BOOTP and DHCP

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

- □ Bootstrapping (Diskless workstations)
- □ BOOTP
- □ Dynamic address allocation
- □ DHCP
- □ Ref: Chap 16, Doug Comer's TCP/IP book

Rensselaer Polytechnic Institute

Bootstrapping

- □ Computer loads a simple boot program. The boot program loads operating system.
- ☐ On diskless machine, the computer needs to know the network address of the o/s file
- ☐ It needs to know its own IP address., subnet mask, IP address of default router, IP address of DNS server
- □ It only knows its h/w address.

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

3

Configuration

- □ Different nodes have different parameters
- □ Configuration = Setting the parameters
- □ Key parameters for IP hosts:
 - □ IP Address
 - □ Default router address
 - □ Subnet mask
 - □ Name
 - □ DNS server addresses

Rensselaer Polytechnic Institute

Key RARP limitations

- □ RARP is a user process but works over link layer directly =>
 - □ RARP server system dependent
 - □ Needs to interface with link layer driver directly => separate filters and direct access to hardware needed
- □ Returns only IP address
 - ☐ Booting and configuration params not returned even though there is space in packet
 - ☐ Host needs ICMP and TFTP to complete booting
- □ Can't relay RARP requests to a central server.
 - □ Need RARP server per broadcast domain

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

5

Method 2: BOOTP

- □ Runs over UDP/IP! Issues w/ using UDP/IP:
 - □ IP software can broadcast (to 255.255.255.255) even if local IP address unknown => client broadcasts BOOTP request
 - □ Port number 67 for server and 68 for client (not an ephemeral port)
 - □ Delivers BOOTP reply to BOOTP client and not other UDP apps when reply is broadcast
 - □Does not wake up other servers during broadcast reply

Rensselaer Polytechnic Institute

BOOTP (contd)

- □ BOOTP requests/replies sent w/ DF bit set.
- ☐ Server can send reply via broadcast or unicast:
 - □ For unicast reply, BOOTP server knows the IP address, but the link layer address is not in the ARP cache
 - □ Note that the server cannot send an ARP message because client does not know its IP address
 - □ Server can use ioctl(8) {or arp -s } to set the value of the cache => can do this only if it has permission

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

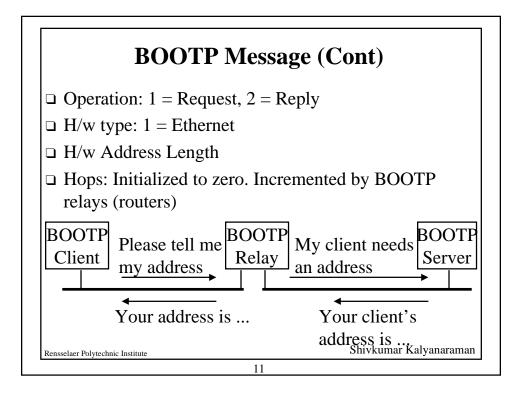
7

BOOTP features (contd)

- □ Else send broadcast reply
- □ Reply: IP Address, Boot Server IP address, Default Router, Boot file name, subnet mask
 - ☐ More information, but still only a single packet exchange
 - ☐ Client gets boot image using TFTP => booting still a 2-step process

Rensselaer Polytechnic Institute

BOOTP features (contd)


- □ Advantages of using UDP/IP:
 - □ Bootstrapping can occur across a router via a relaying mechanism
 - □ BOOTP uses checksum provided by UDP
- □ Multiple requests/replies
 - □ Process the first one
 - ☐ Client uses a transaction ID field to sort out replies
- □ Clients responsible for reliability =>
 - ☐ Uses timeout, retransmission & exponential backoff
 - □ Random initial timeout (betn 0 & 4s): simultaneous reboot after power restoration.

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

BOOTP Message Format 31b Operation H/W Type H/W Length Hops Transaction Identifier Unused Seconds elapsed Client IP Address Your IP Address Server IP Address Router IP Address Client H/W address 16 B Server Host Name 64 B **Bootfile Name** 128 B 64 B Vendor Specific Area Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 10

9

BOOTP Message (Cont)

- ☐ Transaction ID: used to match responses with requests
- □ Seconds = Number of seconds since the client started to boot
- ☐ If a client knows its IP address, it places it in the Client IP address
- ☐ If server address/name fields are non-zero in the request, only the indicated host can answer the request
- ☐ Your IP Address: Clients IP address returned by the server

Rensselaer Polytechnic Institute

BOOTP Message (Cont)

- □ Boot File name: Generic name like "unix" in the request. Full name in response.
- □ Vendor specific area: Misnomer. Also used for general purpose info.
 - □ Magic cookie: First 4 octets = 99.130.83.99
 - □ Type-length-value: describes the option

<u>Item</u>	Code	<u>Length</u>
Padding	0	<u>-</u>
Subnet mask	1	4
Time of Day	2	4
Fnd	255	_

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

13

Method 3: DHCP

- □ BOOTP limitation: cannot dynamically assign IP address
- □ Dynamic Host Configuration Protocol (DHCP)
 - □ BOOTP + Dynamic allocation of IP addresses => compatible with BOOTP. No new fields in header.
 - □ Addresses can be leased for a period. Reallocated to the same or other nodes after lease expiry.
- □ Non-mobile computers can get a permanent address.

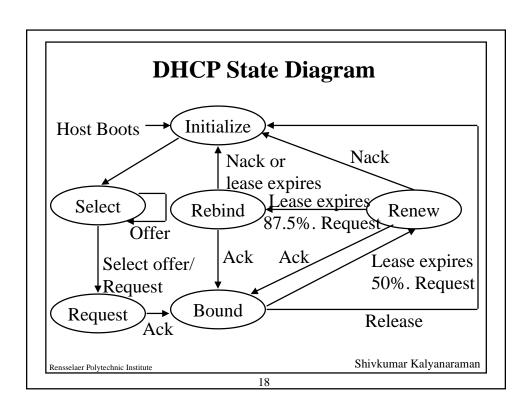
Rensselaer Polytechnic Institute

DHCP Message Format 31b				
Operation	H/W Type	H/W Length	Hops]
Transaction Identifier				
Seconds	elapsed	Flag	S	
	Client IP	Address		
	Your IP	Address		
Server IP Address				
Router IP Address]	
Client H/W address		16 B		
Server Host Name		64 B		
Bootfile Name		128 B		
Options (Variable)]	
Rensselaer Polytechnic Institu	ite	15	Shivkumar Kal	yanaraman

DHCP Message Format

- □ Slightly modified version of BOOTP message ⇒ A
 DHCP server can be programmed to answer BOOTP requests
- □ BOOTP's Unused field renamed to Flags
- □ Only one bit of 16-bit Flags has been defined
 - ☐ Left-most flag bit =1 ⇒ Servers, please reply using IP broadcast address
 - □ Servers by default send hardware unicast response
- □ Vendor specific field renamed to options
 - □ Size increased to 312 bytes (from 64 bytes)
 - □ Option type 53 specifies the "type of the message"

Rensselaer Polytechnic Institute


Type	Meaning
1	DHCP Discover
2	DHCP Offer
3	DHCP Request
4	DHCP Decline
5	DHCP Ack
6	DHCP Nack
7	DHCP Release

- □ "Option overload"
 - ☐ Server Host name and boot file name when unused for their original purpose could be used to code more options

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

17

- □ Boots => INITIALIZE state
- □ DHCPDISCOVER: broadcast request to servers => SELECT state
- □ DHCPOFFER (from server) => remain in SELECT
- ☐ DHCPREQUEST => select one of the offers and notify server (goto REQUEST state) about the lease
- ☐ DHCPACK => server Oks request to lease => go to the BOUND state
- ☐ Renewal: after 50% of lease go to RENEW state
- □ Rebind: after 87.5% of time, if server has not responded, try again and go to REBIND.
- ☐ If server NACKs or lease expires, or client sends
 ☐ DCHPRELEASE, go to INITIALIZE, else come back to

BOUND state

Shivkumar Kalyanaraman

19

DHCP: Current Issues

- □ Interaction with DNS
- □ Should the *names* also be dynamically leased?
- □ Should the names be registered on DNS?
 - ☐ How to work with a directory service (given a fixed name, find a temporary IP address)?
- □ Currently there are no protocols for dynamic DNS updates.

Rensselaer Polytechnic Institute

Summary

- □ RARP allows finding an IP address
- □ BOOTP allows default router, subnet mask, DNS
- □ DHCP allows dynamic allocation
- □ DHCP is backward compatible with BOOTP

Rensselaer Polytechnic Institute