Electrical, Computer, and Systems Engineering ECSE-4670: CCN Fall 1999

Problem Set 4- Due Monday, November 1st 1999

T T	
I Your Name	
I Tour Maine	

Notes:

- 1. Be brief and precise, but complete in your answers
- 2. A part of the homework credit is given to reading. Reading assignments will be quizzed in both informal and formal quizzes
- 3. Please write your answers on separate sheets and staple it along with the questions to facilitate easy grading.

-----Do not write below this line-----

1	2	3	4	5	Total
20	5	10	10	5	50

TA Signature	:

1. Reading assignment:

Read the textbook (Tanenbaum) Chapter 4 (MAC layer). Summarize key concepts and issues NOT covered in class.

- 2. [Probability] The disadvantage of a broadcast subnet is the capacity wasted due to multiple hosts attempting to access the channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with each of the n hosts attempting to use the channel with probability p during the slot. What fraction of slots are wasted due to collisions?
- [Distributions] Show that the sum of probabilities in the each of the following distribution is
 binomial distribution, poisson distribution. <u>Derive</u> the mean (expectation) of a poisson distribution. <u>Derive</u> the following statement: the inter-arrival times of a poisson process are exponentially distributed. <u>State</u> one positive and negative aspect about the "memoryless" property of an exponential distribution.
- 4. [Queuing Theory] Starting from the Markov chain model (states and steady state probabilities p_n) of the M/M/1, **derive** an expression for E(T), the average waiting time as a function of average input rate (λ) and average service rate (μ). Plot pn as a function of n (n ranges from 1 to 20) for $\rho = 0.5$ and 0.8 (two graphs). Plot E(n) vs ρ for $\rho = 0.5$ and 0.8. Comment on what you observe from the graph.
- 5. [MAC layer] Explain why CSMA/CD is better than CSMA; why CSMA is better than Aloha or slotted Aloha; why slotted Aloha is better than Aloha, as a shared medium access protocol.