
\qquad
Renselaer Polytechnic Institute
\qquad
-2
Shivkumar Kalyanaraman
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Sometimes you install your own

Category 5 twisted pair	
50 -ohm coax (ThinNe	$10-100 \mathrm{Mb}$
75 -ohm coax (ThickNet)	10-100Mb
Multimode fiber	100 Mb
gle-mode fil	100-2

Sometimes leased from the phone company

Rensselaer Polytechnic Institute
2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The data link layer problem

- How to provide a "reasonable" link abstraction to the higher layers ?
- I.e., accept "frames" from many higher layer protocols and compensate for link errors or lack of destination buffers ...
- Other types of "abstractions" possible too
\qquad

Problems:
\square Framing, protocol multiplexing
\square Error Control

- Flow Control

Renselaer Polyyechnic l shsiture

Datalink Layer Services

- Unacknowledged connectionless service
\square No acks, no connection
\square Error recovery up to higher layers
\square For low error-rate links or voice traffic
\qquad
- Acknowledged connectionless service
- Acks improve reliability
- For unreliable channels. E.g.: Wireless Systems \qquad

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
-
1-5 \qquad

Datalink Services (Cont)

- Acknowledged connection-oriented service
- Equivalent of reliable bit-stream
\qquad
\square Connection establishment
- Packets Delivered In-Order
\qquad
- Connection Release
\square Inter-Router Traffic
- Typically implemented by network adaptor \qquad
- Adaptor fetches (deposits) frames out of (into) host memory \qquad
Rensselaer Polytechnic Institute
Shivkumar Kalyanaraman \qquad

Framing

- Framing $=$ How to break a bit-stream into frames
- Need for framing: Error Detection/Control work on chunks and not on bit streams of data
- Framing methods:
\square Timing : risky. No network guarantees.
- Character count: may be garbled by errors
- Character delimiter and stuffing: Delimit frame with special characters
- Bit stuffing: delimit frame with bit pattern
\square Physical layer coding violations

$$
\text { Rensselaer Polytecchic Institute } \quad \text { Shivkumar Kalyanaraman }
$$

\qquad

Character Stuffing

\qquad

- Delimit with DLE STX or DLE ETX character flags
- Insert 'DLE' before accidental 'DLE' in data
\qquad
- Remove stuffed character at destination \qquad

\qquad
\qquad
\qquad
Rensselaer Polytechnic Institute
1-8 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Byte-interleaved multiplexing
- Each frame is $125 \mu \mathrm{~s}$ long (remember, $1 / 8000$?)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Error Detection and Correction

- Single bit-errors vs Burst Errors
$110101 \rightarrow 100101$ vs 100001 \qquad
$\square \mathrm{n}$-bit codeword $=m$ message bits $+r$ check bits
- Hamming Distance $=\#$ of different bits \qquad 1010101 $\underline{1001010}$
$0011111 \Rightarrow$ Hamming distance $=5$
- Distance d code = minimum Hamming distance \qquad between any two code words written in the code
- To detect d-bit errors, distance $\mathrm{d}+1$ code required \qquad
- To correct d-bit errors, distance $2 \mathrm{~d}+1$ chode required
\qquad

Parity Checks	
1011110\|10	
123456789	
\square Odd Parity \downarrow	
123456789	
- Even Parity 3 -bit error 2 -bit error	
$\begin{aligned} & 110 \mid 1111011110 \\ & 123456789 \end{aligned}$	
	Shivkumar Kalyanaraman

\qquad

Check Digit Method

\qquad

- Make number divisible by 9

Example: 823 is to be sent \qquad

1. Left-shift: 8230
2. Divide by 9 , find remainder: 4 \qquad
3. Subtract remainder from 9: 9-4=5
4. Add the result of step 5 to step 1:8235 \qquad
5. Check that the result is divisible by 9 .

Detects all single-digit errors: $\mathbf{7 2 3 5}, \mathbf{8 3 3 5}, 8255,823 \underline{7}$
\qquad
Detects several multiple-digit errors: $8 \underline{765}, \underline{7346}$
Does not detect some errors: $7335,8 \underline{775}$, .. \qquad
Rensselaer Polytechnic Institute
Shivkumar Kalyanaraman

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cyclic Redundancy Check (CRC) - Binary Check Digit Method - Make number divisible by $\mathrm{P}=110101$ ($\mathrm{n}+1=6$ bits) Example: M=1010001101 is to be sent 1. Left-shift M by n bits $2^{\mathrm{n}} \mathrm{M}=101000110100000$ 2. Divide $2^{\mathrm{n}} \mathrm{M}$ by P , find remainder: $\mathrm{R}=01110$ 3. Subtract remainder from $\mathrm{P} \leftarrow$ Not required in Mod 2 4. Add the result of step 2 to step 1 : $\mathrm{T}=101000110101110$ 5. Check that the result T is divisible by P.

\qquad

\qquad

\qquad
Number the bits $0,1, \ldots$, from right \qquad
$b_{n} x^{n}+b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\ldots+b_{3} x^{3}+b_{2} x^{2}+b_{I} x+b_{0}$

- Example: \qquad
543210
$110101=x^{5}+x^{4}+x^{2}+1$
$\uparrow \uparrow \underbrace{110010011=x^{1 I}+x^{10}+x^{8}+x^{7}+x^{4}+x+1}_{0}$
\qquad
\qquad
\qquad
ensselar Polytechnic Insitute \qquad

\qquad
Polynomial Division Method
Make $T(x)$ divisible by $P(x)=x^{5}+x^{4}+x^{2}+1$ (Note: \qquad $n=5$
$M(x)=x^{9}+x^{7}+x^{3}+x^{2}+1$

1. Multiply $\mathrm{M}(\mathrm{x})$ by $x^{n}, x^{n} M(x)=x^{14}+x^{12}+x^{8}+x^{7}+x^{5}+$
\qquad
\qquad
. Divide $x^{n} M(x)$ by $P(x)$, find remainder: \qquad $R(x)=01110=x^{3}+x^{2}+x$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Popular CRC Polynomials

- CRC-12: $x^{12}+x^{11}+x^{3}+x^{2}+x+1$
- CRC-16: $x^{16}+x^{15}+x^{2}+1$
- CRC-CCITT: $x^{16}+x^{12}+x^{5}+1$
- CRC-32: Ethernet, FDDI, ...
$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}$

$$
+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1
$$

Even number of terms in the polynomial
\Rightarrow Polynomial is divisible by $1+x$
\Rightarrow Will detect all odd number of bit errors

Rensselaer Polytecchnic Institute
Shivkumar Kalyanaraman
sivkumair naiy yanafnán

\qquad
\qquad
\qquad
\qquad
\qquad

Error-Correcting Codes

\qquad

- Enough redundant information in a frame to detect and correct the error \qquad
- Lower limit on number of check bits to correct 1 error: $(\mathrm{m}+\mathrm{r}+1)<=2^{\mathrm{r}}$ \qquad
- Hamming's method: (corrects 1-bit errors)
\square Check bits in positions in powers of $2(1,2,4 \ldots)$
\qquad
\square Each data bit included in several check bits
E.g., data bit 11 included in check bits $1,2,8$ \qquad - Other bit positions data \qquad
Rensselaer Polytecchnic Institute
Shivkumar Kalyanaraman \qquad

\section*{| Internet Checksum Algorithm |
| :--- |
| $\begin{array}{l}\text { Idea: view message as a sequence of 16-bit integers. } \\ \text { Add these integers together using 16-bit ones } \\ \text { complement arithmetic and then take the ones } \\ \text { complement of the result. That 16-bit number is the } \\ \text { checksum. }\end{array}$ |
| Shivivamar Kalymanaman |}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Utilization: Examples

\qquad

- Satellite Link: Propagation Delay $\mathrm{t}_{\text {prop }}=270 \mathrm{~ms}$ \qquad Frame Size $=4000$ bits $=500$ bytes
\qquad
$\alpha=\mathrm{t}_{\text {prop }} / \mathrm{t}_{\text {frame }}=270 / 71=3.8$
\qquad
- Short Link: $1 \mathrm{~km}=5 \mu \mathrm{~s}$,

Rate $=10 \mathrm{Mbps}$, \qquad
Frame $=500$ bytes $\Rightarrow t_{\text {frame }}=4 \mathrm{k} / 10 \mathrm{M}=400 \mu \mathrm{~s}$ $\alpha=\mathrm{t}_{\text {prop }} / \mathrm{t}_{\text {frame }}=5 / 400=0.012 \Rightarrow \mathrm{U}=1 /(2 \alpha+1)=\underline{0.98}$ (great!) \qquad
Rensselaer Polytecchnic Institute \qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Packet-error Control

- Error Control = Deliver frames without error, in the proper order to network layer
\qquad
- Error control Mechanisms:
- Ack/Nak: Provide sender some feedback about
\qquad other end
Time-out: for the case when entire packet or ack is
\qquad lost
\square Sequence numbers: to distinguish retransmissions \qquad from originals, and to identify what is acked/nacked \qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

Performance: Selective Repeat

\qquad

- Error Free:
$\mathrm{U}=1$ if $\mathrm{N}>2 \alpha+1$ $\mathrm{N} /(2 \alpha+1)$ otherwise
- With Errors:
$\mathrm{N}_{\mathrm{r}}=\sum_{\text {i }} \mathrm{P}^{\mathrm{i}-1}(1-\mathrm{P})$
$=1 /(1-\mathrm{P})$
- $\mathrm{U}=(\mathbf{1}-\mathrm{P})$ if $\mathrm{N}>(1+2 \alpha)$

\qquad
\qquad
\qquad $\mathbf{N}(\mathbf{1}-\mathbf{P}) /(\mathbf{1}+\mathbf{2} \alpha)$ otherwise
Note that we have simply divided the error-free sliding window result by Nr , where, $\mathrm{Nr}=\mathrm{E}$ [\# transmitted frames to successfully

Go Back n: Example

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Go-back-N - Damaged Frame - Frame received with error \square Frame lost - Last frame lost - Damaged Ack - One ack lost, next one makes it - All acks lost Damaged Nak	

\qquad

- Frames Retransmitted $=2 \alpha+1$ if $\mathrm{N}>2 \alpha+1$ N otherwise
- $\mathrm{U}=(1-\mathrm{P}) /(1+2 \alpha \mathrm{P})$ if $\mathrm{N}>2 \alpha+1$
$\mathrm{N}(1-\mathrm{P}) /[(2 \alpha+1)(1-\mathrm{P}+\mathrm{NP})]$ otherwise
Rensselaer Polytechnic Institute \qquad Shivkumar Kalyanaraman
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HDLC Family

- Synchronous Data Link Control (SDLC): IBM
- High-Level Data Link Control (HDLC): ISO \qquad
- Link Access Procedure-Balanced (LAPB): X. 25
- Link Access Procedure for the D channel (LAPD): ISDN \qquad
- Link Access Procedure for modems (LAPM): V. 42
- Link Access Procedure for half-duplex links (LAPX) Teletex
\qquad
- Point-to-Point Protocol (PPP): Internet
- Logical Link Control (LLC): IEEE
\qquad
- Advanced Data Communications Control Procedures (ADCCP): ANSI
- V. 120 and Frame relay also use HDLC Rensselaer Polytechnic Institute \qquad
Shivkumar Kalyanaraman \qquad

HDLC Frames

- Information Frames: User data
- Piggybacked Acks: Next frame expected \qquad
- Poll/Final = Command/Response
- Supervisory Frames: Flow and error control \qquad \square Go back N and Selective Reject
\square Final \Rightarrow No more data to send \qquad
- Unnumbered Frames: Control (bla, bla, bla ...)
- Mode setting commands and responses
- Information transfer commands and responses
- Recovery commands and responses
- Miscellaneous commands and responses

Renseleare Polycechicic hssitute
$-1-50$ Shivkumar Kalyanaraman \qquad

Data Link Layer in the Internet

\qquad

- Point-to-Point link scenarios
- Router-router leased line (PPP)
- dial-up host-router connection (old SLIP, now PPP)
- SLIP: Not an approved Internet Standard \Rightarrow incompatibilities
- PPP: Official Internet Standard. \qquad

\qquad
\qquad
Rensselaer Polytechnic Institute \qquad

Serial IP (SLIP)

Simple: only framing = Flags + byte-stuffing

- Compressed headers (CSLIP) for efficiency on low \qquad speed links for interactive traffic.
- Problems: \qquad
- Need other end's IP address a priori (can't dynamically assign IP addresses) \qquad
- No "type" field => no multi-protocol encapsulation
- No checksum => all errors detected/corrected by \qquad higher layer.
- RFCs: 1055, 1144 \qquad
Renseleare Polycechicic nstiutue \qquad

```
PPP
- Frame format similar to HDLC
- Multi-protocol encapsulation, CRC, dynamic address allocation possible
\(\square\) key fields: flags, protocol, CRC (fig 2.3)
- Asynchronous and synchronous communications possible
- Link and Network Control Protocols (LCP, NCP) for flexible control \& peer-peer negotiation
- Can be mapped onto low speed ( 9.6 Kbps ) and high speed channels (SONET)
- RFCs: 1548, 1332
Remselear Polyecthic nstiture
```



```
Shivkumar Kalyanaraman
\(\qquad\)
\(\qquad\)
```

