IP Next Generation (IPv6)

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

- □ Limitations of current Internet Protocol (IP)
- □ How many addresses do we need?
- □ IPv6 Addressing
- □ IPv6 header format
- □ IPv6 features: routing flexibility, plug-n-play, multicast support, flows

Rensselaer Polytechnic Institute

IP Addresses

- □ **Example**: 164.107.134.5
 - = 1010 0100 : 0110 1011 : 1000 0110 : 0000 0101
 - = A4:6B:86:05 (32 bits)
- \Box Maximum number of address = $2^{32} = 4$ Billion
- □ Class A Networks: 15 Million nodes
- □ Class B Networks: 64,000 nodes or less
- □ Class C Networks: 250 nodes or less

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

3

IP Address Format

- ☐ Three all-zero network numbers are reserved
- □ 127 Class A + 16,381 Class B + 2,097,151 Class C networks = 2,113,659 networks total
- ☐ Class B is most popular.
- □ 20% of Class B were assigned by 7/90 and doubling every 14 months ⇒ Will exhaust by 3/94
- ☐ Question: Estimate how big will you become? Answer: More than 256!

Class C is too small. Class B is just right.

Rensselaer Polytechnic Institute

How Many Addresses?

- □ 10 Billion people by 2020
- ☐ Each person has more than one computer
- □ Assuming 100 computers per person $\Rightarrow 10^{12}$ computers
- ☐ More addresses may be required since
 - □ Multiple interfaces per node
 - □ Multiple addresses per interface
- \Box Some believe 2^6 to 2^8 addresses per host
- □ Safety margin $\Rightarrow 10^{15}$ addresses
- □ IPng Requirements $\Rightarrow 10^{12}$ end systems and 10^{9} networks. Desirable 10^{12} to 10^{15} networks

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

5

Address Size

- \square H Ratio = $\log_{10}(\# \text{ of objects})/\text{available bits}$
- \square 2ⁿ objects with n bits: H-Ratio = $\log_{10} 2 = 0.30103$
- □ French telephone moved from 8 to 9 digits at 10^7 households \Rightarrow H = 0.26 (~3.3 bits/digit)
- □ US telephone expanded area codes with 10^8 subscribers \Rightarrow H = 0.24
- \square Physics/space science net stopped at 15000 nodes using 16-bit addresses \Rightarrow H = 0.26
- □ 3 Million Internet hosts currently using 32-bit addresses \Rightarrow H = 0.20 \Rightarrow A few more years to go

Rensselaer Polytechnic Institute

- □ 128-bit long. Fixed size
- $2^{128} = 3.4 \times 10^{38}$ addresses
 - \Rightarrow 665×10²¹ addresses per sq. m of earth surface
- \Box If assigned at the rate of $10^6/\mu s$, it would take 20 years
- Expected to support 8×10^{17} to 2×10^{33} addresses $8 \times 10^{17} \Rightarrow 1,564$ address per sq. m
- ☐ Allows multiple interfaces per host.
- ☐ Allows multiple addresses per interface
- ☐ Allows unicast, multicast, anycast
- ☐ Allows provider based, site-local, link-local
- □ 85% of the space is unassigned

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

Colon-Hex Notation

□ **Dot-Decimal**: 127.23.45.88

□ Colon-Hex:

FEDC:0000:0000:0000:3243:0000:0000:ABCD

- □ Can skip leading zeros of each word
- □ Can skip one sequence of zero words, e.g.,

FEDC::3243:0000:0000:ABCD or

::3243:0000:0000:ABCD

□ Can leave the last 32 bits in dot-decimal, e.g.,

::127.23.45.88

□ Can specify a prefix by /length, e.g., 2345:BA23:7::/40

Rensselaer Polytechnic Institute

Header □ IPv6: Version Class Flow Label Next Header Payload Length Hop Limit Source Address **Destination Address** □ IPv4: Version IHL Type of Service Total Length Fragment Offset Flags Header Checksum Protoco1 Time to Live Source Address Destination Address **Padding Options** Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 9

IPv6 vs IPv4

- □ IPv6 only twice the size of IPv4 header
- □ Only version number has the same position and meaning as in IPv4
- □ *Removed*:
 - ☐ Header length, fragmentation fields (identification, flags, fragment offset), header checksum
- □ *Replaced*:
 - □ Datagram length by payload length
 - □ Protocol type by next header
 - ☐ Time to live by hop limit
 - □ Type of service by "class" octet
- □ *Added*: flow label
- □ All fixed size fields.

Rensselaer Polytechnic Institute

IPv6 vs IPv4

- □ No optional fields. Replaced by extension headers.
 - ☐ Idea: avoid unnecessary processing by intermediate routers while not sacrificing the flexibility possible due to options
 - □ Next Header = 6 (TCP), 17 (UDP), etc

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

11

Extension Headers

BaseExtensionExtensionDataHeaderHeader 1Header n

- ☐ Most extension headers are examined only at destination
- □ Routing: Loose or tight source routing
- ☐ Fragmentation: All IPv6 routers can carry 536 Byte payload
- Authentication
- ☐ Hop-by-Hop Options
- Destination Options:

Rensselaer Polytechnic Institute

Extension Header (Cont)

□ Only Base Header:

Base Header TCP
Next = TCP Segment

□ Only Base Header and One Extension Header:

Base HeaderRoute HeaderTCPNext = TCPNext = TCPSegment

□ Only Base Header and Two Extension Headers:

Base HeaderRoute HeaderAuth HeaderTCPNext = TCPNext = AuthNext = TCPSegment

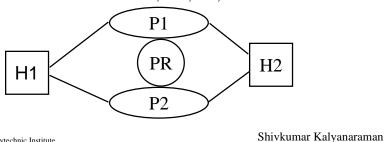
13

Rensselaer Polytechnic Institute

Routing Header

Next Header Hdr Ext Len Routing Type	Sgmts left
Reserved	_
Address 1	
Address 2	

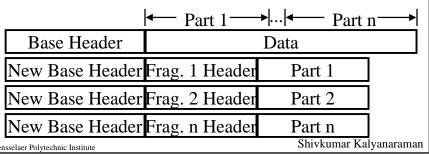
Address n


- \Box Type = 0 \Rightarrow Current source routing
- □ Router will look at RH if its address is in the destination field
- ☐ New Functionality: Provider selection, Host mobility, Auto-readdressing (route to new address)

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

- □ Possible using routing extension header
- □ Source specified intermediate systems
- □ No preference: H1, H2
- □ P1 Preferred: H1, P1, H2
- □ H1 becomes Mobile: H1, PR, P1, H2



Rensselaer Polytechnic Institute

15

Fragmentation

- □ Routers cannot fragment. Only source hosts can.
 - \Rightarrow Need path MTU discovery or tunneling
- □ Fragmentation requires an extension header
- □ Payload is divided into pieces
- □ A new base header is created for each fragment

16

IPv6 addressing and routing

- □ Aggregatable Global Unicast Addresses
- □ Link-local and Site-local addresses
- □ Multicast and Anycast support
- □ Provider-based inter-domain routing & IDRP

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

17

Initial IPv6 Prefix Allocation

Allocation	Prefix	Allocation	Prefix
Reserved	0000 0000	Unassigned	101
Unassigned	0000 0001	Unassigned	110
NSAP	0000 001	Unassigned	
IPX	0000 010	Unassigned	1111 0
Unassigned	0000 011	Unassigned	1111 10
Unassigned	0000 1	Unassigned	1111 110
Unassigned	0001	Unassigned	1111 1110
Unassigned	001	Unassigned	1111 1110 0
Provider-based*	010	Link-Local	1111 1110 10
Unassigned	011	Site-Local	1111 1110 11
Geographic	100	Multicast	1111 1111

^{*}Has been renamed as "Aggregatable global unicast"

Rensselaer Polytechnic Institute

Aggregatable Global Unicast Addresses

- □ Address allocation: "provider-based" plan
- □ Format: TLA + NLA + SLA + 64-bit interface ID
- □ TLA = "Top level aggregator." (13 bits)
 - □ Ranges of TLA values allocated to various registries
 - □ For "backbone" providers or "exchange points"
- □ NLA = "Next Level Aggregator" (32 bits)
 - □ Second tier provider and a subscriber
 - ☐ More levels of hierarchy possible within NLA
- □ SLA = "Site level aggregator" = 16 bits for link

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

19

Aggr. Global Unicast Addrs

- □ Renumbering after change of provider => change the TLA and NLA. But have same SLA & I/f ID
- \Box Interface ID = 64 bits
 - □ Will be based on IEEE EUI-64 format
 - □ An extension of the IEEE 802 (48 bit) format.
 - □ Possible to derive the IEEE EUI-64 equivalent of current IEEE 802 addresses
 - □ Along with neighbor discovery procedures, obviates need for ARP.

Rensselaer Polytechnic Institute

Local-Use Addresses

□ Link Local: Not forwarded outside the link, FE:80::xxx

10 bits	n bits	118-n
1111 1110 10	0	Interface ID

□ Site Local: Not forwarded outside the site, FE:C0::xxx

10 bits	n bits	m bits	118-n-m bits
1111 1110 11	0	Subnet ID	Interface ID

□ Provides plug and play

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

21

Multicast Addresses

8 bits	4 bits	4 bits	112 bits
1111 1111	Flags	Scope	Group ID
	000T		

- ☐ All routers recognize this format => all routers can route multicast packets. Also IGMP part of ICMPv6 => required.
- □ Flags: T = 0 ⇒ Permanent (well-known) multicast address, 1 ⇒ Transient
- □ Scope: 1 Node-local, 2 Link-local, 5 Site-local, 8 Organization-local, E Global => routers reqd to honor this.
- □ Predefined: $1 \Rightarrow \text{All nodes}, 2 \Rightarrow \text{Routers},$ $1:0 \Rightarrow \text{DHCP servers}$

Rensselaer Polytechnic Institute

Multicast & Anycast

- □ Example: $43 \Rightarrow$ NTP Servers
 - \Box FF01::43 \Rightarrow All NTP servers on this node
 - \Box FF02::43 \Rightarrow All NTP servers on this link
 - \Box FF05::43 \Rightarrow All NTP servers in this site
 - \square FF08::43 \Rightarrow All NTP servers in this org.
 - \Box FF0F::43 \Rightarrow All NTP servers in the Internet
- □ Structure of Group ID:
 - ☐ First 80 bits = zero (to avoid risk of group collision, because IP multicast mapping uses only 32 bits)

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

23

Address Autoconfiguration

- □ Allows plug and play
- □ BOOTP and DHCP are used in IPv4
- □ DHCPng will be used with IPv6
- ☐ Two Methods: Stateless and Stateful
- □ Stateless:
 - □ A system uses link-local address as source and multicasts to "All routers on this link"
 - □ Router replies and provides all the needed prefix info

Rensselaer Polytechnic Institute

Address Autoconfiguration

- □ All prefixes have a associated lifetime
- □ System can use link-local address permanently if no router
- □ Stateful:
 - □ Problem w stateless: Anyone can connect
 - □ Routers ask the new system to go DHCP server (by setting managed configuration bit)
 - □ System multicasts to "All DHCP servers"
 - □ DHCP server assigns an address

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

25

Neighbor Discovery

- ☐ Media addresses allowed to be upto 128 bits long
- □ Part of ICMPv6 functionality
- □ Subsumes ARP, Router discovery.
- □ Source maintains several caches: destination cache, neighbor cache, prefix cache, router cache
- ☐ Multicast solicitation for neighbor media address if unavailable in neighbor cache
- □ Neighbor advertisement message sent to soliciting station.
- □ Redirects also part of ICMPv6

Rensselaer Polytechnic Institute

Real-time support

- ☐ Flow label and the "class" octet field
- ☐ Flow = sequence of packets from a single source to a particular (unicast/multicast) destinations requiring special handling by intermediate routers
- □ Applications becoming adaptive
 - □ Even adaptive voice available for IP telephony
- ☐ Hierarchical transmissions:
 - ☐ Can cause congestion {Steve McCanne, SIGCOMM'96} =>"priority" renamed as "class"
 - □ "Class" field currently being worked upon by differentiated services group


Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

28

Transition Mechanisms

- □ Dual-IP Hosts, Routers, Name servers
- ☐ Tunneling IPv6 over IPv4
- □ Nodes can be partially upgraded to IPv6
- ☐ It is better (though not required) to upgrade routers before upgrading hosts

30

Application Issues

- ☐ Most application protocols will have to be upgraded: FTP, SMTP, Telnet, Rlogin
- □ 27 of 51 Full Internet standards, 6 of 20 draft standards, 25 of 130 proposed standards will be revised for IPv6
- □ No checksum ⇒ checksum at upper layer is mandatory, even in UDP
- □ non-IETF standards: X-Open, Kerberos, ... will be updated
- ☐ Should be able to request and receive new DNS records

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

32

Summary

- ☐ IPv6 uses 128-bit addresses
- ☐ Allows provider-based, site-local, link-local, multicast, anycast addresses
- ☐ Fixed header size. Extension headers instead of options for provider selection, security etc
- ☐ Allows auto-configuration
- □ Dual-IP router and host implementations for transition

Rensselaer Polytechnic Institute