
Internet Potocols: Lab 2: TCP Congestion Control

Due date: March 1st, 2000

1 Goals

� To understand the design of the Transmission Control Protocol (TCP).

� To implement the slow start and congestion avoidance algorithms of TCP.

� To implement the fast retransmit and recovery algorithms of TCP.

2 Layered architecture

For this lab, assume that each node in the network has four layers: physical layer, datalink layer
(DLC) Transport layer (TCP) and application layer. Nodes in the network are connected to one
another via links. Each layer in a node can be thought of as an abstract entity that performs certain
functions. Similarly, links are also entities that have some functionality. Figure 1 outlines the four
layers in a node connected by a link entity. In this lab, you will learn how these entities

communicate with one another, and will implement the congestion control algorithms

at the TCP layer

NETWORK

DATALINK DATALINK

PHYSICALPHYSICAL LINK

APPLICATION APPLICATION

NETWORK

Figure 1: Layered Architecture

3 Protocol Data Units

Each layer communicates through Protocol Data Units (PDU). The application layer PDU is called
A PDU, the transport layer PDU is called T PDU, the DLC PDU is called D PDU, and the
physical layer PDU is called PH PDU. The pdu formats are de�ned below. These de�nitions,
together with some others are provided to you in the �le pdu.h .

typedef struct {

int snode; /* source node address */

1

int dnode; /* destination node address */

char data[DATASIZE]; /* data */

} A_PDU_TYPE;

typedef struct {

int snode; /* source address */

int dnode; /* destination address */

int pk_seq; /* sequence number in bytes */

int pk_ack; /* ack number in bytes */

char pk_flags; /* flags : not used */

int pk_win; /* window advertisement : not used */

int pk_checksum; /* 0 => no error, non-zero => error,

DLC layer may set this field if it

receives a corrupted packet*/

int pk_urp; /* urgent pointer : Not used */

int pk_len; /* length of data in bytes */

} TCP_HEADER_TYPE;

#define TCP_HEADER_SIZE sizeof(TCP_HEADER_TYPE)

typedef struct {

TCP_HEADER_TYPE tcp_hdr;

A_PDU_TYPE a_pdu;

} T_PDU_TYPE;

#define T_PDU_SIZE sizeof(T_PDU_TYPE)

/* data unit between datalink layer and physical layer */

typedef struct {

int curr_node; /* address of this node */

int next_node; /* address of next node */

T_PDU_TYPE t_pdu;

enum boolean error; /* YES if the packet is corrupted;

otherwise NO. */

} D_PDU_TYPE;

#define D_PDU_SIZE sizeof(D_PDU_TYPE)

typedef struct {

int type;

D_PDU_TYPE d_pdu; /* dlc pdu */

} PH_PDU_TYPE;

typedef struct {

union { /* structure containing a_pdu */

A_PDU_TYPE a_pdu; /* d_pdu,t_pdu or ph_pdu as a union */

T_PDU_TYPE t_pdu;

D_PDU_TYPE d_pdu;

PH_PDU_TYPE ph_pdu;

} u;

int type; /* One of: TYPE_IS_A_PDU, TYPE_IS_D_PDU, TYPE_IS_PH_PDU */

int color; /* Internal field to determine the kind of packet */

} PDU_TYPE;

Communication is performed as follows: The application layer sends an a pdu to the TCP layer.

2

The TCP layer receives this a pdu and encapsulates it within a t pdu. It then performs its functions
on the t pdu and sends the t pdu to the datalink layer. In the same manner, the datalink layer
receives the t pdu, encapsulates it within a d pdu and sends it to the physical layer which in turn
sends it to the link entity. The link entity receives a ph pdu from one physical layer and delivers
it to the physical layer at the other end. When a physical layer receives a ph pdu from the link, it
extracts the d pdu from it and sends it to the dlc layer which in turn sends the t pdu within the
d pdu to the transport layer. The transport layer extracts the a pdu and sends it to the application
layer.

4 Service Primitives

Inter layer communication takes place by means of service primitives. The TCP layer uses functions
called send pdu to datalink() and send pdu to application() to send pdu to the datalink and
application layers respectively.

In this lab, you will design a simpli�ed version if the TCP layer and implement the congestion
control algorithms of this layer.

5 TCP protocol description

5.1 The TCP layer

For each active connection, TCP maintains a data structure that it uses to maintain the state of the
connection. In this lab, this structure is called TCP LAYER ENTITY TYPE. The structure has several
variables of which you will need to know about the following: The structure is declared in the �le
tcp layer.h. These variables are further explained in the later sections.

int tcp_my_addr; /* My address -- In this lab, addresses are simple integers */

int tcp_peer_addr; /* Address of peer TCP */

int tcp_snd_wnd; /* Size of receiver's offered window (bytes) */

int tcp_snd_cwnd; /* Size of sender's congestion window (bytes) */

int tcp_snd_ssthresh; /* Slow start threshold (bytes) */

int tcp_snd_max; /* 1 + Max sequence number sent so far (bytes) */

int tcp_snd_nxt; /* Sequence number of next segment to be sent (bytes) */

int tcp_snd_una; /* Sequence number of first unacknowledged segment (bytes)*/

int tcp_rcv_nxt; /* Sequence number of next expected segment (bytes)*/

int tcp_ack_flag; /* 1 if the segment contains an ack, 0 otherwise */

int tcp_mss; /* Maximum segment size */

queue *tcp_send_queue; /* Queue of application's packets to be sent to dlc */

/* This is accessible by the following functions */

/* Insert_pdu_into_send_queue(); */

/* Remove_pdu_from_send_queue(); */

/* Calculate_max_send_queue_offset(); */

int tcp_send_queue_size; /* Size in bytes of the above queue */

queue *tcp_reseq_queue; /* Queue of out_of_order packets received */

/* from the dlc waiting to be processed */

/* This is accessible by the following functions */

/* Insert_pdu_into_reseq_queue(); */

3

/* Process_packets_from_resequence_queue(); */

int tcp_dupacks; /* duplicate acks count : for Fast rexmit and recovery */

tick_t tcp_t_rtt; /* non-zero if segment is being timed, 0 otherwise */

int tcp_rtseq; /* which segment is being timed :

rtseq variable in stevens */

The following subsections describe how TCP uses the connection state structure to manage an
active connection.

5.2 TCP sliding windows

TCP uses the sliding window mechanism for
ow control. The sliding window protocol is shown in
�gure 2.

2 3 41 5 6 7

tcp_snd_wnd

8 9 10 11

acknowledged
segments

sent but not
acknowledged

can send these

cannot send these
until window moves

tcp_snd_una

tcp_snd_nxt

Figure 2: Sliding windows

The window advertised by the receiver is stored in tcp snd wnd. tcp snd una is the sequence
number of the last unacknowledged byte (3) and tcp snd nxt is the sequence of the next byte to
be sent (5). The TCP layer sends a segment, only if the window is not exhausted, i.e., tcp snd nxt

� tcp snd una +1 � tcp snd wnd. When a packet is acknowledged, tcp snd una is incremented
to the next unacked packet. Remember that acks contain the sequence number of the next byte
expected by the receiver.

5.2.1 Slow start

TCP is required to support an algorithm called slow start. Slow start is used to control the rate of
packets injected into the network so that the sender does not overload the network. Slow start adds
another window to the sender TCP's state, called the congestion window. This is denoted by the
variable tcp snd cwnd.

When a new connection is established, tcp snd cwnd is initialized to one segment. (For most
TCP implementations, the maximum segment size is 512 bytes and this is the value we will use in
the lab. Note that the congestion window is maintained in bytes). The sender can transmit upto
a minimum of the congestion window and the receiver's advertised window (tcp snd wnd). Every
time an ACK is received, the congestion window is increased by one segment size in bytes. The

4

congestion window is not allowed to grow beyond the receiver's advertised window (For most TCP
implementations, the maximum window size is 64K bytes and we will also use this value).

As a result of the slow start algorithm, the sender starts by transmitting one segment and waiting
for the ACK. When it receives the ACK, it increases the congestion window by one segment size, so
now it can send two segments. For each of these segments' ACKs, the congestion window is increased
by one. The time between sending the segment and receiving its ACK is approximately one round
trip time for the connection. As a result, the congestion window doubles about every round trip
time due to slow start. Thus, slow start speci�es an exponential increase of the congestion window
for every round trip. It should be noted that slow start is
ow control imposed by the sender to
protect the network from being
ooded, while the advertised window is
ow control imposed by the
receiver based on its bu�er space.

At some point, the congestion window may become large enough to exceed the capacity of the
network. In this case the network may drop one or more segments from the connection. The next
two subsections describe how the TCP connection recovers from packet loss.

5.3 TCP timeout and retransmission

TCP ensures reliable packet delivery by using a timeout and retransmission technique. When a
segment is lost in the network, the destination sends a duplicate ACK for each out of order segment it
receives. When the sender receives a duplicate ACK, it does not increment its tcp snd una variable,
and the window based
ow control prevents the sending of more than one window (minimum of
congestion and advertised windows) of unacknowledged segments. The sender also maintains a
retransmission timer for the �rst unacknowledged packet. When the timer goes o�, this packet
is retransmitted, and the timer is reset. Most TCP implementations maintain a coarse granularity
timer which ticks every t time units. TCP adaptively measures the round trip time of the connection,
and maintains it in terms of timer ticks. The retransmission timeout is also maintained in timer ticks
based on the round trip time of the connection. If the retransmission timeout is n timer ticks, then
the TCP will retransmit the oldest unacknowledged packet after the timer ticks n times. When a
new ACK is received, the retransmission timeout is restarted. TCP uses the Go-back-N mechanism
for retransmission. Thus, when retransmission timout occurs, tcp snd nxt is set to tcp snd una

and all the packets starting from the oldest unacknowledged packets are retransmitted.
Slow start is the way to initiate data
ow across a connection. When packets are lost, TCP

also uses another algorithm called congestion avoidance. Congestion avoidance introduces another
variable at the TCP sender called slow start threshold tcp snd ssthresh. Before a packet is re-
transmitted, tcp snd ssthresh is set to half the congestion window. The congestion window is set
to one segment. As a result, when congestion occurs TCP enters slow start mode. When the con-
gestion window exceeds tcp snd ssthresh, then the sender enters the congestion avoidance phase.
In this phase, the congestion window is increased by the reciprocal of the congestion window, each
time an ACK is received. This results in a linear increase (by one segment size) of the congestion
window every round trip time.

The slow start and congestion avoidance algorithms can be described by the following steps.
Here \cwnd" stands for tcp snd cwnd and \ssthresh" stands for tcp snd ssthresh.

1. Initally, cwnd is set to 1 segment size, and ssthresh is set to the maximum window size (65535
bytes).

2. The sender TCP can send up to a minimum of the cwnd and the receiver's advertised window
of unacknowledged bytes.

3. When a packet is lost (indicated by a timeout), ssthresh is set to one-half of the current
window size (the minimum of the congestion window and the advertised window). Also, if
timeout occurs, cwnd is set to one segment. The ssthresh variable is always maintained as a
multiple of the maximum segment size. Also, ssthresh has a minimum value of two segments.
The following piece of code ensures this while setting ssthresh to cwnd/2.

5

win = (Minm(tcp_layer->tcp_snd_cwnd,tcp_layer->tcp_snd_wnd)) / 2 /

tcp_layer->tcp_mss;

if (win < 2) win = 2;

tcp_layer->tcp_snd_ssthresh = win * tcp_layer->tcp_mss;

The Go-back-N protocol now kicks in at the TCP layer, and retransmits all segments start-
ing from the missing segment. In most TCP implementations (and in this lab), a function
called tcp output() is called whenever the TCP layer wants to transmit packets. This func-
tion transmits as many packets as possible starting from tcp snd nxt. As a result, during
retransmission, tcp snd nxt is set to tcp snd una before tcp output() is called.

4. When new data is acknowledged, the congestion window is increased as follows:

� If cwnd is less than or equal to ssthresh, slow start is performed and the congestion
window is increased by one segment size for each new ACK received.

cwnd = cwnd + tcp_mss;

� If cwnd is greater than ssthresh, congestion avoidance is performed and the window is
increased by 1=cwnd for each new ACK received:

cwnd = cwnd + tcp_mss * tcp_mss / cwnd;

cwnd is always maintained below the receiver's advertised window.

5.4 Fast retransmit and recovery

** Fast retransmit and recovery is not needed for this lab { dont waste your time with

it { we could not solve the portability problems. But I am including this information

just for your reference ***

Fast retransmit and recovery was included as a modi�cation of the TCP protocol in 1990. This
algorithm can e�ciently handle isolated packet losses. When a packet is lost, the receiving TCP
will send duplicate ACKs for each of the subsequent packets it receives. Without fast retransmit
and recovery, the sending TCP will wait for its retransmission timeout to expire before sending the
lost packet and all the subsequent packets. Due to the coarse granularity TCP timer, the TCP
may wait a long time before retransmitting. If only one packet is lost, the retransmission of the
subsequent packets is not necessary, if the receiver bu�ered the out-of-order packets. With the
fast retransmission and recovery algorithm, the receiver bu�ers the out-of-order packets. When the
sender receives three duplicate ACKs it takes this to be an indication that a packet was lost and
performs the following:

1. As soon as the third duplicate ACK is received, (without waiting for the retransmission time-
out) ssthresh is set to one-half of the current congestion window. As before, ssthresh is
maintained in multiples of segment sizes.

2. The missing segment (denoted by snd una) is retransmitted. Actually, in typical TCP imple-
mentations, the function tcp output() is called that sends the packet with sequence number
tcp snd nxt. For this purpose, tcp snd nxt is temporarily set to tcp snd una and then
tcp output() is called to retransmit the segment. After tcp output() returns, tcp snd nxt

reset to its old value.

3. cwnd is set to ssthresh + 3 segment sizes.

4. For each subsequent duplicate ACK, cwnd is incremented by the segment size. A new packet
is transmitted if allowed by the new value of the congestion window (i.e., a new packet is
transmitted if tcp snd nxt - tcp snd una is less than the window window size). Note that
tcp snd nxt is not set to tcp snd una as in the case of the Go-Back-N protocol described
before.

6

5. When the next ACK arrives that acknowledges new data, cwnd is set to ssthresh. If only one
packet was lost, this new ACK should acknowledge all the segments received by the destination
including the lost segment. Now that the cwnd is set to ssthresh, the sender enters congestion
avoidance mode.

5.5 Function descriptions

The following functions are given in tcp layer.c. You have to �ll in the code for the functions
indicated. You should study each of the functions carefully to understand what they are expected
to do.

� tcp layer receive(TCP LAYER ENTITY TYPE *tcp layer,

GENERIC LAYER ENTITY TYPE *generic layer entity, PDU TYPE *pdu): Processes a received
packet. You should not modify this function.

� tcp granularity timer(TCP LAYER ENTITY TYPE *tcp layer): Processes the ticking of the
coarse granularity timer. You should not modify this function.

� tcp output(TCP LAYER ENTITY TYPE *tcp layer): Outputs a packet to the datalink layer if
possible. You need to modify this function.

� output pkt(TCP LAYER ENTITY TYPE *tcp layer, int offset, int len, int samplenow):
Actually outputs the packet to the datalink layer. Called by tcp output() when necessary.
You should not modify this function.

� tcp input(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Processes a packet re-
ceived from the datalink layer. You should not modify this function.

� process insequence pkt(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Called by
tcp input() to send the pdu to the application layer. Must also call the function
Process packets from resequence queue() that sends more pdu's to the application layer
if possible. You need to modify this function.

� process outofsequence pkt(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Called
by tcp input(). If fast retransmit is turned on, then the out of sequence packet must be stored
in the resequence queue { Insert pdu into resequence queue() { otherwise the pdu must
be free'd. You need to modify this functionIgnore fast retransmit functionality for

this lab. We could not solve portability problems.

� process ack(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Processes an ACK that
was received. You should not modify this function. But study it carefully because you
need to modify some functions it calls.

� reset dupacks(TCP LAYER ENTITY TYPE *tcp layer): Resets (if fast retransmit is on) the
duplicate ACK count if necessary. You need to modify this function. Ignore fast

retransmit functionality for this lab. We could not solve portability problems.

� slow start(TCP LAYER ENTITY TYPE *tcp layer): Performs the slow start and congestion
avoidance algorithms. You need to modify this function.

� fast rexmit code(TCP LAYER ENTITY TYPE *tcp layer, T PDU TYPE *pkt): Implements the
fast retransmit and recovery algorithm. Ignore fast retransmit functionality for this lab.

We could not solve portability problems.

� tcp retrans timeout(TCP LAYER ENTITY TYPE *tcp layer): Implements the timeout and
retransmission strategy. You need to modify this function.

7

The following functions are provided to you. You don't need to know the implementation details
of these functions. You only need to know the functionality as described below.

� send pdu to datalink(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pkt): Sends the t pdu
to the datalink layer.

� send pdu to application(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Sends the
a pdu to the application layer.

� Insert pdu into send queue(TCP LAYER ENTITY TYPE *tcp layer, GENERIC LAYER ENTITY TYPE

*generic layer entity, PDU TYPE *pdu): Inserts the a pdu into the TCP send queue. An
o�set or sequence number is assigned to the �rst byte of the pdu.

� int Calculate max send queue offset(TCP LAYER ENTITY TYPE *tcp layer) : Returns the
maximum sequence number of a byte in the send queue of the TCP layer.

� Get pdu from send queue(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pkt, int offset):
Copies the a pdu with the matching o�set and copies it to the a pdu of pkt. It does not delete
the packet from the send queue.

� free acked data(TCP LAYER ENTITY TYPE *tcp layer, int nbytes): Removes data that
has been acknowledged from the send queue. Note that, packets transmitted cannot be re-
moved from the send queue until they have been acked.

� Insert pdu into resequence queue(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu):
When the TCP receives an out-of-order packet, it uses this function to store the t pdu in the
resequence queue.

� Process packets from resequence queue(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu):
Sends as many pdu's as possible from the resequence queue to the application layer. This func-
tion also updates the rcv nxt variable.

� static int Log pkt stats(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pkt): Performs
some logging functions. This is called by the function output pkt().

� update rto(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Updates the round trip
timer calculations. This is called by tcp input().

� trim pkt(TCP LAYER ENTITY TYPE *tcp layer, PDU TYPE *pdu): Trims the duplicate bytes
in a received packet. This is called by tcp input().

� int update cwnd(TCP LAYER ENTITY TYPE *tcp layer, int value): Sets the variable tcp snd cwnd

to value. Also plots the congestion window. This must be used instead of simply assigning
the congestion window variable to value.

� int timer backoff(TCP LAYER ENTITY TYPE *tcp layer) : This implements the exponen-
tial backo� of the TCP timer. This is called in tcp retrans timeout before calling tcp output()

to retransmit a packet.

� misc functions on ack(TCP LAYER ENTITY TYPE *tcp layer): Performs some housekeeping
when ACKs are received.

� int shut timer off(TCP LAYER ENTITY TYPE *tcp layer): Turns o� the retransmit timer.
This is called in fast rexmit code() just before calling tcp output(). Ignore fast retrans-
mit functionality for this lab. We could not solve portability problems.

� TCPFromApplication(src): This macro returns a 1 if the packet is from the Application layer,
else returns 0.

8

� TCPFromDatalink(src) : This macro returns a 1 if the packet is from the Datalink layer, else
returns 0.

� fast rexmit(TCP LAYER ENTITY TYPE tcp layer) : This macro returns 1 if fast retransmit
and recovery has been turned on, and 0 otherwise. Ignore fast retransmit functionality

for this lab. We could not solve portability problems.

6 Deliverables

1. In directory /home/81/kalyas/public/Lab2/Files/, you can �nd these �les:

� pdu.h: header �le containing some declarations and de�nitions. You don't need to include
this �le anywhere in your source code because it is already included in tcp layer.h. You
will need to use some of the function de�nitions provided in this �le, like pdu alloc()

and pdu free()

� tcp layer.c: �le containing the outline for the lab.

� makefile: make�le for the lab.

� Five con�guration �les: *.config. These �les specify the con�guration of the network.
In this lab you will only use a 2 node con�guration with app1 sending to app2. The
con�guration is shown in �gure 3. The con�guration �les specify di�erent parameters for

app1 dlc1 phy1 phy2 dlc2 app2tcp1 tcp2Network

Figure 3: TCP con�guration

the simulations:

{ no error.config. No packets are dropped by the network.

{ 1 error ss.config. The network drops a single packet. Fast retransmit and recovery
are not activated i.e., fast rexmit(tcp layer) returns 0.

{ n error ss.config. The network drops multiple packets. Fast retransmit and re-
covery are not activated.

� TCP demo: a sample executable �le to familiarize you with the graphical user interface.
You can also do part 1 (see below) of the lab using this executable.

� drawgraphs: a script that will generate graphs that you will need to submit.

2. Copy the above �les to your directory.

3. Experiment with TCP demo. Note: use only app1 to send the picture. Do not send the graph
from app2. See section 7 for further instructions on how to run your program. Pay careful
attention to the congestion window and sequence number graphs of tcp1.

4. Part 1: Answer the following questions using TCP demo:

(a) Interpret the sequence number and congestion window graphs for the sending TCP (tcp1)
for each con�guration �le. Also explain the di�erence in the amount of data that has
been reliably transmitted in each con�guration.

9

(b) Using a rough hand sketch or a window capture (using xv) indicate where the slow start
and congestion avoidance phases occur.

(c) Indicate when the packets are retransmitted, and when duplicate ACKs are received.

5. Study the source code �les carefully. (don't worry about the con�g �les).

6. Now you are ready to write your program for the TCP layer.

7. Part 2: Implement the window
ow control, the retransmission timeout and the slow start
and congestion avoidance algorithms. You should �rst test the window
ow control with
the no error.config �le, and then move on to implement the next steps. For the timeout
and retransmission, you only have to work with tcp retrans timeout(). Assume that this
function is called when the retransmission timeout goes o�.

8. To compile your program, typemake. Part 2 can be compiled without doing part 3. This will
produce an executable called TCP exec in your working directory.

9. Now execute your version of the code and use the con�guration �les to make sure it works.

10. Run the script drawgraphs. The script will run your executable and produce 10 postscript
�les (two for each con�guration). These �les will contain graphs of the congestion window
and the sequence numbers (both send and ACK) of the sending TCP. You must submit hard
copies of these graphs along with your tcp layer.c

7 Running your program: The Graphical User Interface

The general GUI instructions for this lab are the same as Lab1. Described below are the di�erences
in GUI speci�c to TCP behavior.

Login to an AIX machine. NOTE: This program works only on AIX machines. At your
unix prompt, type TCP demo no error.config. A window with the simulator interface will open
on your terminal. Each node has 4 layers denoted by the squares. The network is denoted by the
cloud. In addition to the simulator window, there are 6 smaller windows visible in the �gure. For
each application layer, there is a send/receive window where you can load a graphic and send it to
the other end. Each TCP layer has a congestion window plot and a sequence number plot associated
with it. The congestion window plot shows the variation of the congestion window with time. The
sequence number window has 3 plots associated with it:

� The sequence number of the �rst byte of each segment sent by the TCP (red dots).

� The ACK number in the acknowledgement received by the sender (gold dots).

You should use the information in these windows to debug your program and answer the question
in part 1.

The top of the main simulator window has a menu bar that has the following selections.

10

Menu Submenu Description
File Load Load con�g �le

Exit Stop the program and exit
Edit Raise Raise the node graphs and space-time diagrams

to the front of main window. Useful when you cannot see the
graphs.

Run Pause Pause the simulation.
Resume Resume the simulation.
Delay Set delay between events. The default is 2.
Stop Time The simulation time to stop.
Inc/Dec Debug Level Increament/Decrement Debug Level, which is used in dprintf().

Help About About the CISE Project.
How to use Help text.

The bottom of the main simulator window is the status bar with the following information.

Field Description
Filename The con�guration �le name.
Stop Time The end time for the simulation
Delay Delay between events.
DebugLevel DebugLevel used in dprintf().
Simulation time The clock in the simulator.

� First, load a con�g �le. This can be done by File/Load or by putting the con�g �le at the
command line of this program.

� To send a graph, \Load Graph" �rst and then \Send Graph." and the simulator will load the
graph and start running. The order of this operation is important. Also, only load and send
from node 1.

� Change the delay to make it run faster/slower. Use \Run/Single step" and space bar to see it
step by step.

� Change Debug Level (from 0{3) and use dprintf(int debug level, ``format'', variables)

in your program to print out debug information.

8 Submissions

You must submit hard copies of the following:

� A short summary of the lab, and answers to the questions in part 1.

� Your source code.

� Printed copies of the 6 graphs (.ps �les) produced by drawgraphs.

11

9 Miscellaneous Notes

� For important questions send e-mail (after reading the FAQ) to the course mailing list:
ip-s2000@egroups.com or elnasan@ecse.rpi.edu.

� Read FAQ on the course web page for answers to frequently asked questions. The FAQ will
be updated more questions are asked.

12

