
Shivkumar KalyanaramanRensselaer Polytechnic Institute

1

UDP,
TCP (Part I)

Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute

shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Shivkumar KalyanaramanRensselaer Polytechnic Institute

2

q UDP: connectionless, end-to-end service

q UDP Servers, Interaction with ARP

q TCP features, Header format

q Connection Establishment

q Connection Termination

q TCP options

q TCP Servers
Ref: Chap 11, 17,18; RFC 793, 1323

Overview

Shivkumar KalyanaramanRensselaer Polytechnic Institute

3

User Datagram Protocol (UDP)

q Connectionless end-to-end service

q No flow control. No error recovery (no acks)

q Provides port addressing

q Error detection (Checksum) optional. Applies to
pseudo-header (same as TCP) and UDP segment. If
not used, it is set to zero.

q Used by SNMP, DNS, TFTP etc

Source
Port

Dest
Port

Check-
sum

Length

16 16 16 Size in bits16

Shivkumar KalyanaramanRensselaer Polytechnic Institute

4

More UDP
q Port number: Used for (de)multiplexing. Client ports

are ephemeral (short-lived). Server ports are “well
known”.

q UDP checksum similar to IP header checksum, but
includes a pseudo-header (to help check
source/destination). Fig 11.3

q UDP checksum optional, but RFC 1122/23 (host
reqts) requires it to be enabled

q Application message is simply encapsulated and sent
to IP => can result in fragmentation. Newer systems
use some path MTU discovery algorithms at the IP
layer.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

5

UDP effects
q When UDP datagram fragments at the host, each

fragment may generate an ARP request (results in an
ARP reply: ARP flooding)
q RFC 1122/23 limits max ARP rate to 1 request per second,

and requires the ARP Q to be at least of size one

q Datagram truncation possible at destination if dest
app not prepared to handle that datagram size ! (note:
TCP does not have this problem because it has no
message boundaries)

q UDP sources ignore source quench messages => can’t
respond to packet losses.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

6

UDP Servers
q Client-Server architecture: basis for most

distributed apps today (eg Web, telnet, ftp)

q Most UDP servers are “iterative” => a single server
process receives and handles incoming requests on a
“well-known” port.

q Can filter client requests based on incoming IP
address, client IP address, incoming port address, or
wild card filters

q Port numbers may be reused, but packet is delivered
to at most one end-point.

q Queues to hold requests if server busy

Shivkumar KalyanaramanRensselaer Polytechnic Institute

7

TCP: Key features
q Connection-oriented

q Point-to-point: 2 end-points (no broadcast or
multicast)

q Reliable transfer: Data is delivered in-order

q Full duplex communication

q Byte-stream I/f: sequence of octets

q Reliable startup: Data on old connection does not
confuse new connections

q Graceful shutdown: Data sent before closing a
connection is not lost. Reset or immediate shutdown
also possible.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

8

Reliability
q Reliability provided by:

q Reliable connection startup: Data on old connection does
not confuse new connections

q Graceful connection shutdown: Data sent before closing a
connection is not lost.

q Data segmented for transmission and acknowledged by
destination. Timeout + Retransmission provided if data
unacknowledged

q Checksum provided to catch errors.

q Resequencing of out-of-order data; discarding of duplicate
data.

q Window flow control => sender cannot overrun receiver
buffers

Shivkumar KalyanaramanRensselaer Polytechnic Institute

9

TCP Header Format

16 16 32 32 6

Source
Port

Dest
Port

Seq
No

Ack
No

Header
length

Control WindowResvd

4 6 16

16 16 x y Size in bits

Check-
sum

Urgent Options Pad Data

Also see fig: 17.2 in text

Shivkumar KalyanaramanRensselaer Polytechnic Institute

10

TCP Header
q Source Port (16 bits): Identifies source user process

 20 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, ...

q Destination Port (16 bits)

q Sequence Number (32 bits): Sequence number of the
first byte in the segment. If SYN is present, this is
the initial sequence number (ISN) and the first data
byte is ISN+1.

q Ack number (32 bits): Next byte expected

Shivkumar KalyanaramanRensselaer Polytechnic Institute

11

q Header length (4 bits): Number of 32-bit words in the
header. 4 bits => max header size is 60 bytes

q Reserved (6 bits)

q Control (6 bits)

q Window (16 bits): Will accept [Ack] to
[Ack]+[window]

ACKURG PSH RST SYN FIN

Shivkumar KalyanaramanRensselaer Polytechnic Institute

12

TCP Header (Cont)

q Checksum (16 bits): covers the segment + pseudo
header. Protection from mis-delivery.

q Urgent pointer (16 bits): Points to the byte following
urgent data. Lets receiver know how much data it
should deliver right away.

q Options (variable):
Max segment size (does not include TCP header,
default 536 bytes), Window scale factor, Selective
Ack permitted, Timestamp, No-Op, End-of-options

Shivkumar KalyanaramanRensselaer Polytechnic Institute

13

TCP Checksum
q Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header, the TCP header,
and the data, (padded with zero octets at the end if
necessary to make a multiple of two octets.)
q Checksum field filled with zeros initially

q Pseudo header (similar to UDP) used in calculations,
but not transmitted. RFC 1071.

Source Adr Dest. Adr Zeros Protocol TCP Length

TCP Header TCP data

32 32 8 8 16

Shivkumar KalyanaramanRensselaer Polytechnic Institute

14

Connection Establishment

q Fig 18.3

q Client sends SYN, with an initial sequence number
(ISN) and a Max Segment Size (MSS). Called “active
open”.

q Server acks the SYN (for the forward connection),
and also sets the SYN bit, with its own ISN (for the
reverse connection). Called “passive open”.

q Client acks the reverse direction SYN.

q 3 segments transmitted.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

15

Connection Termination

q Fig 18.3 again, also fig 18.5

q Client sends FIN. Server acks this and notifies its
application. However it can keep its half-connection
open. Each connection closed separately.

q Server app issues a “close” and server sends FIN to
client. Client acks this.

q 4 segments transmitted.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

16

Three-Way Handshake
q 3-way handshake: necessary and sufficient for

unambiguous setup/teardown even under conditions of
loss, duplication, and delay

Shivkumar KalyanaramanRensselaer Polytechnic Institute

17

More Connection Establishment
q Socket: BSD term to denote an IP address + a port

number.

q A connection is fully specified by a socket pair i.e.
the source IP address, source port, destination IP
address, destination port.

q Initial Sequence Number (ISN): counter maintained in
OS.

q BSD increments it by 64000 every 500ms or new
connection setup => time to wrap around < 9.5
hours.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

18

q SYN pkt lost => retransmitted. Exponential timeout
backoff (6, 12, 24 s etc) Connection timeout is 75 s.

q Timer granularity is 500 ms => first timeout between
5.5 and 6s. See Fig. 18.7

Shivkumar KalyanaramanRensselaer Polytechnic Institute

19

MSS

q Largest “chunk” sent between TCPs.

q Default = 536 bytes.

q Announced in connection establishment. Not
negotiated.

q Different MSS possible for forward/reverse paths.

q Does not include TCP header

q Many BSD systems restrict MSS to be multiples of
512 bytes: inefficient.

q Path MTU restricts size of MSS further.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

20

Half close, Half open, Reset

q Possible for one end to close while the other end sends
data. Used in “rsh” command. Fig 18.10, 18.11

q Half-open: one side crashed and lost memory of
connection while other side thinks connection is open.
Usually connection is reset upon communication.

q Reset => used to abort connection. Queued data (if
any) is dumped.

q Orderly release => FIN sent after queued data
transmitted.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

21

TCP state transition diagram
q Figure 18.12: client (dark line) , server (dashed line)

transitions.

q 2MSL wait: wait for final segment to be transmitted
before releasing connection (typically 2 min)

q Socket pair cannot be reused during 2MSL

q Delayed segments dropped

q Conn Establishment: SYN_SENT, SYN_RCVD,
ESTABLISHED, LISTEN

q Close: FIN_WAIT_1, FIN_WAIT_2, CLOSING,
TIME_WAIT, CLOSE_WAIT, LAST_ACK

Shivkumar KalyanaramanRensselaer Polytechnic Institute

22

Effect of 2MSL wait
q Can’t kill server & restart immediately to use the same

well known port (1-4 min!)

q Reason: TCP cannot reallocate the socket pair (i.e. the
connection) till 2MSL.

q If you kill client and restart, it will get a different port

q 2MSL wait protects against delayed segments from
the previous “incarnation” of the connection.

q If server crashes and reboots within 2 MSL wait, it is
still safe because RFC 793 prevents having
connections for 1 MSL after reboot.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

23

Simultaneous open/close

q Figs 18.17 and 18.19

q Simultaneous open is very rare. Requires same socket
pair i.e. both the ports must be well known too.

q Two simultaneous telnets (A to B and B to A) will
not create this because client ports are not well-
known.

q Possible in long RTT cases

q Requires 4 messages

Shivkumar KalyanaramanRensselaer Polytechnic Institute

24

TCP Servers

q Most TCP servers are concurrent i.e. separate process
to handle each client - for ease of connection
management

q Server listens to well-known port.

q Socket pair distinguishes connections

q A separate “endpoint” in the ESTABLISHED state
is associated with each connection

q One endpoint is used to listen (LISTEN state) for
new connections

Shivkumar KalyanaramanRensselaer Polytechnic Institute

25

TCP Servers (Contd)
q Endpoints in the ESTABLISHED state cannot

receive SYN packets

q Possible to wildcard or select specific interfaces (local
IP addresses) to listen to.

q Multiple connection requests => backlog queue of
connections established but new process not yet
created by server to handle it.

q Queue full => send RESET to new connection
requests

Shivkumar KalyanaramanRensselaer Polytechnic Institute

26

Summary

q UDP is connectionless and simple. No flow/error
control.

q TCP provides reliable full-duplex connections.

q TCP state diagram, 3-way handshake, Options

q UDP and TCP servers

