

- □ How to provide a *"reasonable" link abstraction* to the higher layers ?
 - □ I.e., accept "frames" from many higher layer protocols and compensate for link errors or lack of destination buffers ...
 - \square Other types of "abstractions" possible too
- □ Problems:
 - \square Framing, protocol multiplexing
 - □ Error Control
 - Gelaer Polytechnic Institute
 - 1-4

Shivkumar Kalyanaraman

Datalink Services (Cont)

- □ Acknowledged connection-oriented service
 - Equivalent of reliable bit-stream
 - Connection establishment
 - Delivered In-Order
 - Connection Release
 - □ Inter-Router Traffic

r Polytechnic Institute

- Typically implemented by network adaptor
 - Adaptor fetches (deposits) frames out of (into) host memory

1-6

Shivkumar Kalyanaraman

Framing

- \Box Framing = How to break a bit-stream into frames
- Need for framing: Error Detection/Control work on chunks and not on bit streams of data
- □ Framing methods:
 - D *Timing* : risky. No network guarantees.
 - □ *Character count:* may be garbled by errors
 - □ *Character delimiter and stuffing:* Delimit frame with special characters
 - D Bit stuffing: delimit frame with bit pattern
 - Dependence of the Physical layer coding violations
 - elaer Polytechnic Institute Shivkumar Kalyanaraman

Modulo 2 Arithmetic						
11111 +1010 0101	11001 × 11 11001 11001 101011	1100 11 10101 / 11	010 011 	2 3 		
Rensselaer Polytechnic Insti	tute	x1	101 Shivki	5 Binary amar Kalyanaraman		

Modulo 2 Division					
Q= <u>1101010110</u> P=110101)101000110100000=2°M <u>110101</u>	1				
111011 <u>110101</u> 011101 000000	000000 101100 110101				
111010 <u>110101</u> 011111	110010 <u>110101</u> 001110				
<u>000000</u> 111110 <u>110101</u>	$\frac{000000}{01110} = R$				
Rensselaer Polytechnic Institute	Shivkumar Kalyanaraman				

Checking At The Receiver					
1101010110 110101)101000110101110 110101 111011 000000 111010 011101 000000 111010 011111 000000 111110	010111 000000 101111 110101 110101 <u>110101</u> 00000				
<u>110101</u> Rensselaer Polytechnic Institute	1-18	Shivkumar Kalyanaraman			

Polynomial Representation □ Number the bits 0, 1, ..., from <u>right</u> $\begin{array}{c} b_n b_{n-1} b_{n-2} \dots b_3 b_2 b_1 b_0 \\ b_n x^{n+} b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \end{array}$ □ Example: 543210 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $110101 = x^5 + x^4 + x^2 + 1$ $1101 \ 1001 \ 0011 = x^{11} + x^{10} + x^8 + x^7 + x^4 + x + 1$ \uparrow \checkmark 1 0 Shivkumar Kalyanaraman selaer Polytechnic Institute

1-19

Popular CRC Polynomials

□ CRC-12: $x^{12} + x^{11} + x^3 + x^2 + x + 1$ □ CRC-16: $x^{16} + x^{15} + x^2 + 1$ □ CRC-CCITT: $x^{16} + x^{12} + x^5 + 1$ □ CRC-32: Ethernet, FDDI, ... $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ Even number of terms in the polynomial ⇒ Polynomial is divisible by 1+x ⇒ Will detect all odd number of bit errors Remsselar Folynchnic Institute Shivkumar Kalyanaraman

Error-Correcting Codes

- Enough redundant information in a frame to detect and correct the error
- □ Lower limit on number of check bits to correct 1 error: (m+r+1) <= 2^r
- □ Hamming's method: (corrects 1-bit errors)

Polytechnic Institute

- Check bits in positions in powers of 2 (1,2,4 ...)
 Each data bit included in several check bits
- E.g., data bit 11 included in check bits 1, 2, 8 □ Other bit positions data

1-24

Shivkumar Kalyanaramar

Utilization: Examples

```
□ Satellite Link: Propagation Delay t_{prop} = 270 \text{ ms}
Frame Size = 4000 bits = 500 bytes
Data rate = 56 kbps ⇒ t_{frame} = 4/56 = 71 \text{ ms}
\alpha = t_{prop}/t_{frame} = 270/71 = 3.8
U = 1/(2\alpha+1) = <u>0.12</u> (too low !!)
```

 $\label{eq:short_Link: 1 km = 5 } \mbox{μs,$} Rate=10 \mbox{$Mbps$,$} Frame=500 \mbox{$bytes$} \Rightarrow t_{frame}= 4k/10M=400 \mbox{μs$} \\ \mbox{$\alpha=t_{prop}/t_{frame}=5/400=0.012$} \Rightarrow U=1/(2\alpha+1)=\underline{0.98} \mbox{$(great!)$} \mbox{$(gr$

1-30

r Polytechnic Institute

Shivkumar Kalyanaramar

Packet-error Control

- Error Control = Deliver frames without error, in the proper order to network layer
- □ Error control Mechanisms:

r Polytechnic Institute

- □ *Ack/Nak:* Provide sender some feedback about other end
- □ *Time-out:* for the case when entire packet or ack is lost
- □ Sequence numbers: to distinguish retransmissions from originals, and to identify what is acked/nacked

1-36

Shivkumar Kalyanaraman

HDLC Family

- Synchronous Data Link Control (SDLC): IBM
- □ High-Level Data Link Control (HDLC): ISO
- □ Link Access Procedure-Balanced (LAPB): X.25
- □ Link Access Procedure for the D channel (LAPD): ISDN
- □ Link Access Procedure for modems (LAPM): V.42
- Link Access Procedure for half-duplex links (LAPX): Teletex
- D Point-to-Point Protocol (PPP): Internet
- □ Logical Link Control (LLC): IEEE
- Advanced Data Communications Control Procedures (ADCCP): ANSI

1-47

Shivkumar Kalyanarama

□ V.120 and Frame relay also use HDLC Rensselar Polytechnic Institute

Serial IP (SLIP)

- □ Simple: only framing = Flags + byte-stuffing
- Compressed headers (CSLIP) for efficiency on low speed links for interactive traffic.
- □ Problems:
 - Need other end's IP address a priori (can't dynamically assign IP addresses)
 - No "type" field => no multi-protocol encapsulation
 No checksum => all errors detected/corrected by higher layer.

1-51

Shivkumar Kalyanaraman

Shivkumar Kalyanaramar

□ RFCs: 1055, 1144

Rensselaer Polytechnic Institute

PPP Frame format similar to HDLC Multi-protocol encapsulation, CRC, dynamic address allocation possible key fields: flags, protocol, CRC (fig 2.3) Asynchronous and synchronous communications possible Link and Network Control Protocols (LCP, NCP) for flexible control & peer-peer negotiation Can be mapped onto low speed (9.6Kbps) and high speed channels (SONET)

1-53

RFCs: 1548, 1332

Rensselaer Polytechnic Institute

