ECSE-4670: CCN Quiz 1: Solutions

Time: $\mathbf{4 5}$ min (strictly enforced)

Points: 50
YOUR NAME:

Be brief, but DO NOT omit necessary detail

True or False? [2.5*10=25]
T or F [0.5 points]. Either way, state the correct explanation/reason. [2 pts]. Right ideas earn partial credit.
$\square \sqrt{ }$ Statistical multiplexing is especially useful when the peak rate equals the average rate.
Useful when peak rate is different from average rate
$\square \sqrt{ }$ With 8-level signaling (each level $=3$ bits), the baud rate $=1 / 4 *$ bit rate, and the minimum bandwidth required as per Nyquist theorem $=1 / 6 *$ bit rate.
Baud rate $=1 / 3 *$ bit rate
$\sqrt{ } \square$ From Amdahl's law, we learn that the part(s) of the system that is (are) the best candidate for speedup is that which is responsible for a larger fraction of the system's performance.
Same as: speed up the common case. The unaffected part will otherwise drag down system performance
$\square \sqrt{ }$ Techniques like ASK, PSK, FSK are better than baseband transmission because they use a wider frequency spectrum.
They use a narrower frequency spectrum
$\square \sqrt{ }$ Dispersion's primary effect is to dampen signal amplitudes
Dispersion widens signals - causes inter-symbol interference. Attenuation dampens signals
$\sqrt{ } \square$ All-zeros is a valid set of CRC-bits (i.e the bits which are finally added to form $T(x)$), but 0 is not a valid check-digit in the check-digit method.
You have a "subtract" step in decimal check-digit. The only way to get $0=9-9$, but 9 can never be the remainder !
$\square \sqrt{ }$ On a channel having bandwidth 10 MHz and S / N of 30 dB , we can achieve a gigabit ($10^{9} \mathrm{bits} / \mathrm{s}$) rate.
No. From Shannon's theorem $\max =10 \mathrm{MHz} * 10=100 \mathrm{Mbps}$
$\square \sqrt{ }$ The reason light does not escape from the sides of a fiber optic cable is because the cable lies underground.
Due to total internal reflection.
\checkmark The Hamming distance between any two valid codewords in the 1-bit odd parity scheme is 2 .
You need to change at least two bits to maintain parity and get a new codeword.
$\square \sqrt{ }$ Selective-Reject ARQ makes more efficient use of the sequence number space compared to Go-back-N ARQ
Uses only half the sequence number space due to the ambiguity problem.

$$
\begin{aligned}
& \text { 1. [10 pts] Derive the Stop-and-wait ARQ utilization formula: } \\
& \mathrm{U}=(1-\mathrm{P}) /(1+2 \mathrm{a}) \text {. Show your work used to get key intermediate results. } \\
& \text { W/o ARQ: the only useful part is the transmission time } \\
& \quad \mathrm{U}=\mathrm{T}_{\mathrm{f}} /\left[\left(\mathrm{T}_{\mathrm{f}}+2 \mathrm{~T}_{\mathrm{p}}\right)\right]=1 /(1+2 \alpha) \\
& \text { W/ARQ, } \mathrm{U}=\mathbf{1} /\left[\mathbf{N}_{\mathbf{r}}(\mathbf{1}+\mathbf{2 \alpha})\right], \ldots . \text { Eqn (1) }
\end{aligned}
$$

 \(\mathrm{Nr}=\) expected number of cycles to complete transmission
 \(\mathrm{N}_{\mathrm{r}}=\Sigma\) i \(^{\mathrm{i}-1}(1-\mathrm{P})\).
 Now \(\Sigma \mathrm{P}^{\mathrm{i}}=1 /(1-\mathrm{P})\), and \(\Sigma \mathrm{i} \mathrm{P}^{\mathrm{i}-1}=\mathrm{d} / \mathrm{dp}\left(\Sigma \mathrm{P}^{\mathrm{i}}\right)=1 /(1-\mathrm{P})^{2}\)
 So, \(\mathbf{N r}=(1-\mathrm{P}) /(1-\mathrm{P})^{2}=\mathbf{1} /(\mathbf{1 - P})\)
 Substituting in Eqn (1), we get:
 \(\mathrm{U}=(\mathbf{1}-\mathrm{P}) /(\mathbf{1}+\mathbf{2} \alpha)\)
 [^0][^1]
[^0]: - 2. [7 pts] Explain why packet-switching is able to exploit temporal multiplexing gains whereas circuit-switching is not. What is the tradeoff packet-switching makes to achieve this benefit ?
 - In temporal multiplexing, many users may be active at once, but the average over time will be lesser.
 - In such a case, users may need to wait for service.
 - Circuit switching cannot provide this because all meta-data is associated with timing and will be lost in such a case.
 - Packets have explicit meta-data in the form of headers and can hence be "stored" and "forwarded".

[^1]: - 3) (8 pts) Use the (decimal) check digit method to calculate the check-digit for 636. If the number received at destination is 6361 , explain why it will be detected as being in error.
 - $M=636$. Multiply by $10 \Rightarrow 6360$

 Divide by 9 , remainder $=0$.

 - Subtract from 9 => check digit $=9$
 - Number transmitted $=\mathrm{T}=6369$
 - When 6361 is received, the receiver divides it by 9 and finds the remainder as 1 . But $9-1=8$ which should have been the check digit, whereas it finds that 1 is the check digit. Therefore it flags an error.

