use this inherent path-diversity to overcome the
limitations imposed by a single path, by transmitting data over
multiple paths.

The dominant transport protocol used for reliable end-
to-end data transfer – TCP – was designed for wired net-
works, primarily using a single end-to-end path. Wireless link
characteristics can differ from a wired link in fundamen-
tal ways. Transmissions over wireless links can be blocked
by environmental barriers (e.g., walls), interfere with other
transmissions and experience attenuation or shadowing losses.
As a result, wireless links exhibit higher bit-error rates than
wired links, reflected as high packet loss rates at the transport
layer. Recent studies on IEEE 802.11b networks [1] have
reported pre-ARQ packet losses as high as 50%, even for static
community networks. Link-level ARQ/Hybrid-ARQ (HARQ)
schemes can in general reduce these loss rates significantly,
usually with targets of 10%. However, due to limits on the
latency (or the number of retransmission attempts) at the link
layer, the residual (post-ARQ) loss rates can be high as well,
particularly in scenarios involving mobility. For example, for
communication among fast-moving ground vehicles, it has
been observed that post-ARQ loss rates can be high (20% or
more) and also have high variance [2], [3]. Such high packet
loss rates have serious implications on performance of TCP
when used over wireless networks.

In addition to the poor performance under loss, TCP’s
design intricately couples flow and congestion control with
reliability. A small number of out-of-order packets delivered to
the destination transport (above a threshold number) results in
the triggering of a congestion response from TCP. A desirable
characteristic of an end-to-end transport protocol is that it
should provide flow-controlled, reliable delivery of data while
being able to exploit the availability of multiple paths. Such
a protocol should aggregate capacities across multiple, lossy
paths and leverage the diversity across different paths to yield
stable, high goodput and low latency, while still providing
reliable packet delivery. The implicit assumptions that exist in
the design of TCP however prevent it from effectively using
multiple paths.

In this paper, we present MPLOT, the Multi-Path LOss tol-
erant Transport protocol, to attain the above mentioned goals.
MPLOT effectively separates reliability and congestion control
functions in an end-to-end transport protocol by organizing
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reliability across paths while performing congestion control on
a per-path basis. MPLOT employs a combination of Forward
Error Correction (FEC) coding and adaptive HARQ to reduce
the number of packet re-transmissions, and exploits Explicit
Congestion Notification (ECN) to differentiate between con-
gestion and link losses. MPLOT dynamically maps packets
that may be required immediately at the destination onto paths
currently experiencing good conditions (low losses, delay and
high capacity), while mapping packets required ‘less urgently’
to paths with poorer conditions. This is a significant departure
from previously proposed protocols that perform packet-to-
path mapping that is independent of conditions on the path.

In Section II we outline and motivate the overall design of
MPLOT. In Section III, we theoretically analyze the associated
performance tradeoffs, towards making good choices of key
policy and protocol parameters. We present and discuss our
simulation study in Section IV. In Section V, we discuss
related approaches that address high packet losses or make
use of multiple paths. We conclude in Section VI.

II. MPLOT: OVERALL DESIGN

In this section, we describe the overall design of Multi-
Path Loss-Tolerant TCP (MPLOT) protocol, and outline the
functionality of its major components. In Section III we
theoretically analyze the protocol with the goal of determining
good choices for key policies and parameters.

MPLOT enhances the two key functions of a typical trans-
port protocol to exploit multiple end-to-end paths – reliability
and congestion control. The reliability mechanism of MPLOT
guarantees delivery of data in the presence of losses and bit
errors, through the use of adaptive, erasure coding – FEC1.
The standard TCP-like congestion control mechanism ensures
that that the protocol reacts to queue buildup in the network,
and is fair to single-path (TCP) flows, through the use of
ECN. However, the reliability and congestion control functions
(components) are implemented separately, and differently: reli-
ability is implemented on a transport connection basis whereas
congestion control is implemented on a per-path basis. This is
illustrated in Figure 1. In addition to these two components,
the source at the connection level also implements a packet
mapper, which maps the erasure coded packets (data and FEC)
created by the reliability mechanism to the different paths; the
packets mapped to a path are then released on to the individual
path according to the congestion control mechanism. Next, we
describe how these components work in more detail.

A. Block Erasure Coding & Proactive/Reactive FEC

In MPLOT, reliability is achieved by using an aggregate
flow manager, by combining the transmissions and acknowl-
edgements (ACKs) across all the paths used by the transport,
on a per connection (also termed flow, in this paper) basis. To
counter estimated packet losses, the source adds redundancy
(FEC) to a transport level flow through block erasure coding

1In MPLOT, FEC is generated through erasure coding of blocks of packets,
to aid recovery in presence of packet losses (erasures). This should be
distinguished from FEC computed on individual packets using channel coding,
to recover from bit errors.

of packets. In our approach, the data in the socket buffer is
divided into groups, and these groups of data bytes are encoded
independent of each other. Consider a group of data bytes
organized into F data packets. The encoder takes the F data
packets, and adds K FEC packets to create a coded block
of size B = (F + K) packets. All packets (data or FEC)
of a block are made to be of equal size, although packet
size can vary across blocks. In the following, we assume
Reed-Solomon coding for creating the FEC packets,2 although
our analysis and results extend to other Maximum Distance
Separable (MDS) erasure codes. Of the K FEC packets in the
block, k ≤ K packets, which we refer to as proactive FEC
(PFEC), are sent along with the data packets in the block.
Intuitively, the purpose of the PFEC packets is to proactively
counter potential packet losses in the channel. The set of data
and PFEC packets of the block, which constitutes the initial
(proactive) transmission, is referred to as the p-block. Based
on properties of Reed-Solomon block erasure codes, all of the
F data packets of the block can be recovered as long as any
unique F packets (data or FEC) of that block are received.
In other words, the destination node can recover all the data
packets of the block, if at most k packets of the p-block
(data or PFEC) are lost in transit. If k′ > k packets of the
block are lost in transit, then an additional (k′ − k) packets
must be received from the same coded block to be able to
decode all data in the block. This is achieved by having the
source send additional FEC packets from the (K−k) packets
remaining in the block, which we term reactive FEC (RFEC)
packets. This set of (K − k) FEC packets kept in “reserve”
and sent reactively, is called the r-block. The number of RFEC
packets to be sent is determined based on how many additional
packets are needed for block data recovery, and the estimated
loss rate, which are in turn determined from the Selective
ACK (SACK) feedback sent by the destination. (The design of
the SACK feedback is described later in more detail.) RFEC
packets can be sent redundantly, i.e., more than the minimum
necessary or (k′− k), to account for possible losses in transit.
If these RFEC packets are still not enough for the destination
to recover all data of the block (due to more losses of RFEC
packets than what was accounted for), additional rounds of
RFEC transmission may be needed. Note that in this approach,
‘retransmissions’ use “new” FEC packets from the r-block.
Specifically, when data or FEC packets from the p-block are
detected to be lost, then new FEC packets from the r-block
are used to recover from the lost packets. Similarly, when FEC
packets from the r-block previously transmitted are lost, these
are also recovered using new FEC packets from the r-block.
However, if the entire r-block is exhausted before the block-
data is recovered fully, the transmission “wraps around” to the
beginning of the block, and continues as before, starting from
the first packet of the p-block. This wrap-around may result in
duplication in the data received, which is detected by having
sequence numbers in the packets indicating their position in
the block. This is discussed in detail later. We use GF (28)

2For ease of discussion, we implicitly assume systematic Reed-Solomon
encoding, which retains the original data packets and creates the encoded
block by adding FECs to it; our protocol, analysis and results however applies
to non-systematic encoding as well.
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Fig. 1. Overall design of MPLOT (sender side) and key components.

for the block erasure code computation, which allows byte
arithmetic, and limits the block size to a maximum of 255
packets. This block size must be apportioned appropriately
into the p-block and r-block sizes, taking into account the
packet loss rates, so that the block-data is recovered with high
probability before the entire r-block is exhausted.

An alternative retransmission (RFEC transmission) policy
would be to resend the data and PFEC packets that were lost
as RFEC packets. With this approach an additional reserve of
FEC packets need not be maintained, and therefore the size of
the p-block can be the same as the block size. In this approach,
the number of data packets in a block can be larger, for the
same size of the coded block. This approach requires a more
complex ACK mechanism, however, as the sender has to detect
which packets in the block were lost; in the first approach
described above in which only new FEC packets are sent as
RFECs, the sender only needs to know how many packets of
the block have been received so far. As we describe shortly,
since MPLOT already uses SACK maps anyway (necessary to
obtain good loss estimates, as discussed in Section III-A), the
ACK mechanism necessary to implement this retransmission
approach is already built into MPLOT: the SACK maps could
be used to pin-point which packets (data or PFEC) were lost,
and they could be used in retransmission.

In our experimentation and evaluation, we have used the
first retransmission approach – that of maintaining an r-block
of FEC packets, and sending new packets from this r-block for
retransmission until all packets in the r-block gets exhausted –
for the following reasons. Firstly, note that this retransmission
policy can thus be viewed as an incremental redundancy
HARQ approach, where each retransmission (RFEC trans-
mission, in our case) uses a different set of coded bits than
the previous transmission, so that the receiver can obtain
new information with each packet it receives. This approach
maximizes the benefits from the retransmission, as it implies
that the retransmitted packet would be useful in data recovery
even if the packets that were determined as lost (that prompted
the retransmission) would appear later at the receiver (i.e.,
in case packet loss was incorrectly assumed due to delayed
packet delivery). Since we can have multiple blocks in transit
simultaneously, we observed that the reduced number of data

packets in a block that we have in this retransmission approach
did not pose a serious performance issue (MPLOT would scale
up the number of blocks in transmit simultaneously to fill
up the congestion window). Finally, since MPLOT adopts a
somewhat conservative PFEC allocation policy (taking into
account both mean and standard deviation of the loss rate, as
we discuss in Section III-B), we have observed that most of
the lost data gets recovered by the PFEC; in other words, the
number of RFEC packets that need to be transmitted for block
recovery is typically quite small, and even with a modest size
of the r-block, we rarely exhaust all the FECs kept in reserve
before the block-data is fully recovered.

Note that since packets for a given flow (transport connec-
tion) are sent across multiple paths, they may be received at
the destination out-of-order. The aggregate flow manager at
the destination must recover and reorder them appropriately
to deliver them in sequence, in order, to the application layer.
Note that all the F data packets in a block must be buffered
before encoding the block at the source. Similarly, packets of
the block must be buffered at the destination until F packets
of the block are received; then the block-data is ready to be
decoded and sent to the application layer. The key parameters
– the size of the p-block, Bp = F + k (≤ F +K = B), the
fraction of PFEC packets in the p-block (k/Bp = k/(F +k)),
the redundancy in the number of RFECs sent in each round,
and to a limited extent the size of each packet in the block –
are dynamically chosen; in Section III we analyze and justify
how these choices are made.

B. Protocol Header, Sequence Numbers & Feedback Design

While the sender is waiting for recovery of the data of one
block, if transmission opportunities are available (i.e., there
is space in the sender’s individual path windows), the packets
from the next block are transmitted. Thus there can be multiple
blocks in transit at the same time. However, since the p-block
size is scaled up to the (weighted) sum of congestion windows
over all paths (see Section III-C), subject to block size limits
imposed due to the erasure coding field size as discussed in
Section II-A, we observe in our simulations that the number of
blocks in transmission simultaneously at any time is typically
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small (i.e., unless the bandwidth-delay product of the paths is
very large).

The aggregate reliability mechanism described above can
be implemented using the same acknowledgment/feedback
structure as provided in standard TCP. The Selective ACK
(SACK) feedback that MPLOT uses is similar to that used
by TCP, with the SACK option enabled (TCP-SACK). In
MPLOT, this SACK feedback, as well as the cumulative
ACK (included by default in the TCP header), are provided
on an aggregate (per flow) basis. This feedback allows the
destination to indicate “holes” in the packet stream, i.e., groups
of packets that it has not received so far. This is used by
the source to identify packet losses and determine how much
RFEC should be sent, and when.

MPLOT assumes the default TCP header, and availability
of the SACK option. In addition, the following information
fields need to be included in each packet header (data or FEC):
(i) block id, (ii) block size (in packets), (iii) number of data
packets in the block, (iv) sequence number of the packet in the
block. These fields are used to convey necessary information
in the forward direction (i.e., from the sender to the receiver).
Simple calculations reveal that 1-2 bytes per field is sufficient
for use in practice. The block size (F + K) along with the
number of data packets in the block (F ) are parameters that are
need for the block-data decoding process. Note that the packet
sequence numbers mentioned in (iv) indicate the position of
the packets in the block (and are therefore reused across
blocks), and are different from the byte sequence numbers
that are part of the TCP header. PFEC packets get assigned
sequence numbers that follow those of the data packets in the
block; RFEC packets naturally get assigned sequence numbers
that are greater than the p-block size.

Byte sequence numbers (as in the default TCP header) are
assigned on a per session (aggregate flow) basis, and are
assigned when the packets are sent out. All packets (data,
PFEC or RFEC) sent out are assigned distinct sequence
numbers; in other words, byte sequence numbers are not
repeated, even in the case some packet is retransmitted (which
may happen if the end of the block is reached before the
block-data is recovered, requiring the sender’s transmission
to wrap around to the beginning of the block). These byte
sequence numbers are used for determining the cumulative
ACK and SACK information included in the ACK packets
sent by the receiver to the sender, which are also calculated
on a per session (not per path) basis, naturally. The cumulative
ACK field represents one more than all bytes received in order
for all “outstanding” blocks, i.e., blocks that are known to the
receiver as being in transit (in other words, blocks for which
the receiver has received at least one packet), but whose data
have not been fully recovered yet. For each packet (sequence
number identified by the packet) sent, the sender keeps track
of (i) which path it is sent on, and (ii) which block id it
corresponds to. The former piece of information is used to
determine the path-specific loss and RTT information from
the cumulative ACK and SACK feedback, which in turn is
used to provide self-clocking and window adaptation as in
per-path TCP (refer to Figure 1). The latter information is
used to determine how many unique packets corresponding

to each outstanding unrecovered block have been delivered
successfully to the receiver so far, and thus determine whether
and how many RFEC packets should be sent for the block.

From the above, we observe that MPLOT uses a
HARQ/FEC approach to ensure reliable delivery of data –
FEC is used proactively along with the data transmission, and
reactively in response to feedback of the delivery status. This
is in contrast with TCP which uses an ARQ-only approach
for data recovery. Furthermore, whereas TCP requires specific
segments to be retransmitted on loss, with MPLOT delivery of
any (unique) F data or FEC packets from the block suffices
for block-data recovery. This sequence-agnostic property of
erasure codes helps reduce the number of transmission rounds
required for data recovery for a given packet loss (erasure)
rate, thereby improving goodput and latency.

Our hybrid approach also allows us to attain a desirable
goodput-latency tradeoff. A greater degree of redundancy, in
terms of the PFEC to data packet ratio in the p-block, or the
amount of over-provisioning in the RFEC transmissions, will
in general result in fewer rounds (round trip delays) for block-
data recovery, or lower latency. However, greater redundancy
also reduces goodput due to higher FEC overhead per packet.
Intuitively, however, it is easy to observe that the fraction of
PFEC packets in a p-block, and the degree of redundancy
in the number of RFEC packets sent in any round, should
be related to the overall loss rate experienced by the flow
(aggregated across all paths). Our analysis of the PFEC/RFEC
allocation policy, as described in Section III, captures this
intuition and related tradeoffs.

C. Design of Per-path Congestion Control

We recognize the fact that different paths may have different
characteristics or temporarily experience different conditions
(e.g., different bandwidths, cross-traffic, end-to-end delay etc.).
Responding to congestion at the aggregate level will result in
performance levels dominated by the worst (or slowest) path.
Consequently, congestion control is performed by each path,
independent of the other paths.

Each path i maintains the usual congestion control variables:
congestion window size (wi), round trip time estimate (RTTi)
and a timeout value (RTOi). Recall that ACKs in MPLOT
is provided on an aggregate (per flow basis), irrespective of
which reverse path the ACK is sent on. The latest aggregate
feedback is sent by the destination upon receipt of every packet
(on any path). An interesting feature of MPLOT is that it
allows the ACK packets to be sent back (by the destination to
the source) on any reverse path – not necessarily the path on
which the last packet was received by the destination (which
may have prompted the destination to send the ACK). In
MPLOT, the destination sends the ACK on a reverse path
chosen uniformly at random, among all available reverse paths.
Choosing reverse paths for the ACKs at random (as opposed
to choosing a specific reverse path) increases the robustness of
the protocol to large delays and failures on individual paths.

The motivation for this is to reduce the overall round-trip
time. For a specific path, the aggregate selective/cumulative
ACK feedback is filtered to obtain the delivery status of the
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packets sent on that path; this is done by the ACK processing
component as shown in Figure 1. This path-specific ACK
information is then used to slide the congestion window of the
path (in accordance with the TCP self-clocking mechanism).
MPLOT adapts the per-path congestion window size wi based
on ECN – this is done as specified in the standard for TCP
using ECN [4]. With use of ECN, packet losses (which could
be due to poor channel quality or link disruptions as well, in
addition to congestion) need not be used as the congestion
signal. Instead the congestion window could be reduced only
in response to ECN feedback, which provides an unambiguous
indication of congestion. In MPLOT, the destination maintains
the latest ECN information for each (forward) path. While
sending an ACK on a reverse path, the destination copies
the ECN bit of the corresponding forward path. Note that we
modify TCP’s congestion window size adaptation by dividing
the window increase of each path i by its packet “acceptance
rate” ((1− pi)), where pi is the estimated packet loss rate on
path i) to account for the packets lost on that path.

A path congestion controller will timeout if no feedback
is received for a period RTOi. Hence, timeouts are handled
separately for each path. The response to a timeout is identical
to conventional TCP response to a timeout. Unlike TCP-
SACK, MPLOT does not respond to duplicate-acks (dupacks)
at the aggregate level, i.e., MPLOT does not perform fast-
retransmit after a certain number of dupacks are received. Fast
retransmit on dupacks (duplicate cumulative ACKs) would
typically lead to a lot of unnecessary transmissions. Fast
retransmit can be made more efficient if SACK information is
taken into account. However, since MPLOT already adds FEC
protection against losses, fast retransmit of lost packets may
be redundant anyway, and is therefore avoided. As described
in Section II-B however, MPLOT implements a fast-retransmit
like mechanism at the block level (for fast retransmit of RFEC
packets), taking into consideration block erasure coding of the
packets.

D. Packet Mapping: From Aggregate Block to Path Windows

In general, unless the p-block size is allowed to scale up
arbitrarily – which has the undesirable effect of making the
coding/decoding delays very large – a single block may not
be sufficient to fill up the available capacity over all paths.
Therefore, MPLOT allows multiple outstanding blocks to be
in transit at any time. The packets of all these blocks must be
mapped to the paths that the aggregate connection/flow uses.
As different paths may have different RTTs, capacities and
loss-rates, this mapping must be done carefully. Intuitively,
the mapping should be such that packets of the earliest
unrecovered blocks arrive at the destination quickly with a
high probability. In other words, packets that are required
earlier should be mapped to “better” paths, i.e., paths that have
higher bandwidth, lower loss and shorter RTT. We capture the
notion of the “goodness” of a path through a rank function
can be viewed as the estimated loss-free bandwidth of a path.
More precisely, the rank of a path i, denoted πi, is defined as

πi =
wi(1− pi)

RTTi
. (1)

Symbol(s) Meaning
wi, RTTi, BWi cong. window, RTT on path i; BWi = wi/RTTi

pagg, p̂agg, σ̂2
agg aggr. loss rate, and its EWMA estimates (avg., var.)

F, k,Bp # data and PFEC packets in a block; Bp = F + k

TABLE I
IMPORTANT NOTATION.

This rank function assigns a higher rank to paths with larger
windows (wi), lower path loss rates (pi) or shorter round
trip times (RTTi). In Section III-D, we formally justify this
ranking function through analysis, and describe the exact map-
ping function that MPLOT uses. Broadly speaking, mapping
packets to paths in MPLOT is done using a few simple,
intuitive rules: (i) paths with higher rank are preferred over
paths with lower rank; (ii) if packets of multiple blocks are to
be sent simultaneously, packets of earlier unrecovered blocks
are preferentially mapped to paths of higher rank; (iii) a packet
to be sent is mapped to a path only if the congestion window
of the path has a transmission opportunity; otherwise, the
next ranked path is considered. Note that due to the temporal
equivalence between packets of the same block (again due to
the sequence-agnostic property of erasure codes), for rule (ii)
above, consideration of the temporal ordering of the blocks
suffices (i.e., it is not necessary to consider the temporal order
between the packets of the same block). Finally note that our
choice of the packet mapping function is designed to minimize
block recovery time, as we formally justify in Section III-D.
A different packet mapping policy can be plugged in if
needed, without affecting the other components of MPLOT,
if a different metric is desired to be optimized.

III. POLICY AND PARAMETER CHOICES

The design of the complete MPLOT protocol involves
determination of four key policies: (i) Estimation of per-path
and aggregate statistics, (ii) Redundancy (PFEC/RFEC) pro-
visioning, (iv) p-block and packet sizing, and (iii) Mapping of
packets to paths. The policy and parameter choices in MPLOT
can be motivated when we consider the overall objective of
MPLOT as being that of maximizing goodput while meeting
desirable delay characteristics. In this section we first describe
how MPLOT estimates statistics like loss rate and bandwidth
(per-path as well as aggregate), which are subsequently used
in the redundancy provisioning, p-block sizing and packet
mapping policies. The goal of the PFEC/RFEC provisioning
policy is to maximize goodput for a given constraint on the
per-round data recovery probability, while the p-block sizing
policy aims to limit the average block recovery time. The
packet mapping policy uses the path parameters for mapping
packets to paths so as to minimize the recovery time of a block
of a given size.

A. Estimation of Statistics

We consider a multi-path session using M paths, where
we characterize each path i with three parameters: loss rate
estimate (pi), bandwidth estimate (BWi), and round trip time
estimate (RTTi). First we describe how MPLOT estimates
loss rates, which are updated every time an ACK is received
on any path. Let the number of packets sent by the source for
block b on path i be denoted by Si(b). Also let Ri(b) ≤ Si(b)
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denote the number of these packets delivered successfully
at the destination (determined from the ACKs sent across
all paths, by the aggregate ACK processing unit as shown
in Figure 1). Then pi,inst, the instantaneous loss rate of an
individual path i, and pinst, the instantaneous aggregate loss
rate across M paths, are calculated as

pi,inst =

(
1− Ri(b)

Si(b)

)
; pinst =

M∑
i=1

(
Si(b)∑M
i=1 Si(b)

)
pi,inst

(2)
The running estimates of the average path and aggregate

loss-rates, p̂i and p̂agg respectively, are then obtained by
smoothing using an EWMA with a parameter value of 0.5, on a
per-packet basis. The instantaneous variance σ2

inst is calculated
as

σ2
inst = (pinst − p̂agg)

2. (3)

The running estimate of the variance of the aggregate loss
rate σ̂2

agg is calculated from σ2
inst, again using EWMA with

a parameter value of 0.5. The aggregate loss rate estimates
(mean and variance) is used for redundancy provisioning, as
described in Section III-B.

The per-path RTT (RTTi) is estimated the same way as
performed in TCP. The bandwidth3 BWi of a path i is then
estimated as BWi = wi/RTTi, where wi is the congestion
window size for path i. The aggregate bandwidth across all
the M paths used by the flow is then estimated as

BW =
M∑
i=1

BWi =
M∑
i=1

wi

RTTi
. (4)

The following analysis, which focuses on the recovery of
a single block of packets, is done under a reasonable “quasi-
static” assumption that the wi, RTTi, and pi parameters (and
therefore the bandwidth BWi) do not change significantly
during the transmission and recovery period of a single block.

B. PFEC/RFEC Provisioning

For determining the aggregate flow parameters like
PFEC/RFEC allocation and p-block size, we model the mul-
tiple paths used by a flow as a single composite virtual pipe
with aggregate loss rate pagg and aggregate bandwidth BW .
We first discuss the PFEC provisioning policy. Consider the
transmission of F data packets (each of size S) over this
aggregate virtual pipe from the source to the destination. To aid
data recovery despite potential packet losses in the aggregate
virtual pipe, k FEC packets are sent along with the data
packets. We can view F as the number of data packets in
a block, and k as the number of PFEC packets that are added
to create a p-block of size Bp = F +k. Let x = k

F denote the
amount of redundancy (i.e., fraction of PFECs in the block);
we express the PFEC provisioning policy in terms of x.

The goal of our PFEC provisioning policy is to ensure
that the block-data is recovered “with high probability” in the

3Note that this bandwidth is not the raw per-path bandwidth (capacity), but
the time-varying share of that bandwidth as perceived by the end-to-end flow.
It can also be viewed as the sending rate (Mb/s) on path i that is achievable
with the current congestion window (wi) and round-trip time (RTTi).

first round itself, i.e., without any additional round of RFEC
packet transmission. With this objective, the PFEC policy (as
well as the RFEC policy) can be derived, under fairly general
assumptions, by simply bounding the loss tail probability
(using Chebyshev inequality, for example). In the analysis
provided next, however, we first assume an i.i.d. aggregate loss
model with a fixed, known loss probability pagg. This allows
us to derive exact expressions, and also helps in analyzing the
p-block sizing and packet mapping policies that are discussed
subsequently in Sections III-C and III-D.

Let h(i) denote the probability that exactly i FEC packets
are required to recover the F data packets. Assuming that
packet loss process in the aggregate virtual pipe is i.i.d. with
probability pagg, then h(i) is given by

h(i) =

(
F + i− 1

i

)
(pagg)

i(1− pagg)
F . (5)

Let the given block recovery probability constraint, i.e.,
lower bound on the probability of recovering all data in the
block (p-block) in a single round, be (1− ϵ). Recall that due
to the property of erasure codes, all data in the p-block can
be recovered if the number of packets in the p-block that is
lost is k or less. This recovery probability, denoted by H(k),
is given by H(k) =

∑k
i=0 h(i). Therefore, the block recovery

probability constraint translates to H(k) ≥ 1− ϵ.
It is easy to observe that H(k) is non-decreasing in k, there

exists an kmin(ϵ) such that H(k) ≥ 1 − ϵ ∀k ≥ kmin(ϵ). Let
xmin(ϵ) =

kmin(ϵ)
F . Therefore, given F , the amount of redun-

dancy must be xmin(ϵ) or greater, so as to satisfy the block
recovery probability constraint. A closed form expression for
xmin(ϵ) may not exist in general; however, xmin(ϵ) can be
computed numerically. Through curve-fitting, we observe that
xmin(ϵ) can be well approximated as follows:

xmin(ϵ) ≈ β(pagg, ϵ) = αϵ
pagg

1− pagg
, (6)

where values of αϵ for different ϵ are listed in Table II. The
amount of PFEC in a block is then ⌊Fβ(pagg, ϵ)⌋+ 1.

Numerical results show that the error in approximating
xmin(ϵ) by β(pagg, ϵ) is negligible for F ≥ 90. The difference
between xmin(ϵ) and β(pagg, ϵ) for small F exists because
xminF must be an integer.

ϵ 0.01 0.10 0.20 0.30 0.50
αϵ 1.28 1.20 1.12 1.08 1.00

TABLE II
CALCULATED VALUES OF αϵ FOR DIFFERENT ϵ.

Let Λ(k) be the average number of redundant packets
(FECs) that are required to recover the F data packets. Then

Λ(k) = k

k∑
i=0

h(i) +

∞∑
i=k+1

ih(i). (7)

Then, GP (x), the flow goodput (aggregated over all paths
that the flow uses), expressed as a function of the redundancy
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x = k
F , is

GP (x) =
BW

1 + Λ(k)
F

=
BW

1 + x
∑xF

i=0 h(i) + (
∑∞

i=xF+1 ih(i))/F
, (8)

where BW is given by (4) and h(i) are given by (5).
Numerical results show that GP (x) is non-increasing in

x: it is relatively flat for smaller values of x, but decreases
sharply for values of x larger than pagg

1−pagg
. Thus it follows

that the value of x that maximizes GP (x), while satisfying
the 1 − ϵ bound, is xmin(ϵ). Thus, MPLOT must transmit at
least k = xmin(ϵ)F PFEC packets in the p-block.

For a 50% block recovery rate, i.e., ϵ = 0.50, we have
αϵ = 1 (Table II), and the PFEC allocation policy reduces
to x = k

F =
pagg

1−pagg
. In practice, however, pagg is not exactly

known, and varies with time. To account for these, we take into
account the estimates (mean as well as variance) of the loss
rate, computed as described in Section III-A. For this purpose,
we replace pagg with (p̂agg+κ1σ̂agg), where κ1 is a parameter
that must be chosen depending on the desired tradeoff between
amount of redundancy and block recovery probability. Thus,
MPLOT’s PFEC provisioning policy allocates the amount
PFEC redundancy according to:

x =
k

F
=

p̂agg + κ1σ̂agg

1− (p̂agg + κ1σ̂agg)
, (9)

where the average (p̂agg) and variance (σ̂2
agg) of the loss rate

is estimated using measurement and EWMA as described
in Section III-A. Note that if X (random variable) denotes
the fraction of packets lost in the block, then p̂agg and σ̂2

agg

represent the estimates of the mean and variance of X . The
probability that the block-data is not recovered in a single
round is then given by P

(
X > k

F+k

)
= P

(
X > x

1+x

)
.

If the PFEC redundancy x is determined according to (9),
then from Chebyshev inequality, we have P

(
X > x

1+x

)
=

P(X > p̂agg + κ1σ̂agg) ≤ 1
1+κ2

1
. Choosing κ1 = 1, we

observe that the PFEC provisioning policy of (9) yields a
block recovery probability 0.5 that we desire. We therefore
use κ1 = 1 in the simulations shown in Section IV.

The process of deriving the RFEC provisioning policy is
similar to that for PFEC. Recall that the aggregate flow
manager needs to transmit RFEC packets when the PFEC
packets in the block are insufficient to recover the block-
data. In order to balance rounds of RFEC transmissions and
goodput, a small amount of excess, (1 + y)r, RFEC packets
are sent in response to a request for r RFEC packets needed
to recover the block-data. Note that receiving any r packets
out of the (1+y)r packets sent would be sufficient to recover
the block-data. MPLOT’s RFEC provisioning policy chooses
y according to

y =
p̂agg + κ2σ̂agg

1− (p̂agg + κ2σ̂agg)
, (10)

where κ2 is a parameter that needs to be chosen. As argued
previously, κ2 = 1, would ensure that that r packets out of
the (1 + y)r sent are recovered in the same round. However,

since there are multiple paths with diverse characteristics, and
number of RFEC packets sent in one round is typically small,
and RFECs tend to be sent on “better” paths (which have
lower loss rates than p̂agg, and lower RTTs). Thus, as our
experiments show, a smaller value of κ2 (even κ2 = 0, which
is used in the simulations in Section IV), works quite well.

Note that the PFEC allocation x is also updated when a
new block is created, while the RFEC allocation y is updated
at the beginning of each RFEC transmission round.

C. p-block and Packet Sizing

Note that the PFEC provisioning policy specifies x = k
F ,

but does not specify the individual values of F and k. The p-
block sizing policy we describe next specifies Bp = (F + k),
from which F and k = xF can be obtained using the
PFEC allocation x. The optimal p-block size is determined by
bounding the block recovery time. In general, a larger p-block
size implies larger block recovery time, as we observe shortly.
We again model the packet loss process in the aggregate virtual
pipe as i.i.d., with probability pagg. Recall from the analysis in
Section III-B, h(i), as given by (5), is probability that exactly i
FEC packets are required to recover the F data packets. Since
h(i) follows a negative binomial distribution, the average
number of FEC packets required to recover the F data packets
is paggF

1−pagg
. Therefore, the average number of all packets (data

and PFEC) that are required to recover the block-data is
F +

paggF
1−pagg

= F
1−pagg

. Note that with the optimum PFEC
policy as given by (6), the average number of packets required
for block-data recovery reduces to Bp

(1+β(pagg,ϵ))(1−pagg)
. For

a given maximum block recovery delay constraint ∆, the p-
block size Bp is then bounded as

Bp ≤ BW∆(1− pagg)(1 + β(pagg, ϵ)),

where BW is the aggregate virtual pipe bandwidth, given by
(4). Using (6) and (4), we then obtain

Bp ≤
M∑
i=1

wi
∆

RTTi
(1 + (αϵ − 1)pagg) , Bp

max. (11)

A larger p-block size will result in a better goodput, as it
allows a selection of PFEC policy x closer to the optimal value
β(pagg, ϵ) (because of reduced rounding error). Therefore, the
optimal p-block size is Bp

max, as defined in (11).
Note that for ϵ = 0.50 and ∆ = RTTmed, Bmax reduces to

the following expression, which MPLOT uses as the p-block
sizing policy:

Bp =
M∑
i=1

wi
RTTmed

RTTi
. (12)

Note that the p-block size is updated when a new block is
created, based on the latest values of wi, RTTi.

In practice, there may be additional constraints that limit
the size of the p-block. Note that Bp cannot exceed B(=
Bp + (K − k)), the total size of the coded block, which
may be limited by the field size in the block erasure code
calculation, as discussed in Section II-A. Thus one may want
to choose the size of the p-block such that it allows keeping an
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r-block of “reasonable size”, so that the block can be recovered
with high probability before all FEC packets in the block are
exhausted. The analysis of Section III-B and this section can be
extended to compute the appropriate p-block and r-block sizes
taking such limits into account. Further, note that if the amount
of data remaining in the buffer is not enough (after adding
the necessary PFECs) to fill up the p-block size (determined
according to (12)), then the MPLOT sender does not wait any
longer to fill up the desired p-block size: it just takes up the
data that is available, adds PFECs to it according to (9), and
sends it out.

Finally, a note on the packet sizing policy is in order.
In general, larger packet sizes cause less header overhead,
and therefore seem more desirable. A larger packet size
implies fewer number of packets per block, which makes
the losses more bursty, and the loss rate estimate per block
less reliable (due to fewer samples that can be used in the
loss rate estimation). Increased burstiness in the losses, or
less reliability in the loss estimates, imply increased PFEC
provisioning (due to higher loss variance, as in (9)), or non-
optimal PFEC/RFEC allocation, thereby reducing goodput. In
MPLOT, therefore, we adapt the packet size S (within some
pre-determined upper and lower bounds) with each block: we
use the largest packet size that still enables us to maintain a
given minimum number of packets per block, if possible. Thus
a larger p-block size in general implies a larger packet size. In
the MPLOT version used in the simulations in Section IV, we
vary the packet size across three values: 750 bytes, 550 bytes
and 250 bytes (with a 50 byte header), choosing a maximum
size that maintains a minimum of 5 packets in a block. MPLOT
also ensures that the packet size does not exceed the minimum
MTU across all paths.

D. Mapping Packets to Paths

The choice of a mapping policy is important as it signifi-
cantly affects the amount of goodput we can gain from the
available path diversity. We first formalize the question of
mapping packets to paths, with the objective of minimizing
the block recovery delay, and motivate the packet mapping
policy that MPLOT uses, from the analysis. Recall that each
candidate path i is characterized by its congestion window
wi, its round-trip time RTTi and its loss probability pi.
Additionally, at the time of mapping, let νi ≤ wi be the
number of packet transmission opportunities on path i. i.e.,
νi is the number “vacant positions” in path i’s congestion
window. Therefore, νi represents a limit on the number of
packets of the p-block that can be mapped onto path i.
When mapping a p-block of Bp packets onto the paths, let
zi be the number of packets mapped onto path i; therefore∑M

i=0 zi ≤ Bp, and zi ≤ νi ∀i. In accordance with our goal
of keeping the congestion control policy (and hence the packet
mapping onto paths) separable from the reliability mechanism,
in the optimal packet mapping formulation we ignore the
fact that the packets are erasure coded and recovered at an
aggregate level. Therefore, we derive the optimal mapping
policy assuming that all the packets mapped onto a specific
path must be recovered individually. Assuming that the packet

loss process on path i is i.i.d., with probability pi, the number
of packets (original packets plus retransmissions) that must
be sent to recover the zi packets mapped to path i equals
zi/(1 − pi) on an average. Since wi packets are sent over
a time interval of RTTi, the average time taken to recover
all packets sent on path i is zi/ (wi(1− pi)/RTTi). We call
the term wi(1−pi)

RTTi
the estimated loss-free bandwidth of path i,

which is the same as the rank function defined in (1).
Note that in absence of the upper limit constraints νi, the

mapping policy that minimizes block recovery time would be
to map all packets on the path with the largest estimated loss-
free bandwidth (rank) πi. Due to the upper limit constraints,
however, the optimal solution would pick the path i = imax

such that it maximizes πi among all i, and fill it up to the
limit of νimax . It then picks the path that attains the second
maximum rank, fills it up to the limit, and so on. In other
words, this mapping policy picks paths in decreasing order of
the rank values, and fills them up to the allowed limits.

MPLOT’s packet mapping policy derives the basic idea and
the use of the rank function from the solution just described,
but differs from the above policy in two aspects. Firstly,
when there are multiple outstanding blocks whose packets
must be mapped to paths, it also considers the temporal
relationship between different blocks during mapping. Refer
to Section II-D for the rules followed by the MPLOT packet
mapping algorithm: note that MPLOT preferentially maps
blocks generated (required) earlier in time to paths with higher
rank. Secondly, MPLOT reduces complexity by grouping all
paths into two categories: (i) GOOD and (ii) BAD, depending
on whether their rank is greater than the median rank (across
all paths) or not. GOOD paths are then preferentially used
for packets of earlier blocks. More precisely, if there are U
unrecovered blocks at any time, then packets of the earliest
(latest) U

2 blocks are mapped to the GOOD (BAD, resp.) paths,
while ensuring that no transmission opportunities are wasted.

IV. SIMULATION RESULTS

In this section, we present performance results obtained
through simulations of the MPLOT protocol on ns-2. We
consider a topology comprising M parallel paths between each
source and destination node (Figure 2). The different parallel
paths in the topology correspond to different physical routes
between a source the destination, which may have different
capacities, round-trip times and loss rates, and possibly overlap
(in terms of physical links) in the underlying network. Since
ACK packets are sent back on reverse paths chosen at random,
all these paths are utilized for ACK delivery. The overlap
between the paths is modeled by considering correlations
across losses of different paths in our topology this is studied
in Section IV-E. In all our simulations, we have used 1 byte
for each of the four additional header fields that MPLOT uses
(as mentioned in Section II-B), and the goodput results in this
section do take this overhead into consideration, along with
that for the rest of the header.

MPLOT as a transport layer protocol could be used over a
different link layer technologies and multi-access protocols,
and therefore our goal is to evaluate its performance in a
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manner that is relatively independent of the underlying link
layer mechanisms. We start by assuming link characteristics
and interactions across flows on individual links are captured
in the time-varying loss rates, bandwidths and RTTs of the
paths, modeled and measured end-to- end. However, in Section
IV-F, we show representative simulation results that capture
link layer contention effects on flows for a 802.11-like MAC
protocol, and study how an increasing number of paths sharing
the same wireless channel impacts MPLOT’s performance.

Network cloud imposing 

different bandwidths, RTTs 

and loss rates (possibly 

correlated) on the pathssource destination

1

2

M

1

2

M

Fig. 2. Generic topology used for most of the simulations: 10 MPLOT flows
(sessions), each using (and sharing) the M paths between the source and the
destination node. The paths have different (but possibly correlated) loss rates,
RTTs and bandwidths, that provide the end-to-end abstraction of the different
physical, link and network layer characteristics of the physical hops (links)
constituting each path. Each end-to-end path is composed of 4-6 links.

In addition, we investigate the capability of MPLOT to
aggregate bandwidth across paths, and utilize diversity across
paths to gain additional goodput over the aggregated virtual
pipe (Section IV-A). We also stress on the importance of
path heterogeneity awareness (Section IV-B), and demonstrate
the importance of implementing the reliability mechanism on
the aggregate, rather than having per-path reliability (Section
IV-C). We show that MPLOT is able to share bandwidth
fairly (proportionally) with traditional TCP protocols (Section
IV-D). Next, we study the effect of overlapping paths, and
correlated loss rates across paths, on the protocol performance
(Section IV-E). Finally, we perform a detailed performance
comparison on MPLOT with another well-known multipath
transport protocol, PTCP (Sections IV-G and IV-G).

Before we describe our experiments and results, a few words
on the simulation setup and choice of parameters are in order.
In Section IV-A, we keep the bandwidth per path fixed as we
vary the number of paths, as we study bandwidth aggregation
gains and differentiate it from diversity gains, and study the
effect of differential RTT across paths. In the rest of the
simulation study, however, we set the total capacity across the
M paths to a constant (typically 10 Mb/s or 50 Mb/s) when
we vary the number of paths; this allows us to easily compare
the results across multiple paths and focus on diversity gains
obtained with increasing number of paths. The RTT on any
path is kept at 40 ms, except in our study of differentiated
path RTTs in Section IV-A. In almost all of our simulations,
we use a bimodal loss rate process, where loss rates vary
between “low” and “high” levels (25% and 75%, or 5% and
15%, i.e., averaging to 50% or 10% respectively, over time).
In Section IV-B, which studies heterogeneity awareness, the
loss process is trimodal, as the channel can also be in a state
of 100% loss (disruption). In our study involving comparison
with PTCP (Sections IV-G and IV-H), the loss process is
unimodal (single rate), which allows us to easily vary the loss

rate over a wide range for doing this comparison. In our study
of wireless channel contention effects in Section IV-F, we have
kept a fixed loss rate of 10% to model external interference
effects. For any particular loss rate, the loss processes are
assumed i.i.d. across packets and paths, except in Section IV-E
where we study the effect of loss correlation across paths. The
capacity and loss rate parameters chosen for the experiments
discussed here are only representative, and simulations across
a wide range of these parameters have shown that the nature
of the results is generally consistent across different parameter
values. In the following, we have presented results for “high”
values of the parameters (50 Mb/s for link capacity and 50%
for average loss rate) in some cases, and “low” values in the
others (10 Mb/s for link capacity and 10% for average loss
rate).

A. Bandwidth Aggregation and Diversity Gain

In this section, we study the capability of MPLOT to
aggregate bandwidths from multiple, possibly hetergoneous
paths. We also study the extent to which MPLOT is able to to
suppress volatility in the loss rates and available bandwidths,
resulting in further “diversity” gains in goodput. Bandwidth
aggregation will typically result in large gains in bandwidth
because total bottleneck capacity will increase with the number
of paths; this gain can be considered as a “first order effect”.
The diversity gain of MPLOT is obtained by comparing the
goodput achieved by MPLOT using multiple paths with that
obtained on a single path of the same aggregate capacity. This
gain can thus be considered a “second order effect”.

In the simulation results presented next, the packet loss
rate on each path is implemented as a 2-state time-varying
process. The loss rate on each path alternates between 25%
and 75%, and the time duration between state transitions is
exponentially distributed with the same mean of 250 msec;
therefore, the overall time-average loss rate of each path is
50%. The capacity of each path is set to 10 Mb/s, and the
RTT of each path is 40 ms. In all our simulations, the buffer
capacity at any link is set to its bandwidth-delay product.
In Figure 3, we vary the number of paths (M ) and plot the
goodput (or effective data rate) achieved by MPLOT and the
maximum effective capacity available (M × 5 Mb/s), after
the 50% loss rate is taken into account. In the simulations,
each packet is 550 bytes long with 500 bytes of data. Our
packet buffering and ECN marking policy at the intermediate
nodes (links) follows the well-known Random Early Detection
(RED) scheme.

The bandwidth aggregation curve shown in Figure 3 corre-
sponds to M times the goodput achieved for a single path (2.75
Mb/s). The goodput gained over this value is the diversity gain
achieved by MPLOT. We can observe that the diversity gain
increases with M . For 10 paths, the goodput achieved by
MPLOT is 35 Mb/s as compared to the 27.5 Mb/s estimate
from bandwidth aggregation. The diversity gain in this case is
as high as 21.4% (7.5 Mb/s) of the total goodput achieved by
MPLOT. The diversity gain is attributed to the suppression in
path volatility. Our detailed studies reveal that diversity gain
increases as O(1− 1√

M
) which matches the order of reduction
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of aggregate path loss volatility/variance with increasing M .
For the case in Figure 3, we observed that the standard
deviation for the aggregate loss reduces from 0.132 for 1 path
to 0.067 for 4 paths, while the mean aggregate loss rate is
constant at 50%.

(first order effect)

(2nd order effect)
Diversity Gain
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Fig. 3. Bandwidth aggregation and diversity gains obtained by MPLOT.
Bandwidth aggregation leads to a linear increase in goodput with increasing
number of paths, whereas MPLOT performs even better due to diversity gain
(2.75 Mb/s out of 5 Mb/s for 1 path, to 35 Mb/s out of 50 Mb/s for 10
paths).
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Fig. 4. Per-path goodput vs. Number of paths, when the RTT of 50% of the
paths is scaled up by the Delay Scale. Each path has a capacity of 10 Mb/s,
and 50% loss rate. As number of paths increases, the reduction in goodput
due to the longer paths becomes less significant.

Next we consider diversity gain due from paths with differ-
ent RTTs. Towards this end, we consider similar topology and
loss process as before but scale RTT of 50% of the M paths by
a delay scale D, from 40ms to 40D ms (M is chosen even and
≥ 2). The RTTs of the other 50% of the paths are kept at 40
ms. We vary D as 1, 3, 10. Figure 4 plots the resultant “average
per-path” goodput for different D and M . (The total goodput
is thus M times the values shown in the figure.) The results
show that goodput decreases as delay scale D increases, as
expected. However, we observe that the reduction in per-path
goodput due to the extra delay scale becomes less significant
as the number of paths increases. In fact, with 8 paths or
more, the per-path goodput obtained with a delay scale of
6 is quite close to that obtained with D=1. Note also that
the per-path goodput increases with an increasing number of
paths; this is due to the fact that the shorter delay paths helps
offset the effect of a large delay on the rest of the paths.
We conclude that MPLOT can take advantage of the diversity
offered by multiple paths, even if they have heterogeneous
characteristics.
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Fig. 5. Average goodput with 95% confidence intervals for MPLOT
(heterogeneity aware) compared with a heterogeneity blind scheme for dif-
ferent paths. MPLOT exploits diversity gain from paths and improves while
heterogeneity blind scheme suffers over multiple paths.

B. Importance of Heterogeneity Awareness

MPLOT is a heterogeneity aware scheme, i.e., MPLOT
is aware of the differences in packets (block it belongs to)
and paths (bandwidth, RTT, loss-rate) which are used to map
packets on paths, as discussed in Section II.

To understand the impact of heterogeneity awareness, we
compare MPLOT with a heterogeneity blind scheme that has
the same PFEC, RFEC and p-block sizing policy as MPLOT,
but considers all paths as equivalent. In such a case, the
first packet in the queue is mapped to any available path.
Consequently, packets are transmitted in order as opposed to
the out-of-order mapping of MPLOT.

We consider the scenario where paths suffer from random
disruptions, in addition to bursty packet losses. Loss-rate on
a path varies between 25% (OFF), 75% (ON) and 100%
(DOWN) states for (exponentially distributed) random time-
periods. The average time periods for the ON, OFF and
DOWN (disruption period) states are 250 ms, 250 ms and 1
sec respectively, significantly larger than RTT of the paths (40
ms). The likelihood of a transition from the ON or OFF state
to DOWN state is kept at 0%, 2% and 5%, for three different
studies. The bandwidth of each path is fixed at 10

M Mb/s for
M paths, keeping the total aggregate bandwidth constant at
10 Mb/s.

We observe in Figure 5 that the goodput of the heterogeneity
blind approach actually worsens as number of paths increases
from 1 to 5, in each of the three cases (from 1.2 Mb/s to 0.9
Mb/s in case with 5% down state On the other hand, the good-
put of the heterogeneity aware scheme (MPLOT) improves
significantly Mb/s) with increasing number of paths (from 1
to 5). This demonstrates that consideration of heterogeneity in
the path characteristics is crucial to obtaining diversity gains
in the goodput.

C. Aggregate vs Per-path Reliability

Recall that one of the key design decisions that we made for
MPLOT was to implement the reliability mechanism at flow
level, aggregated over all paths that the flow uses. We next
demonstrate the impact of this, by comparing its performance
with that of implementing reliability at the per-path level. In
this experiment, we consider the topology as shown in Figure
2, with M = 3 paths, where each path has an RTT of 40
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ms. The aggregate capacity across all paths (equally divided
among the paths) is 50 Mb/s, and loss rates vary uniformly
between 5% and 15%, with an average of 10%. The throughput
across the three paths, along with the aggregate throughput
and goodput attained across all flows, are shown in Table III.
The “aggregate reliability” case corresponds to MPLOT; in the
“per-path reliability” case, the reliability mechanism remains
the same as MPLOT (use of PFEC and RFEC etc.), but they
are implemented on a per-path basis; note that in both cases,
the congestion control is implemented on a per-path basis.
From the results, we observe that MPLOT with aggregate
reliability attains about 4.5% more throughput, and 7.8% more
goodput, as compared to MPLOT with per-path reliability.
MPLOT’s reliability across the aggregate results in larger p-
block sizes, which in turn results in lower variability in the loss
rate perceived by the overall transport connection, compared
to that observed by the individual transport connections. This
implies that with reliability at the aggregate, we have better
efficiency in redundancy allocation (PFEC and RFEC), and/or
fewer number of RFEC rounds for block recovery. Recall that
in MPLOT, acknowledgements can come back across any of
the paths, rather than being restricted to the individual path;
this can reduce the number of timeouts (including spurious
timeouts). All this argues in favor of implementing reliability
at the aggregate (flow) level, as done in MPLOT.

Per-path Reliability Aggregate Reliability
Path 1 throughput 15.67 16.83
Path 2 throughput 14.89 16.05
Path 3 throughput 15.97 15.75
Total throughput 46.53 48.63

Total goodput 27.46 29.61

TABLE III
COMPARISON OF PER-PATH VS AGGREGATE RELIABILITY.

D. Fairness with Traditional TCP

The use of multiple paths raises an important question about
MPLOT’s fairness to conventional TCP. The question becomes
even more relevant when we consider the fact that unlike
single-path transport protocols, MPLOT can use a different
reverse path to acknowledge packets sent on a given forward
path.

In this sub-section we use TCP-SACK for comparison in
our simulations. Since TCP-SACK is a single path protocol,
we focus on the sharing of bandwidth on a per-path basis,
even though MPLOT uses multiple paths simultaneously. For
fair comparison, the TCP-SACK protocol that we use is ECN-
capable as well.

We first consider in detail the case where equal number of
MPLOT and TCP-SACK users transfer packets on a single
lossless path. We compare the throughput behaviors of an
MPLOT flow and a TCP-SACK flow in Figure 6. We note that
the throughputs of the MPLOT and TCP-SACK flow behave
similarly with time. This shows that the MPLOT operating on
a single lossless path behaves fairly with TCP-SACK flows
not only on an average, but at a finer time-scale as well.

From Figure 6, note that the initial ramp-up for MPLOT
is faster than TCP-SACK. This can be explained as follows.
Recall from the discussion in Section III-C that packet sizes

MPLOT

TCP−SACK
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Fig. 6. Throughput comparison between a single-path MPLOT flow and
a TCP-SACK flow. MPLOT flow only uses a single path, sharing it with
other MPLOT and TCP-SACK flows. The throughput of both flows vary very
similarly with time.

are varied based on the p-block size. While the congestion win-
dows for both protocols (TCP-SACK and single-path MPLOT)
start out at with the size (1 MSS), more packets are sent
out for MPLOT (as the packets are smaller in size, initially).
This implies that for MPLOT, a larger number of ACKs come
back, and the congestion window grows faster initially. As the
congestion window grows, packet sizes become larger, and
this effect goes away, and the throughput values for the two
protocols become similar over time.

We now consider MPLOT transferring data over multiple
paths, and compare the behavior of an individual MPLOT flow
with a TCP-SACK flow on one of the paths. We simulate a
case where the number of MPLOT and TCP-SACK sources are
the same on each path. In particular, we simulate 10 MPLOT
sources, each source using M identical paths (M is varied
from 1 to 5). Each of the M paths is also used by 10 TCP-
SACK users. In this way, the number of MPLOT and TCP-
SACK flows on each path are equal. The paths are lossless, so
the increased loss-tolerance of MPLOT (due to FEC coding)
does not play a significant role in increasing throughput and
goodput. Therefore, we expect the throughput for MPLOT and
TCP-SACK flows to be equal. We conducted 5 simulations
(each of duration 300 secs) with different seed values for each
case and report the average across these experiments.

The dynamic behavior of the per-path throughput of
MPLOT and that of TCP-SACK were observed to be similar
in nature to that shown in Figure 6 – they converge over time
to the same values. The congestion windows of the MPLOT
and TCP-SACK flows on the path , also behave quite similarly
with time. We conclude that even when MPLOT uses multiple
paths under lossless conditions, it remains fair to TCP-SACK
flows on the paths it is using. These results show that MPLOT
treats existing TCP flows fairly, sharing bandwidth equally on
the paths it uses.

Figure 7 shows the total throughput of all the MPLOT and
TCP-SACK users, as the number of paths is varied (and each
MPLOT source uses all the paths). The share of throughput for
MPLOT remains constant independent of the number of paths
used by each MPLOT source. MPLOT users use a total 5.1
Mb/s while TCP-SACK users use up 4.7 Mb/s out of a total
available 10 Mb/s aggregate capacity. This shows that MPLOT
and TCP-SACK share bandwidth equally at an aggregate level
as well. Hence, we conclude that MPLOT is fair to existing
TCP flows on the individual paths as well as at an aggregate
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Fig. 7. The average values and 95% confidence intervals of the capacity
used by all MPLOT and TCP-SACK users from an aggregate total capacity
of 10 Mb/s. We observe that MPLOT and TCP-SACK sources use almost
equal amounts of capacity for different number of paths.

level.
The fact that MPLOT attains per-path fairness with TCP-

SACK flows, results from MPLOT’s use of TCP-like single-
path congestion control algorithm separately for each path.
However, since MPLOT separates reliability from congestion
control, it can work with other congestion control mechanisms
as well, and thereby attain different notions of fair bandwidth
sharing with single-path (TCP) flows, depending on the spe-
cific multi-path congestion control policy used.

E. Effect of Loss Correlations

It is possible that two or more paths may share a lossy
link, or their MAC transmissions may interfere, resulting in
correlated loss rates across the paths. Intuitively, we would
expect the goodput to reduce with correlation due to less
diversity among the available paths; next we present some
simulation results that quantify this reduction in goodput.

We consider a topology with M paths with an aggregate
capacity of 10 Mb/s capacity and RTT of 40 ms, as loss rates
vary randomly between 25% and 75%, as described earlier.
In this case, however, the packet loss events are correlated,
and the degree of correlation is measured by a parameter θ;
the correlated loss processes are generated according to the
method described in [5]. In particular, the correlation is such
that, for two paths numbered i and j, the probability that a
packet loss in one path results in a packet loss in the other is
equal to θ|i−j|, thereby simulating the scenario where paths
that are further apart interfere to a lesser degree. We carry
out simulations for M = 2 to 5 paths, with θ = 0.05, 0.50
and 0.99. The results, shown in Figure 8, demonstrate that
although the diversity gains attained get reduced with increas-
ing correlation, the degradation in goodput with correlation
appears gradual and graceful. Moreover, comparing the curves
for θ = 0.05, 0.50, we observe that the goodput reduction
is small even for correlation factors as high as 50%, and
significant reduction in diversity gains occurs only when the
degree of correlation is even higher. A larger number of paths
provides greater diversity, thereby mitigating the effect of loss
correlations among paths.

F. Effect of Wireless Channel Contention

Beyond correlated loss patterns among the paths, MAC pro-
tocols also cause correlations in per-path bandwidth variation.
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Fig. 8. Effect of loss correlations among paths on goodput attained. As
number of paths increase, loss correlations have lesser effect on goodput as
MPLOT has more paths to choose from.

To study this, we simulate the topology shown in Figure 9.
The 10 MPLOT sessions running between the source and
destination node use M paths each. Each of these paths have
3 hops and share the wireless channel on the last hop; in other
words, the APi-destination links (i = 1, · · · ,M ) contend with
each other for wireless access. We assume a 802.11b wireless
channel (raw data rate of 11 Mb/s) operating in the basic mode
(CSMA). On this channel, we assume i.i.d. losses of 10% due
to external interference. We the use the well-known model
by Bianchi [6] (validated by several simulation studies in the
literature) to capture channel bandwidth variations across the
last hop of each path. In this case, the aggregate path (last
hop link) bandwidth decreases as the number of contending
links increase due to packet losses due to collisions, as well as
additional protocol overhead. Note that these collision losses
are in addition to the 10% loss due to interference.

The capacity of each wired link is 10 Mb/s. Thus, the flows
are bottlenecked by the wireless channel. The total throughput
and goodput attained is shown in Figure 10. Firstly, the
result confirms that MPLOT is able to utilize wireless channel
effectively, and even obtain diversity gains, as the number of
paths increases up to a point (up to 5 paths). Note that when
M = 5, then the throughput and goodput attained is observed
to be 82% and 70%, respectively, of the wireless link capacity
(i.e., the raw bandwidth, discounted by the 10% loss rate). It
is worth noting that diversity gain occurs after compensating
for the bandwidth loss with increasing number of paths due to
channel contention. Beyond M = 5, however, the diversity
gain obtained is not enough to counter the effect of the
decreasing bandwidth due to channel contention/collisions.
This implies that, when a common wireless channel is shared,
we need to strike a balance between using a larger number
of paths and the resulting contention. Note that the tradeoffs
and the optimality point is highly dependent on the link
layer technology and the multi-access protocol used. In the
CSMA/CA (with RTS/CTS) mode, the wireless channel band-
width decreases much more slowly with increasing number of
contending links (as compared to CSMA), and therefore the
optimal number of paths is likely to be larger. If a contention-
free MAC like TDMA is used, the throughput and goodput
attained should degrade even more gracefully with increasing
number of paths. Note that with paths (links) sharing the
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Fig. 9. Topology used for study of the effect of wireless channel contention.
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Fig. 10. Variation of throughput and goodput with number of paths (APs)
in the topology of Figure 9.

same wireless channel, the loss rates tend to become more
correlated, thereby limiting the diversity gains that can be
obtained from using of multiple paths (as observed in Section
IV-E).

G. MPLOT and PTCP: Goodput Comparison

In this section, we compare the goodput delivered by
MPLOT for long-lived flows under different conditions and
compare it with other multipath protocols, such as PTCP [7],
under similar conditions. For fairness, the PTCP protocol we
use for comparison uses ECN for congestion feedback.

PTCP aims for bandwidth allocation across multiple paths,
but does not include specific mechanisms for dealing with
losses. PTCP maintains a single FIFO queue of packets at the
aggregate flow level, performs congestion control on a per-path
basis, and maps packets to paths as transmission opportunities
in the paths become available. ACKs are sent back on the same
path (reverse direction) on which the corresponding packet was
sent. MPLOT differs from PTCP in its use of block erasure
coded FEC to deal with losses, use of other or all reverse
paths for sending ACK feedback, and intelligent mapping that
takes into account path loss rates and RTTs and does possibly
out-of-order mapping of packets onto paths.

We look at the goodput for long-lived flows, where we
separately simulated 10 PTCP and MPLOT sources with i.i.d.
losses, over a varying number of paths and packet loss rates.

We first compared the goodput of MPLOT and PTCP under
lossless conditions, and observed that in this case, MPLOT
and PTCP achieve same goodput irrespective of the number
of paths used. We next compare their goodput performance in
presence of losses. Figure 11 shows this difference in goodput

achieved by MPLOT and PTCP for varying numbers of paths
each of which experience 30% packet loss-rate. In this case,
we observe MPLOT achieves a goodput that is a significant
fraction of the aggregate capacity, but the PTCP goodput is
considerably lower.
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Fig. 11. Goodput achieved by MPLOT and PTCP over different paths when
average packet loss rate is 30%. PTCP is unable to achieve more than 1 Mb/s
goodput while MPLOT achieves a goodput of more than 6 Mb/s.
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Fig. 12. Goodput achieved by MPLOT and PTCP over 3 paths for different
packet loss rates. The goodput of MPLOT is significantly higher than PTCP
for loss rates greater than 10%.

As shown in Figure 12, MPLOT only shows a gradual,
almost linear decline with increasing loss-rate. PTCP seems
to be able to exploit some diversity gain over TCP-SACK at
low loss rates (up to about 10%), but shows a sharp decay in
goodput, similar to TCP-SACK [8], as the loss-rate increases
further. MPLOT is able to maintain high goodput in such lossy
conditions because it maps packets to paths in an intelligent
manner, considering their bandwidths, round-trip delays and
loss-rates while PTCP uses window size as the only parameter
in mapping packets to paths. The second reason why MPLOT
performs better than PTCP relates to MPLOT’s use of FEC,
which allows MPLOT to recover from losses without excessive
re-transmissions.

H. MPLOT and PTCP: Delay Comparison

We now look at the characteristics of packet delay achieved
by MPLOT for long-lived flows. A low average delay and low
jitter is desirable for streaming applications, which often use
HTTP/TCP, and typically have long-lived flows. Consequently,
we measure the average packet delay as well as the variance
in packet delay (as a measure of jitter) for MPLOT and PTCP
flows. The packet delay is measured from the time a data
packet is first sent, to the time it is received/decoded and
sent to the application at the destination. This allows us to
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measure the actual delay experienced by the application. We
compare the delay average and variance with PTCP in similar
conditions.

We look at the packet delay behavior when individual paths
suffer an average 30% packet loss-rate. Now we observe a
huge difference in average packet delay between the two
protocols. We note in Figure 13, when using 2 paths, MPLOT’s
average packet delay is less than 100 ms while PTCP’s average
packet delay exceeds 300 ms. The difference reduces as
number of paths increases, but even when using 5 paths, the
delay for MPLOT is less than the delay for PTCP by almost
50 ms, which is more than the 40 ms median RTT of the
paths. We observe from Figure 14 that for 2 paths the standard
deviation of MPLOT’s delay was 55 ms, while PTCP’s delay
showed a deviation in excess of 1600 ms. When using 5 paths,
the deviation for MPLOT increases to 500 ms while the delay
deviation for PTCP is about 1800 ms.

���
���
���
���

���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
�������

��
��
��
��

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1  2  3  4  5
Number of Paths

A
ve

ra
ge

 D
el

ay
 (m

s)

Average PTCP Packet Application Delay

Average MPLOT Packet Application Delay

Fig. 13. The average packet delay of MPLOT and PTCP operating over
different number of paths when the average packet loss rate is 30%. The
average packet delay for MPLOT increases with the number of paths but is
still considerably less than the packet delay exhibited by PTCP.
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Fig. 14. The standard deviation of packet delay for MPLOT and PTCP
operating over various paths when the average packet loss rate is 30%. The
std. deviation of packet delay of MPLOT is significantly lower than PTCP
for all paths.

Figure 15 shows how PTCP’s average delay increases
dramatically with increasing loss-rate while MPLOT maintains
an average delay that is nearly independent of the loss rate.
Coupled with the goodput results from section IV-G, we con-
clude that MPLOT maintains a good balance between goodput
and latency by using multiple diverse paths effectively.

V. RELATED WORK

Lee et al. [9] propose simple TCP modifications like in-
creasing the fast retransmission threshold, delayed ACKs and
the use of flow-aware routers to address reordering issues in
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Fig. 15. The average packet delay for MPLOT and PTCP operating on 3
paths for different packet loss rates. MPLOT’s packet delay does not show a
significant increase as packet losses increase while the packet delay of PTCP
increases exponentially.

multi-path transport. However, they assume that the underlying
link (paths) are reliable and do not consider lossy channels.
Lim et al. [10] propose a multi-path TCP framework for lossy
networks, where they transmit multiple copies of a packet on
different paths to counter high loss-rates. The performance of
the scheme degrades sharply for loss-rates beyond 20%.

Rizzo [11] demonstrate the feasibility of high-speed FEC
computation at the transport layer. Although [11] mentions
the idea of using FEC in TCP, no specific scheme has been
proposed or studied. In [12], [13], the authors study the use
of FEC in transport control, but in the context of reliable
multicast. Anker et al. [14] show that using FEC with TCP
is a viable option to recover from sporadic packet losses,
but the performance depends on how the FEC parameters
are chosen. Baldatoni et al. [15] propose a version of TCP
with FEC (but without any adaptivity in the coding rate)
that works for small error rates. TCP Westwood [16] uses an
estimate of output rate to guide congestion control, and has
been effective for low erasure rates (under 5%). Loss-Tolerant
TCP (LT-TCP) [8], developed in our prior work, is a transport
protocol designed to be robust in environments with high loss
rates and bursty losses. It uses adaptive segmentation, loss
estimation and FEC to improve goodput by avoiding expensive
timeouts. LT-TCP uses an estimate of the end-to-end loss
rate to provision FEC adaptively through both proactive and
reactive mechanisms. However, the above mentioned solutions
are designed to operate over a single path and cannot leverage
additional capacity and diversity benefits available through use
of multiple paths.

Several recent works have proposed TCP based multi-
path transport protocols for use over lossy links [17], [7],
[18]. However, these existing schemes allow a very limited
degree of redundancy at the transport layer, due to which
they cannot handle multiple highly lossy paths effectively.
In mTCP, proposed by Zhang et al. [17], no redundancy is
introduced at the TCP layer, and all lost packets must be
retransmitted resulting in excessive retransmissions and low
goodput. Similarly, in pTCP, proposed by Hseih et al. [7], a
packet is transmitted redundantly (over two paths) only if it
immediately follows a timeout. RCP, described in [18], relies
solely on retransmission of lost packets to recover from losses,
which can seriously limit its performance advantages in a
highly lossy environment.

The problem of diversity coding for multi-paths has been
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modeled theoretically, though the models incorporate only lim-
ited protocol adaptivity, loss dynamics and path heterogeneity.
Tsirigos and Haas [19], [20] derive analytical expressions
for calculating the delivery probability when packets are sent
over multiple paths (without much delay heterogeneity), and
provide an algorithm for computing the optimal mapping of
packets to paths. Vergetis et al. [21], [22] address a similar
modeling question, but with a more realistic path loss model
where loss rates can vary at a faster timescale. The benefits
of using multiple paths in improving the packet delivery
probability is experimentally evaluated on a 802.11 testbed in
[23], although only a small number of paths (that differed only
in their loss behaviors) are considered. Miu et al. [24] consider
how better loss resilience can be provided by exploiting multi-
radio diversity, by combining multiple, possibly erroneous,
copies of a given frame, and focus on the case where the
path introduces bit errors rather than packet erasures. Jain and
Das [25] propose a link-layer mechanism to determine the next
hop locally based on prevalent channel conditions, but do not
provide a mechanism to recover from channel errors.

For real-time streaming applications, Jurca et al. [26] and
Rao et al. [27] propose algorithms to schedule packets on
multiple paths for bandwidth aggregation while minimizing
delay but ignore losses due to faulty links. In the same
context, Nguyen et al. in [28] consider using FEC to counter
packet losses; however, the scheduling scheme proposed is
not adaptive, and requires an exhaustive search that does not
scale well with the number of paths. Li et al. [29] also propose
FEC to counter packet-losses. They propose an algorithm to
schedule packets on paths such that the average number of
lost packets is minimized while the FEC encoding remains
fixed irrespective of the network conditions. However, due to
additional path-bandwidth constraints, the algorithm schedules
packets sub-optimally.

The current multipath TCP work in the IETF (TCP-M) [30]
is another effort at using multiple paths at the transport layer.
It is based on adjusting the increase parameter adaptively to
balance the load on the different paths so as to improve the
aggregate use of all the paths. We go beyond their approach
by also being able to tolerate loss on the paths. Moreover, we
are able to show that our approach is able to take advantage
of the diversity in loss and delay across the different paths.

To summarize, some key limitations of the existing work
on this topic are: (i) the proposed schemes may not scale
well to a highly lossy environment, (ii) the heterogeneity in
path characteristics is not exploited effectively, (iii) in many
cases, specific protocols to attain the desired goals have not
been proposed, and (iv) algorithms and specific design choices
depend heavily on the application. Our contribution lies in
the fact that we provide a concrete protocol to address these
limitations, by developing hybrid ARQ/FEC strategies using
erasure coding to extract diversity gains from multiple paths
with heterogeneous characteristics. The scheme we propose,
MPLOT, adapts to the changing channel conditions quickly to
achieve a stable, aggregate goodput despite higher volatility
and poor loss rates on individual paths.

VI. CONCLUSION

In this paper, we proposed MPLOT, a transport protocol that
can realize significant bandwidth gains through the effective
use of multiple heterogeneous end-to-end paths subject to
very high and bursty loss rates. Traditional TCP (e.g., TCP-
SACK) is unable to take advantage of multiple paths, as
well as the diversity in loss and delay across these paths.
In contrast, MPLOT delivers higher goodput than simple
bandwidth aggregation by exploiting diversity from multiple
paths in the presence of delay heterogeneity across paths, and
even with bursty, high, correlated loss rates (which can be as
high as 75%, with a mean of 50%, as in our example study).

MPLOT is based on the fundamental principle of separat-
ing reliability and congestion control. It performs congestion
control on each individual path, while ensuring reliable, in-
sequence delivery by working on the aggregate set of paths.
The resources across the set of paths are pooled effectively
to present an aggregate capacity end-to-end such that the
end-systems view the set of paths as a single larger capac-
ity pipe. MPLOT makes effective use of erasure codes to
provide reliability, coupled with loss rate estimation at the
aggregate level across paths. It performs per-path congestion
control like TCP-SACK using ECN support in the network to
distinguish congestion from packet erasure. FEC’s sequence
agnostic property allows MPLOT to overcome out-of-order
delivery issues naturally. However, as our comparisons with
a heterogeneity-blind approach show, an intelligent packet
mapping design like the adaptive rank based approach used by
MPLOT, is required to maximize the aggregate goodput across
the heterogeneous and dynamic component paths. In MPLOT,
these effects are realized by sending the latest feedback on the
best (or all) path(s), and mapping packets to paths based upon
a rank function that values shorter RTT, lower loss and higher
capacity paths. Through appropriate choice of the amount
of redundancy (PFEC/RFEC) and the p-block size, MPLOT
allows us to attain a desirable tradeoff point between goodput
and delay, and limit the number of retransmissions required
for block-data recovery.

In addition to delivering significantly higher goodput com-
pared to other multipath transport protocols proposed, MPLOT
also achieves a lower delay. The delay is better behaved
(both average delay and variance), thus making MPLOT more
suitable for a large variety of applications that seek reliable
delivery under lossy conditions. We demonstrated that MPLOT
can co-exist with conventional TCP flows, and under lossless
conditions MPLOT is fair in that it shares bandwidth equally
with connections using traditional TCP. In summary, MPLOT
can be effectively used for a wide range of applications to
deliver better performance (higher goodput, lower delay) than
existing protocols under a wide range of network conditions.
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