
Interior Gateway Protocols: RIP & OSPF

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Shivkumar Kalyanaraman

- □ Routing Tables & static routing
- □ Dynamic routing (inter- and intra-domain)
- ☐ Distance vector vs Link state routing
- □ RIP, RIPv2
- □ OSPF
- ☐ Refs: Chap 9, 10.
- ☐ Books: "Routing in Internet" by Huitema,
- Renssela Interconnections" by Perlman

Shivkumar Kalyanaraman

Routing vs Forwarding

- □ Fig 9.1
- ☐ Routing table used by IP forwarding. Can routing table using command "netstat -rn"
- □ Route Table setup by:
 - □ a) 'route' command
 - □ b) routing daemon (eg: 'routed')
 - □ c) ICMP redirect message.

, display			
kumar Kalyanaraman			
	_		

Routing Table structure

- □ Fields: destination, gateway, flags, ...
- □ *Destination*: can be a host address or a network address. If the 'H' flag is set, it is the host address.
- Gateway: router/next hop IP address. The 'G' flag says whether the destination is directly or indirectly connected.
- □ U flag: Is route up?
- □ G flag: router (indirect vs direct)
- □ H flag: host (dest field: host or n/w address?)

Rensselaer Polytechnic Institut

Shivkumar Kalyanaramar

Static Routing

- □ Upon booting, default routes initialized from files. Eg: /etc/rc.net in AIX, /etc/netstart in BSD, /etc/rc.local in SUN/Solaris
- ☐ Use 'route' command to add new routes eg: route add default sun 1
- □ ICMP redirect: sent to host by router when a "better" router exists on the same subnet.
- ☐ Alt: router discovery ICMP messages
 - □ Router solicitation request from host
 - □ Router advertisement messages from routers

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

Dynamic routing

- ☐ Internet organized as "autonomous systems" (AS).
- □ Interior Gateway Protocols (IGPs) within AS. Eg: RIP, OSPF, HELLO
- □ Exterior Gateway Protocols (EGPs) for AS to AS routing. Eg: EGP, BGP-4
- Reality: most of internet uses default routes (which is allowed within dynamic routing). Serious dynamic routing starts near core of AS and from one AS to another.

tensselaer Polytechnic Institute

 	 	_		

Dynamic routing methods □ Source-based: chart route at source. ☐ Link state routing: Get map of network (in terms of link states) and calculate best route (but specify only a signpost: I.e. the next-hop) □ Distance vector: Set up signposts to destinations looking at neighbors' signposts. □ Key: to make it a "distributed" algorithm? Shivkumar Kalyanaramar **Distance Vector routing** $\ \square$ "Vector" of distances (signposts) to each possible destination at each router. \Box How to find distances ? $\hfill\Box$ Distance to local network is 0. $\hfill \Box$ Look in neighbors' distance vectors, and add link cost to reach the neighbor □ Find which direction yields minimum distance to to particular destination. Turn signpost that way. □ Keep checking if neighbors change their signposts and modify local vector if necessary. □ And that's it! □ Called the "Bellman-Ford algorithm" Shivkumar Kalyanaramar **Routing Information Protocol** ☐ Uses hop count as metric ☐ Tables (vectors) "advertised" to neighbors every 30 s. □ Robustness: Entries reinitialized (as 16 or infinity) if no refresh for 180 s.

when table changes.

Protocol details:

□ Runs over UDP.

- ☐ Init: send request message asking for vectors
- □ Format can carry upto 25 routes (within 512 bytes)

□ Efficiency: Triggered updates used to inform neighbors

 $\hfill \square$ RIPv1 does not carry subnet masks => many networks use default of 255.255.255.0

Rensselaer Polytechnic Institu

RIP problems
-
☐ Counting-to-infinity problem: ☐ Simple configuration A->B->C. If C fails, B needs to
update and thinks there is a route through A. A needs to
update and thinks there is a route thru B.
□ No clear solution, except to set "infinity" to be small (eg 16
in RIP)
☐ Split-horizon: If A's route to C is thru B, then A advertises
C's route (only to B) as infinity.
□ Slow convergence after topology change:
□ Due to count to infinity problem
☐ Also information cannot propagate thru node until
it recalculates routing info. Remsselaer Polytechnic Institute Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute 10
RIP problems (contd)
□ Black-holes:
☐ If one node goes broke and advertises route of zero to several key networks, all nodes immediately point to it.
☐ How to install a fix in a distributed manner ??
□ Require protocol to be "self-stabilizing" I.e even if some nodes are faulty, once they are isolated, the system should
quickly return to normal operation
☐ Broadcasts consume non-router resources
☐ Does not support subnet masks (VLSMs)
□ No authentication
140 addictitication
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
RIPv2
□ Why? Installed base of RIP routers
□ Provides:
□ VLSM support
□ Authentication
□ Multicasting
"Wire-sharing" by multiple routing domains,
□ Tags to support EGP/BGP routes.
 Uses reserved fields in RIPv1 header.

Rensselaer Polytechnic Institute

☐ First route entry replaced by authentication info.

Link State protocols Create a network "map" at each node. For a map, we need inks and attributes (link states), not of destinations and metrics (distance vector) 1. Node collects the state of its connected links and forms a "Link State Packet" (LSP) 2. Broadcast LSP => reaches every other node in the network. 3. Given map, run Dijkstra's shortest path algorithm => get paths to all destinations 4. Routing table = next hops of these paths.

Dijkstra's algorithm

- □ A.k.a "Shortest Path First" (SPF) algorithm.
- ☐ Idea: compute shortest path from a "root" node to every other node. "Greedy method":
 - \square <u>P</u> is a set of nodes for which shortest path has already been found.
 - □ For every node <u>"o"</u> outside P, find shortest one-hop path from some node in P.
 - □ Add that node "o" which has the shortest of these paths to P. Record the path found.
 - □ Continue till we add all nodes (&paths) to P

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

Dijkstra's algorithm

- \square P: (ID, path-cost, next-hop) triples.
 - □ ID: node id.
 - □ Path-cost: cost of path from root to node
 - $\hfill \square$ Next-hop: ID of next-hop on shortest path from the root to reach that node
 - \Box P: Set of nodes for which the best path cost (and next-hop from root) have been found.
- \Box <u>T</u>: (ID, path-cost, next-hop):
 - □ Set of candidate nodes at a one-hop distance from some node in P.
 - □ Note: there is only one entry per node. In the interim, some nodes may not lie in P or T.
- R=Routing table: (ID, next-hop) to be crested umar Kalyanaraman

15

Dijkstra's algorithm

- $\hfill\Box$ 1. Put root I.e., (myID, 0, 0) in P & (myID,0) to R.
- \square 2. If node \underline{N} is just put into P, look at N's links (I.e. its
 - \square 2a. For each link to neighbor \underline{M} , add cost of the root-to-N-path to the cost of the N-to-M-link (from LSP) to determine a new cost: <u>C</u>.
 - □ 2b. The "next-hop" corresponds to the next-hop ID in N's tuple (or N if M is the root itself): \underline{h}
 - □ 2c. If M not in T (or P) with better path cost, add (M, C, h) to T.
- \Box 3. If T = empty, terminate. Else, move the min-cost triple from T to P, and add (M, h) to R. Go to step 2.

Shivkumar Kalyanaraman

Topology dissemination

- □ aka LSP distribution
- □ 1. Flood LSPs on links except incoming link
 - □ Require at most 2E transfers for n/w with E edges
- □ 2. Sequence numbers to detect duplicates
 - □ Why? Routers/links may go down/up
 - □ Problem: wrap-around => have large seq # space
- □ 3. Age field (similar to TTL)
 - □ Periodically decremented after acceptance
 - \square Zero => discard LSP & request everyone to do so
 - □ Router awakens => knows that all its old LSPs would have been purged and can choose a new initial sequence number Shivkumar Kalyanaramar

Link state vs Distance vector

- □ Advantages:
 - ☐ More stable (aka fewer routing loops)
 - □Faster convergence than distance vector
 - □ Easier to discover network topology, troubleshoot network.
 - □ Can do better source-routing with link-state
 - □ Type & Quality-of-service routing (multiple route tables) possible
- □ Caveat: With path-vector-type distance vector routing, these arguments don't hold

OSPF

- $\ \ \Box$ OSPF runs directly on top of IP (not over UDP)
- ☐ It can calculate a separate set of routes for each IP type of service (=> multiple routing entries)
- □ Dimensionless cost (eg: based on throughput, delay)
- ☐ Load balancing: distributing traffic equally among routes
- $\ \square$ Supports VLSMs: subnet mask field in header
- □ Supports multicasting, authentication, unnumbered networks (point-to-point).

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

Summary

- □ Route Tables
- ☐ Distance vector, RIP, RIPv2
- ☐ Link state, OSPF.

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

)