
Lab 8
TCP Traffic Experiment

 What you will learn from this lab:

· Network topology setup

· Linux TCP configurations

· Wide area network emulation

· Tcpdump for data collection

· Tcptrace for data analysis

· Xplot for data visualization

· TCP congestion control algorithms

· Fairness definitions and measurement

· Active queue management mechanism
Copyright © 2001, Rensselaer Polytechnic Institute.

Table of Content

Preparation …………………………………………………………………………….. 3

1, TCP Configuration, Wan Emulation and Data Analysis.…..…………….…….…4

1.1 Network Topology…………………………………………………………………. 4

1.2 Linux TCP Configuration .…..…………………………………………………..…5

1.3 NISTNET WAN Emulation…..………………………………………………….....6

1.4 TCP Dumped Data Analysis and Visualization...……………………………..…6

2, TCP Dynamics: A Single Flow………………………………...……………………8

2.1 A Simple Start……………………………………………………………………….8

2.2 More Experiments.………………………………………………………………….9

3, TCP Performances: Multiple Flows.……………..….………………………...….10

4, Active Queue Management ……....…………………………………………...….11

4.1 RED Algorithm …………….………………………………………………………11
4.2 RED Implementation….………………………………………………………..…13
5, Deliverables.………………….……..…………………………………………...….15
6, References...………………………..…………………………………………...….16
7, Appendix ..………………………..…………………………………………......….17
Preparation for the lab

1. Lab objectives preview

· Learn basic skills to use Linux, setup Linux TCP parameters, collect, analyze and visualize experimental data;

· Understand TCP dynamics of a single TCP flow;

· Understand TCP performances when multiple TCP flows compete for limited shared resources, e.g., bandwidth and buffer space;

· Implement Random Early Detection (RED) algorithm.

2. TCP data collection, analysis and visualization

· Login into any UNIX machine, read manual pages of tcpdump;

· Read http://www.netperf.org/netperf/training/Netperf.html for netperf;

· Visit http://www.tcptrace.org/manual.html for online manuals of tcptrace and xplot.

3. Network topology

· A simple source-sink connection with one bottleneck router r1 is as follows. Why we need a separate link for acknowledgements?

[image: image1]
4. Linux TCP parameter configurations
· Read IETF RFC2581 and RFC2018 at http://www.ietf.org/rfc.html;

· How TCP Tahoe, Reno and SACK work? Write pseudo code for these congestion control and data recovery algorithms;

· What is Maximum Transmission Unit (MTU)? What is path MTU? How to discover path MTU?

5. WAN emulation

· List at least three major differences between LAN and WAN;
· How to emulate a WAN environment over physical LAN hardware?

· Go to http://snad.ncsl.nist.gov/itg/nistnet for NISTNET tool information.
6. Active Queue Management

· Read RED paper [1] and IETF RFC2309 at http://www.ietf.org/rfc.html.
1, TCP Configuration, WAN Emulation and Data Analysis

1.1 Network Topology

The lab topology used in this lab is as follows:

[image: image2.emf]sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

Figure 1, Experiment Network Topology

TCP source machine src just sends out data packets via its Ethernet interface eth0, passing routers r1 and r2, to the machine sink. The link between router r1 and router r2 is the bottleneck with link bandwidth 10Mbps. All other links’ bandwidths are 100Mbps. All machines are connected via Ethernet hubs in a point-to-point way. Acknowledgment (ack) packets come back through another physical path, avoiding packet collision caused by the shared multi-access Ethernet bus.

To enable such a configuration, you have to make sure that a) all the machines are physically connected as above and b) routing tables in these machines are appropriately set such that data and ack packets are sent along the right path.

To check if the configuration is right, you may use

src> traceroute sink

// check route from src to sink
src> netperf –H sink –l 3

// check bandwidth from src to sink
sink> traceroute src
sink> netperf –H src –l 3

to get route and bandwidth information for data and ack path, respectively.

Note: src> traceroute sink means that running command “traceroute sink” at machine src. Please refer to the command manuals to fully appreciate the meaning of the above commands.
1.2 Linux TCP Parameter Settings

· TCP Reno and SACK

By default, Linux uses TCP SACK. It also automatically enables another algorithm called Forward Acknowledgment (FACK), but you don’t need to care about this. If you have interest, please refer to [8]. Linux allows you to choose which version of TCP you want to use. For example, to enable TCP Reno on machine src, just run

src#> echo 0 > /proc/sys/net/ipv4/tcp_sack

to turn off SACK option. If you want to turn on SACK again, run

src#> echo 1 > /proc/sys/net/ipv4/tcp_sack

Note: src#>… means that you need root privilege to run command at machine src. /proc is a special directory in Linux file system. It is actually not a disk file system directory but a collection of system kernel parameters, which are mapped via Virtual File System (VFS) interface to this “directory” for ease of configuration of kernel parameters.

· MTU and Path MTU

Maximum Transmission Unit (MTU) is a physical limitation enforced by data link layer device. It is the maximum payload the data link layer can deliver in a single frame. For instance, Ethernet’s MTU is 1500 bytes, excluding the frame header (14 bytes) and tail (4 bytes).

Path MTU is the minimum of all MTU’s associated with those interfaces along the way of a particular path. To avoid packet fragmentation we have to discover path MTU then send out packet whose length is not larger than that limit. (Even we have done this, we can’t yet guarantee there is absolutely no fragmentation occurred. Why? Think about the differences between packet switch and circuit switch.)

By default, Linux uses path MTU discovery. You may turn it off by using
src#> echo 1 > /proc/sys/net/ipv4/ip_no_pmtu_disc

This command effectively sets MTU of ALL interfaces of the machine src to their default value 576 bytes.
1.3 NISTNET WAN Emulation

It is very hard to run experiment in a Wide Area Network (WAN) environ-ment, e.g., the Internet, because the Internet itself, though generally accessible, is hardly under anyone’s effective control. Our objective is to run repeatable experiment in a WAN context. How to achieve this goal?

One possible way is simulation, like network simulators (e.g., NS2 at http://www.isi.edu/nsnam/ns/) do. Simulation is an important method for networking research, esp. during the early stage of idea development. One major limitation is that the simulation environment is much more simplified than the real one.

A further step toward reality is emulation, e.g., to emulate a WAN environment based on LAN hardware. Though there are still some limitations in this method, it has two major advantages: a) several critical WAN factors, like delay and delay jitter, packet drops, etc. have been explicitly considered; and b) we can run repeatable and thus verifiable experiments because physically all machines are under control.
NISTNET WAN emulation tool is one of the most widely used among others. To set up you just need to simply run:

r1> wan

And then input parameters like delay, bandwidth, drop rate, etc. Actually “wan” is a script file we wrote for you to use NISTNET easily, you may read the script code to understand what exactly happens in there. See its manual at http://snad.ncsl.nist.gov/itg/nistnet/usage.html for more details.

1.4 TCP Dumped Data Analysis and Visualization

· tcpdump

Tcpdump is a packet-dumping tool developed by V. Jacobson and S. McCanne at the Lawrence Berkeley National Laboratory. It records header information of every packet transferred to or from interfaces of a machine. See its manual pages under any Unix or Linux machine to learn how to use it.

We use the following command to dump trace information into a file.

src#> tcpdump -N -v -w trace.dmp host sink

Understand the meaning of this command.

· tcptrace

Tcptrace is a tool written by Prof. S. Ostermann at the Ohio University for analysis of TCP dumped data. It produces several different types of output containing information on each TCP connection, such as elapsed time, bytes and segments sent and received, retransmissions, round trip times, window advertisements, throughput, etc. What’s more, it can also produce a number of graphs for further visual analysis. For more information see http://www.tcptrace.org/manual.html.

In this lab, you just need to run

src> tcptrace -l -r -s -W -zxy -G -C trace.dmp

Understand the meaning of this command.

· xplot

Xplot, developed by T. Shepard at MIT, is used to view the graphs generated by tcptrace. The command is

src> xplot filename.xpl

2, TCP Dynamics – A Single Flow

To understand TCP dynamics, you should know:

· The conservation principle of data packets;

· Self-clocking by acknowledgements;

· TCP congestion control and data recovery algorithms, i.e.:

· Slow start (exponential increase of congestion window);

· Congestion avoidance (linear increase of congestion window);

· Fast retransmission (triggered by three duplicate ack’s);

· Fast recovery (jump over slow start stage);

We will not repeatedly explain these ideas here. For details, please refer to [2, 3] and IETF RFC2581.

2.1 A Simple Start

Write a TCP client/server program using BSD socket interface. Client just sends data to server; Server records how many bytes it receives in how long a period of time. You may download the source code tcp.tar.gz from http://testbedrouter.ecse.rpi.edu/cgi-bin/list_rep. You have to modify it according to your own needs. This program is a multithread TCP socket application. To run only one TCP flow (How to define a flow?), you simply set both the number of client and server in the configuration file tg.conf to 1. Also the execution time is set by parameter run_time in the same file.

To run the program, firstly start TCP server on sink by running run_tcp_server.pl, then start TCP client on src by running run_tcp_client.pl and optionally dump to record all packet information. The program will not end until pre-set execution time expires. If you use the provided source code, please carefully read all the source code to understand what is actually done in each program. Basically, run_tcp_server.pl starts TCP servers; run_tcp_client.pl starts TCP clients accor-ding to parameters defined in tg.conf. At the same time when run_tcp_client.pl is started, another data collection program is also implicitly executed to record Linux kernel TCP state information. Also dump executes tcpdump to record the headers of all packets sent and received on that machine for later analysis. These codes actually use the tools we introduced in the former section.

After the programs stop, you may use stat to generate all statistical results based on collected information, and plot to analyze and visualize dumped information. In particular, you need to compute the number of timeouts and goodput, plot segment-vs-time, congestion-window-vs-time, rtt-vs-time graphs, etc.

2.2 More Experiments

Now we are going to change experiment parameter to get a deeper under-standing of the TCP dynamics and the ideas we mentioned at the beginning of this section. Under the following settings, run the single flow TCP program and generate all statistical data and explain the graphs you get.

· Maximum Segment Size (MSS)

Do experiment with MSS set as 576B and 1500B, respectively.

· Round Trip Time (RTT)

Do experiment with bottleneck delay set as 10ms and 200ms, respectively.

· Bottleneck Buffer

Do experiment with router r1 buffer set as 100KB and 500KB, respectively.

· Asymmetric Channel

By default, ack path bandwidth is 100Mbps. Limit the ack path bandwidth to 10Kbps using a token bucket filter (TBF) at the interface eth0 of sink. (Refer to section 4 for router buffer management and ask TA how to setup, or see http://www.computer.org/internet/v3n2/w2on-fig1.htm.)

· Bursty Ack

Set packet delay of 20ms at the eth0 interface of sink to make ack stream more bursty. (You might need help from TA on setting delay queue.)
· Reno and SACK

Set TCP version as Reno and SACK, respectively. Focus on the data recovery performance when there is more than one packet lost in a window.
Compare and contrast your results and explain the similarities and differences under the above different conditions, based on your understanding of TCP Reno and SACK algorithms.

3, TCP Performances – Multiple Flows

There is no discrimination associated with only one flow. But under the multiple flow condition, we need to define one more parameter – fairness to represent how fair the shared resources (buffer, bandwidth, etc.) are allocated to competing flows.

Naturally, the question rising is how to define fairness. There are several well-known definitions:

· Jain’s fairness index [4];

· Max-min fairness [5];

· Proportional fairness;

· Coefficient of Variance.

The former three fairness definitions are widely used in academic computer networking literatures. Coefficient of Variance (C.O.V.), defined in the statistics, is based on measured data. It is more convinient for measuring fairness of multiple TCP flows without a priori knowledge of each flow’s demand.

Change settings in tg.conf, run program with multiple source-sink pairs, and get statistics for all flows.

For the C.O.V. you get, if it is large (e.g., >20%), explain why it is so large. Actually TCP Reno lacks built-in mechanism for fair resource allocation. Give some suggestions to improve this performance of TCP Reno. One interesting paper is TCP Vegas [9] which is, under ideal conditions, proportional fair.
4, Active Queue Management

TCP congestion control implements all algorithms in the end system. Further, it puts all complexity in the source side – so called “smart sender, dumb receiver” principle. TCP models network as a black box and depends on pocket loss event to sense congestion. But apparently the router, where congestion happens, is the best place to detect congestion. So, in this part we are going to study a router mechanism which is designed for help end system congestion control.

4.1 Random Early Detection Algorithm

Both TCP Reno and TCP SACK use packet loss event as an indication of network congestion, or more generally, TCP put as many as possible packets into network and try to make it work at the almost-congested status. If TCP sources send too fast, then there should be packet loss due to router buffer overflow (suppose that other packet losses are neglectable).

There are two problems here. On one side, it’s not desirable to let network work in almost-congested (or “cliff” point, see [6]) status. Because at this point, network is very easy to move into congested status, and the packet queuing delay is also very large, due to the almost full router buffer utilization.

On the other side, using packet loss as a congestion indication is probably true for wired networks, but it’s usually not true for wireless networks, where the bit-error-rate (BER) is much larger than in wired condition. So for wireless TCP, we have to modify TCP congestion control algorithms (see [7]). This experiment will not deal with this, though.

Now let’s go back to the first problem above mentioned. We want to improve it, but we still use packet loss to signal congestion. Simply put, when the router buffer overflow, TCP source senses this based on the ACK packet cumulative sequence number. The problem is it’s often too late for the TCP source to respond because of the round trip time delay to get the ACK packet from the receiver. So naturally, the basic idea is to signal congestion earlier than when buffer overflow happens. We drop packet, according to some probability which is a function of buffer status, even the router buffer is not full. This way the TCP source knows that network is approaching full utilization and will thus slow down a little bit. (See Floyd and Jacobson’s paper [1] for more details on avoiding synchronization, etc.) This mechanism, because of the router’s active role in congestion detection, is called Active Queue Management in RFC2309.
In contrast to traditional tail-drop queue management algorithms, which drop packets only when the buffer is full, the RED algorithm drops arriving packets probabilistically. The probability of drop increases as the estimated average queue size grows. Note that RED responds to a time-averaged queue length, not an instantaneous one. Thus, if the queue has been mostly empty in the "recent past", RED won't tend to drop packets (unless the queue overflows). On the other hand, if the queue has recently been relatively full, indicating persistent congestion, newly arriving packets are more likely to be dropped.

Specifically, the design guidelines for RED are:

· Control of average queue size in router buffers
· Avoidance of global synchronization of end systems
· Avoidance of bias against bursty traffic

The RED algorithm illustrated below consists of two main parts: estimation of the average queue size and the decision of whether or not to drop an incoming packet.

for each packet arrival {
calculate average queue size (moving average)

avg_q = (1- w) * avg_q + w * q

if min_q < avg_q < max_q

calculate probability p

with this probability p,
 drop the arriving packet

else if max_q <= avg_q

drop the arriving packet

}

Figure 2, RED algorithm pseudo code

· Estimation of Average Queue Size

RED estimates the average queue size, measured in units of packets or bytes, either in the forwarding path using a simple exponentially weighted moving average, or in the background (i.e., not in the forwarding path) using a similar mechanism.

· Packet Drop Decision

In the second portion of the algorithm, RED decides whether or not to drop an

incoming packet. It is RED's particular algorithm for dropping that results in performance improvement for responsive flows. Two RED parameters, min_q

 (minimum threshold) and max_q (maximum threshold), figure prominently in this decision process. Min_q specifies the average queue size below which no packets will be dropped, while max_q specifies the average queue size above which all packets will be dropped. As the average queue size varies from min_q to max_q, packets will be dropped with a probability that varies linearly from 0 to max_prob.

In summery, RED effectively controls the average queue size while still accommodating bursts of packets without loss. RED's use of randomness breaks up synchronized processes that lead to lock-out phenomena, see [1].

4.2 RED Implementation

In this part, we are going to implement RED algorithm into the Linux OS kernel. Don’t worry if you know very little about Linux kernel. All necessary information will be provided.

· Based on Linux 2.4.18 source code, grab the core algorithm part of the RED implementation;

· Explain the related functions and macros to create an understandable local environment for students to work in;

· Create a new makefile to compile the RED source code generated.

· Design questions to ask the students to answer.

RED implementation is Linux includes two parts, one in user space to input RED parameters and output statistics, the other in the kernel to execute RED algorithm.

4.2.1, RED User Interface Program

Read the programs q_red.c and tc_red.c, figure out how to use this interface to control RED parameters. Please note that the RED implementation uses a scaled version of the parameters, so all of them are integers instead of float-
point numbers. This way the kernel program does not need to do float-point computation so the speed is optimized. This is a general kernel coding skill. Sometimes in OS kernel you don’t even have float-point run-time library available to use.

4.2.2, RED Kernel Program
You are provided a partial implementation of RED algorithm in the Linux kernel, which is available from http://testbedrouter.ecse.rpi.edu/cgi-bin/list_rep/red.tar.gz. Also the user space and kernel source code, as well as necessary explanations of related functions and variables, are included in the files. You need to complete the program based on your understanding of the RED algorithm.

After you complete the kernel algorithm, compile it and then install it into the kernel using “insmod” command, configuring appropriate parameter settings, and then using TCP programs in section 2 to test if it works fine.

Part 5, Deliverables

Hand in the following materials:

· Answers to all questions given;

· Experiment results, including data and graphs;

· RED Linux kernel implementation source code;

· Suggestion for improving the design of this lab.

6, References

[1] S. Floyd, and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Networking, V.1 N.4, pp. 397-413, August 1993. HTML: http://www.aciri.org/floyd/papers/red/red.html
[2] V. Jacobson, and M. Karels, Congestion Avoidance and Control, Proceedings of ACM SIGCOMM’88, Stanford, CA, August 1988.
HTML: http://citeseer.nj.nec.com/jacobson88congestion.html
[3] W. R. Stevens, TCP/IP Illustrated V1: The Protocols, Addison-Wesley, 1994.

[4] R. Jain, D. Chiu, and W. Hawe, "A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems," DEC Research Report TR-301, September 1984.
HTML: http://www.cis.ohio-state.edu/~jain/papers/fairness.htm
[5] D. P. Bertsekas and R. G. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, N.J., 2nd Ed., December 1991.
[6] K. Ramakrishnan and R. Jain, "A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with Connectionless Network Layer," Proc. of ACM SIGCOMM'88, pp. 303-313, , Stanford, CA, August 1988. HTML: http://www.acm.org/sigcomm/ccr/archive/1995/jan95/ccr-9501-kkjain88.html
[7] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, Improving TCP/IP Performance over Wireless Networks, Proc. 1st ACM Conf. on Mobile Computing and Networking, Berkeley, CA, November 1995.
HTML: http://nms.lcs.mit.edu/~hari/papers/mcn.ps
[8] M. Mathis, and J. Mahdavi, Forward Acknowledgment: Refining TCP Congestion Control, Proceedings of SIGCOMM'96, pp. 281-191, August, 1996, Stanford, CA. HTML: http://www.psc.edu/networking/ftp/papers/Fack.9608.ps
[9] L. Brakmo, and L. Peterson. TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas in Communication, Vol 13, No. 8, pp. 1465-1480, October 1995.
HTML: http://www.cs.princeton.edu/nsg/papers/jsac-vegas.ps
7, Appendix

This list gives in detail the hardware and software preparations needed for delivering the TCP traffic lab.
7.1 Hardware Requirements
For each group of 2~4 students, this lab requires four PC machines with Linux OS 2.2.x installed. Routers r1 and r2 are also PCs but configured as routers. All machines are connected to each other with Ethernet hubs according to the following topology.
[image: image3.emf]sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

src : 2 Ethernet Cards 100Mbps

sink : 2 Ethernet Cards 100Mbps

r1 : 2 Ethernet Card 10Mbps, 1 Ethernet hub 10Mbps,

r2 : 2 Ethernet Cards 100Mbps
Cable: 3 cross-over, 2 regular
One more machine: access to outside Internet.

7.2 Software Requirements
Redhat Linux 7.1 (Linux 2.2.16)
tcpdump, tcptrace, xplot,
traceroute, route, netstat, ping, iproute2, netperf, sudo, (route pre-configed)
NISTNET, and script “wan” as used in testbedlab
RED, delay, TBF
�

PAGE
13

[image: image4.emf]sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

sink src r1 r2

eth1

eth0 eth0 eth0

eth0

ACK

DATA

