
Internet Protocols: Lab Assignment I: IP Fragmentation and
Reassembly

Due (ON-CAMPUS/NON-DELAYED): February 12th, MONDAY, 2001 at the
beginning of class.

Due (DELAYED): February 21th, WEDNESDAY, 2001

1 Goals

� To understand the design of the fragmentation and reassembly algorithms in the IP
protocol.

� To implement the fragmentation and reassembly modules for a simple IP-like network
layer.

� To understand the e�ect of fragmentation and measure the performance under various
network conditions.

� To compare a UDP/IP service with a TCP/IP service.

NETWORK

DATALINK DATALINK

PHYSICALPHYSICAL LINK

APPLICATION APPLICATION

NETWORK

Figure 1: Layered Architecture

2 Layered architecture

For this lab, assume that each node in the network has four layers: physical layer, datalink
layer (DLC), network layer and application layer. Nodes in the network are connected to
one another via links. Each layer in a node can be thought of as an abstract entity that
performs certain functions. Similarly, links are also entities that have some functionality.

1

Figure 1 outlines the four layers in a node connected by a link entity. In this lab, you will
implement the fragmentation and reassembly algorithms of a simple network
layer.

3 Protocol Data Units

Each layer communicates through Protocol Data Units (PDU). The application layer PDU is
called A PDU, the network layer PDU is called N PDU, the DLC PDU is called D PDU,
and the physical layer PDU is called PH PDU. The pdu formats are de�ned at the end
of this section. These de�nitions, together with some others are provided to you in the �le
pdu.h .

Communication is performed as follows: The application layer sends an a pdu to the network
layer. The network layer receives this a pdu and encapsulates it within a n pdu. It then
performs its functions on the n pdu and sends the n pdu to the datalink layer. In the same
manner, the datalink layer receives the n pdu, encapsulates it within a d pdu and sends it
to the physical layer which in turn sends it to the link entity. The link entity receives a
ph pdu from one physical layer and delivers it to the physical layer at the other end. When
a physical layer receives a ph pdu from the link, it extracts the d pdu from it and sends
it to the dlc layer which in turn sends the n pdu within the d pdu to the network layer.
The network layer at the destination extracts the a pdu and sends it to the application
layer after performing reassembly functions. The network layer at a router, however, has
no application layer. It may fragment a packet into several fragments depending upon the
maximum transmission unit (MTU) size of the next subnet hop and send the fragments to
the appropriate data link layer.

In our implementation, the application service data unit size is 1024 bytes and the a pdu
size is 1032 bytes. The a pdu is encapsulated in an n pdu which is de�ned similar to an IP
packet. We bypass the implementation of variable size packets by using subsets of a large
data �eld. The other parts of the header are exactly the same as in IP. In particular, we do
not implement IP options. Hence the header length is always 20 bytes (IPMHLEN). You
cannot add or delete �elds from the header. In some cases you might need to do bit-wise
operations (eg. for the MF ag and the 13-bit fragment o�set). Also note that the ip len
�eld in the IP header is the length of the payload plus the header.

The other data structures include reassembly data structures (a fragment list data structure)
and a structure for a subnet connection, called a `dlc port.' The latter is not required for your
programming and is not discussed. The NETWORK LAYER ENTITY TYPE de�nition elsewhere
includes a list of subnet connections and a fragment list table.

#define DATASIZE 1024

typedef struct {

int snode; /* source node address */

int dnode; /* destination node address */

char data[DATASIZE]; /* message */

} A_PDU_TYPE;

#define A_PDU_SIZE sizeof(A_PDU_TYPE)

2

#define MAX_IP_PAYLOAD 2048 /* artificial: to avoid impl. var size pkts */

typedef int IPaddr;

typedef struct ip {

u_char ip_verlen; /* IP version and header length: (ignore) */

u_char ip_tos; /* type of service: (ignore) */

short ip_len; /* total packet length (in octets): USED */

short ip_id; /* datagram id : USED */

short ip_fragoff; /* fragment offset (in 8 octets)+ flags: USED */

u_char ip_ttl; /* time to live in gateway hops: (ignore) */

u_char ip_proto; /* IP protocol: (ignore) */

short ip_chksum; /* header checksum: (ignore) */

IPaddr ip_src; /* IP address of source: USED */

IPaddr ip_dst; /* IP address of destination: USED */

u_char ip_data[MAX_IP_PAYLOAD]; /* variable length data: USED */

} N_PDU_TYPE;

#define N_PDU_SIZE sizeof(N_PDU_TYPE)

#define IP_MF 0x2000 /* more fragments bit mask (8192 in base 10) */

#define IP_DF 0x4000 /* don't fragment bit: (ignore) */

#define IP_FRAGOFF 0x1fff /* frag offset mask:

masks out the top-3 bits of a 16-bit `short' */

#define IPMHLEN 20 /* min (standard) IP header length (in bytes) */

#define IP_FQSIZE 100 /* Max number of frag queues */

#define IP_MAXNF 100 /* Max number of frags/datagram (ignore) */

#define IP_FTTL 6 /* Max time between 2 frags (6 ms) */

#define FTTL_DECR 1 /* 1 ms decrement of FTTL (ignore) */

#define FTTL_DECR_USECS 1000 /* = 1000 usecs decrement of FTTL (ignore) */

/* ipf_state flags */

#define IPFF_VALID 1 /* contents are valid */

#define IPFF_BOGUS 2 /* drop frags that match */

#define IPFF_FREE 3 /* this queue is free to be allocated */

/* Fragment queue and associated state variables */

/* The destination network layer will have a table of these structures */

struct ipfq {

char ipf_state; /* VALID, FREE or BOGUS */

IPaddr ipf_src; /* IP address of the source */

short ipf_id; /* datagram id */

int ipf_ttl; /* countdown to disposal */

int nfrags; /* variable to aid debugging */

OrderedList_t *ipf_q; /* ordered list of fragments */

};

/* Fragment list table and dlc ports in NETWORK_LAYER_ENTITY_TYPE

definition (not in pdu.h) */

typedef struct {

3

.

.

.

DLCPort_t dlcport[MAXPORT]; /* dlc port variables (not*/

struct ipfq ipfqt[IP_FQSIZE];/* Fragment list table */

} NETWORK_LAYER_ENTITY_TYPE;

4 Service Primitives

Inter-layer communication takes place by means of service primitives. The network layer
uses functions called send pdu to datalink() and send pdu to application() to send
pdu to the datalink and application layers respectively. The only di�erence is that
send pdu to datalink() has an additional argument specifying the index of the data link
to which the packet is to be sent. In this lab, you will design the fragmentation and
reassembly algorithms of a simple network layer.

5 Fragmentation and Reassembly

This section gives a short tutorial on fragmentation and reassembly procedures in IP. Some
details of the procedures are also described along with the big picture of the distributed
algorithm. The IP header is shown for reference in �gure 2 and the data structure de�nition
(N PDU TYPE) is given in the previous section.

The IP protocol standard speci�es that all implementations of IP must be able to fragment
and reassemble datagrams. In practice, any router that connects two or more networks with
di�erent MTU sizes must fragment datagrams. In our implementation, we assume that the
source does not fragment packets, i.e., the packet size is smaller than the MTU of the �rst
hop. However, routers may need to fragment these packets.

5.1 Fragmenting datagrams

Fragmentation occurs after IP has routed a datagram (i.e., decided the next hop subnet) and
is about to deposit it on the queue associated with a given network interface (i.e., the data
link connection). IP compares the datagram length to the network MTU to determinate
whether fragmentation is needed. In the simplest case, the entire datagram �ts in a single
network packet of frame, and will not need fragmentation. Otherwise, fragmentation is
needed. If the \Do not Fragment" (DF) bit were set, the original packet should be dropped
and an ICMP packet should be sent to the host. No fragments are created in this case.
However, for this lab, we assume that this bit is never set, and can be ignored. The DF bit
is zero when the ip frago� �eld is initialized to zero.

In such cases, IP creates multiple datagrams, each with the fragment bit set, and places
consecutive pieces of data from the original datagram in them. It is the data portion of the
original packet which is fragmented. Each fragment has a header separately constructed

4

F
ig
u
re

2:
IP

H
ea
d
er

w
h
ic
h
b
ea
rs

st
ro
n
g
re
se
m
b
la
n
ce

to
th
e
or
ig
in
al

p
ac
ke
t
h
ea
d
er
,
b
u
t
h
as

th
e
fr
ag
m
en
ta
ti
o
n

�
el
d
s
se
t.
S
p
ec
i�
ca
ll
y,
it
se
ts
th
e
\
m
or
e
fr
ag
m
en
ts
"
(M

F
)
b
it
in
th
e
IP

h
ea
d
er
of
al
l
fr
ag
m
en
ts

fr
om

a
d
a
ta
gr
am

ex
ce
p
t
fo
r
th
e
fr
a
gm

en
t
th
at

ca
rr
ie
s
th
e
�
n
al
o
ct
et
s
of
d
at
a.

A
s
it
co
n
st
ru
ct
s

fr
ag
m
en
ts
,
IP

p
as
se
s
th
em

to
th
e
n
et
w
or
k
in
te
rf
ac
e
fo
r
tr
an
sm

is
si
on
.

5
.2

F
ra
g
m
e
n
ti
n
g
F
ra
g
m
e
n
ts

F
ra
gm

en
ta
ti
o
n
b
ec
om

es
sl
ig
h
tl
y
m
or
e
co
m
p
le
x
if
th
e
d
at
ag
ra
m

b
ei
n
g
fr
ag
m
en
te
d
is
al
re
a
d
y

a
fr
a
gm

en
t.

S
u
ch

ca
se
s
ar
is
e
w
h
en

a
d
at
ag
ra
m

p
as
se
s
th
ro
u
gh

tw
o
or

m
or
e
ro
u
te
rs
.
If
on
e

ro
u
te
r
fr
ag
m
en
ts

th
e
o
ri
g
in
al

d
at
ag
ra
m
,
th
e
fr
ag
m
en
t
th
em

se
lv
es

m
ay

b
e
to
o
la
rg
e
fo
r
a

su
b
se
q
u
en
t
n
et
w
or
k
al
o
n
g
th
e
p
at
h
.
T
h
u
s,

a
ro
u
te
r
m
ay

re
ce
iv
e
fr
ag
m
en
ts

th
at

it
m
u
st

fr
a
gm

en
t
in
to

ev
en

sm
al
le
r
p
ie
ce
s.

T
h
e
su
b
tl
e
d
is
ti
n
ct
io
n
b
et
w
ee
n
d
at
ag
ra
m

fr
ag
m
en
ta
ti
on

an
d
fr
ag
m
en
t
fr
ag
m
en
ta
ti
on

ar
is
es

fr
o
m

th
e
w
ay

a
ro
u
te
r
m
u
st

h
an
d
le

th
e
\m

or
e
fr
ag
m
en
ts
"
(M

F
)
b
it
.
W
h
en

a
ro
u
te
r
fr
ag
-

m
en
ts
an

o
ri
g
in
al
(u
n
fr
ag
m
en
te
d
)
d
at
ag
ra
m
,
it
se
ts
th
e
M
F
b
it
on

al
l
b
u
t
th
e
�
n
al
fr
ag
m
en
t.

S
im
il
ar
ly
,
if
th
e
M
F
b
it
is
n
ot

se
t
on

a
fr
ag
m
en
t,
th
e
ro
u
te
r
tr
ea
ts
it
ex
ac
tl
y
li
k
e
an

or
ig
in
a
l

d
at
ag
ra
m

an
d
se
ts

th
e
M
F
b
it
in

ev
er
y
su
b
fr
ag
m
en
t
ex
ce
p
t
th
e
la
st
.
W
h
en

a
ro
u
te
r
fr
a
g
-

m
en
ts

a
n
on
-�
n
al

fr
ag
m
en
t,
it
se
ts

th
e
M
F
b
it
on

al
l
(s
u
b
-)
fr
ag
m
en
ts

it
p
ro
d
u
ce
s
b
ec
au
se

n
o
n
e
of

th
em

ca
n
b
e
th
e
�
n
al

fr
a
gm

en
t
fo
r
th
e
en
ti
re

d
at
ag
ra
m
.

T
h
e
fu
n
ct
io
n
F
r
a
g
m
e
n
t
P
a
c
k
e
t
A
n
d
S
e
n
d
T
o
D
l
c
(
)
m
ak
es
th
e
d
ec
is
io
n
ab
ou
t
fr
ag
m
en
ta
ti
on

an
d

se
n
d
s
th
e
fr
a
gm

en
ts
.
If
th
e
p
ac
k
et

le
n
gt
h
is
le
ss

th
en

th
e
n
et
w
or
k
M
T
U
,
th
e
d
at
ag
ra
m

is

5

sent calling send pdu to datalink(). If the datagram cannot be sent in one packet it is
divided in into a sequence of maximum possible fragment length, which must be a multiple
of 8, plus a �nal fragment of whatever remains.

To do so, �rst the maximum fragment size (maxdlen) is computed, then the program iter-
ates through the datagram, calling send pdu to datalink() to send each fragment. The
maximum amount of data that can be sent equals the MTU minus the IP header length,
truncated to the nearest multiple of 8. You can obtain this by clearing the last three bits
(& ~ 7 in C-code). The iteration proceeds only while the data remaining in the datagram
is strictly greater than the maximum that can be sent. The iteration will stop before send-
ing the last fragment, even in the case where all fragments happen to be of equal size.
When sending the �nal fragment, the MF bit is not usually set. But, in the case where a
router happens to further fragment a non-�nal fragment, it must leave the MF bit set in all
fragments.

5.3 Datagram Reassembly

Reassembly requires IP on the receiving machine to accumulate incoming fragments until
a complete datagram can be reassembled. Once reassembled, IP routes the datagram on
toward its destination. Because IP does not guarantee order of delivery, the protocol requires
IP to accept fragments that are delayed or arrive out-of-order. Furthermore, fragments for
a given datagram may arrive intermixed with fragments from other datagrams.

To make the implementation e�cient, the data structure used to store fragments must
permit: quick location of the group of fragments that comprise a given datagram, fast
insertion of a new fragment into a group, e�cient test of whether a complete datagram has
arrived, timeout of fragments, and eventual removal of fragments if the timer expires before
reassembly can be completed.

Reassembly software must test whether all fragments have arrived for a given datagram.
To make the test e�cient, each fragment is stored in a list. In particular, the fragments on
a given list are ordered by their 13-bit fragment o�set from the original datagram. The IP
protocol design makes the choice of sort key (the 13-bit o�set) easy because even fragmented
fragments have o�sets measured from the original datagram. Thus, it is possible to insert
any fragment in the list without knowing whether it resulted from a single fragmentation
or multiple fragmentation. In our implementation ipreass() is the reassembly subroutine.
It calls ipfadd() that add a fragment to a fragment list. When all fragments are arrived,
ipreass() calls ipfjoin() to join fragments, which in turn calls ipfcons() to reconstruct
the datagram. There is another routine ipftimer() which is called periodically (once every
1 ms in our implementation and once every 500 ms in reality). This routine updates the
time-to-live variables in the currently valid fragment list table entries and may clean up
lists for which the time-to-live variable has decreased to zero. In our implementation, we
ignore the functionality of the 'BOGUS' state of the fragment table entry. In real networks,
the table entry may be marked bogus for a long time and removed only after a timeout to
avoid getting late fragments.

6

5.4 Adding a fragment to a queue

The IP protocol uses information in the header of an incoming fragment to identify the
appropriate list. Fragments belong to the same datagram if they have identical values in
both their source address and IP identi�cation �elds. Subroutine ipreass takes a fragment,
�nds the appropriate list and add the fragment to the fragment list. Given a fragment it
searches the fragment array to see if it contains an existing entry for the datagram to which
the fragment belongs. At each entry, it compares the source and identi�cation �elds, and
calls ipfadd() to add the fragment to the list if it �nds a match. It then calls ipfjoin()
to see if all fragments can be reassembled into a datagram. If no match is found in the
fragment table, ipreass() allocates the �rst unused entry in the array, copies in the source
and identi�cation �elds, and places the fragment on a newly allocated queue.

5.5 Testing for a complete datagram

When adding a new fragment to a list, IP must check to see if it has all the fragments that
comprise a datagram. Procedure ipfjoin examines a list of fragments to see if they form
a complete datagram. After verifying that the speci�ed fragment list is in use, ipfjoin
enters a loop that iterates through the fragments. It starts a running variable at zero, and
uses it to see if the current fragment occurs at the expected location in the datagram. First,
ipfjoin checks to see that the o�set in the current fragment matches the running variable.
If the o�set of the current fragment exceeds the running variable, there must be a missing
fragment and ipfjoin returns zero (which means that the fragment cannot be joined).
If the fragment matches, ipfjoin computes the expected o�set of the next fragment by
adding the current fragment length to the running variable. Finally after reached the end
of the fragment list, ipfjoin calls ipfcons to collect the fragments and rebuild a complete
N PDU.

5.6 Building a datagram from fragments

Procedure ipfcons reassembles fragments into a complete N PDU. In addition to copying
the data from each fragment into place, it builds a valid datagram header. Information for
the datagram header comes from the header in the �rst fragment, modi�ed to reect the
full datagram's size. The procedure then sets the fragment o�set �eld to zero and releases
the bu�ers that hold individual fragments, and the state variables' entry in the fragment
list table ipfqt.

5.7 Timeout for old fragment lists

Due to errors in the network, some fragments may not reach the destination. In such a
case the partial fragment lists corresponding to these packets must be eventually removed.
IP uses a time-to-live variable in the ipfqt entry which is re-initialized to a default value
(we use 6 ms, real implementations use 60 sec) everytime a new fragment is received.
Periodically, a timer routine (ipftimer()) is called which decrements this value by a
constant amount (1 ms in our implementation, 500 ms or 1 s in reality) for all valid table
entries. When the variable reaches zero, the table entry is freed, and the corresponding

7

fragments are dropped. Real implementations send an ICMP message to the source, but
we do not send ICMP messages.

6 Function descriptions

The following functions are given in network layer.c. You have to �ll in the code for the
functions indicated. You should study each of the functions carefully to understand what
they are expected to do.

� NetworkLayerReceive(NETWORK LAYER ENTITY TYPE *network layer entity,

GENERIC LAYER ENTITY TYPE *generic layer entity, PDU TYPE *pdu): Processes
a received packet.

You should NOT modify this function.

� NetworkToDatalink(NETWORK LAYER ENTITY TYPE *network layer entity,

PDU TYPE *input pdu): A source or router can call this routine. It chooses an output
datalink (routing) and calls fragmentation subroutines.

You should NOT modify this function.

� NetworkToApplication(NETWORK LAYER ENTITY TYPE *network layer entity,

PDU TYPE *pdu from datalink): Called by the destination node. It reassembles
packet if necessary. If reassembly is complete, it forms an a pdu and sends it to
the application.

You should NOT modify this function.

� FragmentPacketAndSendToDLC(NETWORK LAYER ENTITY TYPE *network layer entity,

PDU TYPE *input pdu, int i): Called by a router with a target subnet or datalink
(indexed by `i') speci�ed as an argument. Fragments packets if necessary according to
the IP protocol. Special handling for fragments of fragments and the last fragment.

You need to write this function.

� ipreass(NETWORK LAYER ENTITY TYPE *network layer entity, PDU TYPE *pdu): Re-
assembles packet if necessary. If `pdu' is a fragment, it calls ipfadd() to add it to
a fragment list in the fragment list table at the destination. A new fragment list is
created if there is no match in the fragment list table. If the reassembly is complete,
a reassembled n pdu is constructed (calls ipfjoin() which in turn calls ipfcons()).
Returns NULL if reassembly incomplete.

You need to write this function.

� ipfadd(NETWORK LAYER ENTITY TYPE *network layer entity, struct ipfq *iq, PDU TYPE

*pdu): Adds `pdu' to an ordered fragment list (indexed by the 13-bit fragment o�set)
in `iq' and updates state variables.

You need to write this function.

8

� ipfjoin(struct ipfq *iq): Traverses the ordered fragment list in `iq' to see if all
required fragments have arrived. If so, it calls ipfcons() to construct a reassembled
n pdu. Else, it returns NULL.

You need to write this function.

� ipfcons(struct ipfq *iq): Dequeues fragments from the ordered fragment list in
`iq' and constructs a reassembled pdu out of them. The ordered list structures and
state variables in `iq' are released. Returns the reassembled pdu.

You need to write this function.

The following functions are provided to you. You DO NOT NEED TO KNOW
the implementation details of these functions. You only need to know the

functionality as described below.

� send pdu to datalink(NETWORK LAYER ENTITY TYPE *network layer entity, PDU TYPE

*pdu, int i): Sends the (n)pdu to the datalink layer of subnet `i'.

� send pdu to application(NETWORK LAYER ENTITY TYPE *network layer entity, PDU TYPE

*pdu): Sends the (a)pdu to the application layer.

� DropPDU(PDU TYPE *pdu): Frees the PDU.

� GetMTU(NETWORK LAYER ENTITY TYPE *network layer entity, int i): Returns the
MTU of the subnet (or dlc) `i'.

� choose output datalink(NETWORK LAYER ENTITY TYPE *cn): Does the routing func-
tion. Chooses an output datalink (subnet) for the packet. The choice is not random
(to allow easy debugging), but all available output datalinks are chosen over a period
of time.

� FormPacketsAndSendToDLC(NETWORK LAYER ENTITY TYPE *network layer entity, PDU TYPE

*input pdu, int i): Source generates packets with unique ids.

� CreatePacket(int src, int dest, short pktlen, short pktid, short fragoff,

char *sourcep): Creates a n pdu given the source address `src', destination address
`dest', packet length (including header) `pktlen', unique packet id `pktid', 13-bit frag-
ment o�set `OR'ed with 3 most-signi�cant bits of ags (IP MF or IP DF), `frago�',
and the pointer to source data.

� ipftimer(NETWORK LAYER ENTITY TYPE *network layer entity): Called periodically.
Updates time-to-live �elds and deletes expired fragment lists in the fragment list table
at the destination.

� CreateOrderedList(): Creates an ordered list and returns a pointer to a value of
type OrderedList t.

� AddToOrderedList(OrderedList t *q, PDU TYPE *pdu, int fragoff): Adds pdu
to ordered list based upon the 13-bit ordering key `frago�'. The 3 most-signi�cant
bits of `frago�' are zero.

9

� TraverseOrderedList(OrderedList t *q, int *position ptr): Returns the pdu
in the ordered list `q' at position indicated by `position ptr' and increments `*posi-
tion ptr'. If `*position ptr' is zero, then the �rst element of the ordered list is returned.
Illegal values of `position ptr' result in program termination. Successive calls to this
routine starting from `*position ptr' value of zero can be used to traverse the ordered
list, `q'. When the function returns NULL, you are at the end of the list.

� DequeueFromOrderedList(OrderedList t *q): Dequeues the next element in the
ordered list and returns the pdu stored in it.

� FreeOrderedList(OrderedList t *q): Releases the resources of the ordered list `q'.
Must be called before using CreateOrderedList() with the same `q'.

7 Files and Con�gurations

Since your disk space quota on rcs is limited, please follow these instructions

carefully:

� Create a unique directory in /tmp and copy the �le /home/81/kalyas/public/Lab1/Lab1.tar.gz,
that unique directory.

� gunzip Lab1.tar.gz

� tar xvf Lab1.tar

� It will create a directory called ``Files''. Move that directory into your account �le
directories. This directory will contain the following �les:

{ pdu.h: header �le containing some data structure declarations and de�nitions.
You don't need to include this �le anywhere in your source code because it is
already included in network layer.h. You will need to use some of the function
de�nitions provided in this �le, like pdu alloc() and pdu free()

{ network layer.c: �le containing the outline for the lab. You will have to DO
ALL YOUR CODING ONLY IN THIS FILE.

{ makefile: make�le for the lab. Running make will create an executable called
Frag exec

{ Frag demo: a sample executable �le to familiarize you with the graphical user
interface. You need to do part 1 (see below) of the lab using this executable.

{ Six con�guration �les: *.config. These �les specify the con�guration of the
network. In this lab, we will use a \multi-router" con�guration as shown in
�gure 3. The con�guration is described in detail below.

8 The Multi-Router Con�guration

The con�guration consists of a single source and a single destination connected by a network
of routers and unidirectional datalink (subnet) connections. Every data link connection is

10

labeled either \input" or \output." Each network layer is either a \source", \destination"
or a \router."

Routing is simple. A source or a router simply chooses any output data link to transmit the
packet and the packet will reach the destination if there are no errors. Packets or fragments
with error are dropped at the next data link layer on the path. The source or router may
choose di�erent output data links for di�erent packets. Once a data link is chosen for a
packet, the packet may be fragmented depending upon the MTU of the data link. Link
lengths may be di�erent and links may introduce errors in certain con�gurations.

Graphical interface support for the lab is provided in the following ways: packet lengths
on links are shown proportional to their actual sizes. Data link and physical layers are not
shown to avoid cluttering on the screen. Errored packets are shown to change color on a
link. The destination has a separate window which shows the status of the reassembly, i.e.,
the set of packets being currently reassembled, and the lengths of fragments received.

The con�guration �les specify di�erent parameters for the simulations:

frag1.con�g: Same MTU sizes, same link delays, no link errors.

frag2.con�g: Di�erent MTU sizes, same link delays, no link errors.

frag3.con�g: Di�erent MTU sizes, di�erent link delays, no link errors.

frag4.con�g: Di�erent MTU sizes, di�erent link delays, link errors present.

frag5.con�g: Same MTU sizes, di�erent link delays, link errors present.

The MTU sizes, link delay, and link error probability values for the con�gurations are as
follows. When the MTU sizes are the same, the value is 2048 bytes (which is enough to
carry the 1032 bytes N PDU payload plus 20 bytes of IP header without fragmentation in
the network). When the link delays are the same, the value is 5 microseconds each.

When the MTUs, link delays or error probabilities are di�erent, the following values are
used in the links (for link labels see �gure 3) depending upon the con�guration (decides
which parameter is di�erent):

Link 1 MTU = 1518 bytes, Link delay = 5 usecs, Error Probability = 0.005.

Link 2 MTU = 1518 bytes, Link delay = 20 usecs, Error Probability = 0.005.

Link 3 MTU = 1518 bytes, Link delay = 50 usecs, Error Probability = 0.005.

Link 4 MTU = 576 bytes, Link delay = 20 usecs, Error Probability = 0.1.

Link 5 MTU = 256 bytes, Link delay = 100 usecs, Error Probability = 0.15.

Link 6 MTU = 784 bytes, Link delay = 5 usecs, Error Probability = 0.2.

Link 7 MTU = 512 bytes, Link delay = 25 usecs, Error Probability = 0.15.

Link 8 MTU = 256 bytes, Link delay = 30 usecs, Error Probability = 0.1.

Link 9 MTU = 128 bytes, Link delay = 200 usecs, Error Probability = 0.05.

11

Link 10 MTU = 1024 bytes, Link delay = 100 usecs, Error Probability = 0.1.

Link 11 MTU = 576 bytes, Link delay = 25 usecs, Error Probability = 0.15.

Link 12 MTU = 1024 bytes, Link delay = 50 usecs, Error Probability = 0.05.

Link 13 MTU = 576 bytes, Link delay = 10 usecs, Error Probability = 0.05.

Link 14 MTU = 256 bytes, Link delay = 25 usecs, Error Probability = 0.05.

Link 15 MTU = 192 bytes, Link delay = 100 usecs, Error Probability = 0.05.

In addition, the network layer has a 20 usec processing delay for packetization (or fragmen-
tation) and reassembly of every fragment, and for sending an a pdu to the application layer.
Speci�cally, packets arriving from di�erent data links at the destination are serialized, and
a processing delay of 20 usec per packet is added.

The experiments you need to do with the above con�gurations are listed in the next section.

9 Running Your Program: The Graphical User Interface

� Remotely login (either from on-campus or o�-campus) to an IBM-AIX machine on
rcs using your account. Please contact the help desk to get a partial list of IBM AIX
machines on campus. Remember that you need X-windows/Unix capability on the
remote side in order to see the GUI. You also need a high speed connection for zippy
response. Also, your machine MUST NOT be behind a �rewall (�rewalls kill the
GUI). You will do all your compile and running of the programs by remotely logging
into AIX machines on campus. You can edit and code using a local editor program
and ftp over the code for compilation to rcs. NOTE: This program runs only on
campus AIX machines.

� Make sure you export DISPLAY to your local UNIX machine. See the FAQ for
questions regarding exporting DISPLAY.

� In theFiles directory, type Frag demo frag1.config. In general, invoke the demo
with a con�guration �le as follows: Frag demo <config name>

� A window with the simulator interface will open on your terminal. You should also
see two small windows to the lower left and right of the screen. The main window has
a network diagram with a single source, a single destination and a bunch of routers.
The source and destination nodes have two layers (network and application) denoted
by the squares, while the routers have only one layer (network). The data link and
physical layers have been hidden to avoid cluttering the screen. The network of links
and routers should be clearly seen.

� In addition to the simulator window, there should be two smaller windows loaded
up. For each application layer, there is a send/receive window where you can load
a graphic (\earth") and send it to the other end. Once the transmission starts, a
reassembly window will open up near the destination and show yellow bands with red

12

borders denoting partial fragments of packets which have arrived. When a packet is
reassembled, it is sent to the application which plots it on its screen.

� The toolbar on the top left of the main window contains a \Run" menu item which
has a couple of useful options:

{ A debug level option where you can increase the debug level to see some debug-
ging text output in the terminal.

{ A delay option which can be set to 1 (to speed up the simulation)

In brief, the steps to operate the demo are:

{ Start the demo by loading a con�guration: Frag demo <config name>

{ Set debug level option (from the \run" menu options) to 1.

{ Set the delay option (again from the \run" menu options) to 1.

{ Load the picture (graph) of "earth" in the LEFT (source) application window.

{ Click the send button in the LEFT (source) application window to send the
"earth" picture to the right application window. DO NOT load or send the
\earth" picture from the right application window (app2).

{ Another window called the \reassembly window" will pop up. To observe it
closely, you can pause the simulation and scroll the screen. The \earth" screen
generates has 328 a pdus. Sit back and watch the action.

In your work for the deliverables, you can use the debug option described below.

� Debugging note: The code contains couple of accounting variables to count the
number of packets and the number of fragments received at the destination, and the
following dprintf statement:

if (TICKS_TO_USECS(ev_now())/1000.0 > 17.0){

dprintf(1,"Time: %8.3f ms. Node %s. Received %d pkts, %d fragments\n",

TICKS_TO_USECS(ev_now())/1000.0, network_layer_entity->cn_name,

network_layer_entity->num_packets,

network_layer_entity->num_fragments);

fflush(stdout);

}

To use this, you need to increase the debug level once (from the "run" menu options).
Speci�cally:

Once the simulation comes close to termination, you will see a dump of information
on your screen. You can just choose the latest time, packets, fragments information
for your purposes. But you will need to interpret the results, especially in the error
con�gurations.

You can use the above style of dprintfs for your statistics in part 2 (see below) as
well. If you need to de�ne any variables, you can copy the �le network layer.h from:
Files/defaults/components.src/ to the directory Files/ and add your variables
(just like num packets and num fragments).

13

� Additional Debugging Note: In the code, ev now() gives the current simulation
time in simulator ticks. the macro TICKS TO USECS() converts a quantity from
ticks to microseconds, and the variable network layer entity->cn name outputs the
name of the network layer as a character string. You can use this in part 2 below.

10 Deliverables

� Part 1: Answer the following questions using Frag demo:

1. In each simulation run (with the �ve con�gurations: frag1.con�g through frag5.con�g)
what is the average number of fragments per packet ? Eg: In frag1.con�g,
a total of 328 packets and 328 fragments are received. The average in this case
is 1.

2. In the error con�gurations, the quality of the received picture is di�erent in dif-
ferent cases. Get a window capture of the "earth" received and use the reassem-
bly window data (number of packets dropped) to qualitatively and quanti-

tatively assess the performance in each case. Especially for frag4.con�g and
frag5.con�g.

� Part 2: Implement the fragmentation and reassembly procedures as described in the
earlier sections.

{ Study the source code �les carefully. (don't worry about the con�g �les).

{ Now you are ready to write your program for the network layer. Do all your
coding in network layer.c - the comments and the prior sections should guide
you in this process.

{ You can progressively test your implementation with the various con�gurations
starting with frag1.con�g (no error, equal link delays, no fragmentation). You
can uncomment and use the suggested dprintf statements to help you guide
debugging. The reassembly window at the destination should also help you
do the debugging. There are a few lines of graphics support in the code. Do
not remove them. You will not see the reassembly window correctly if you do.
To compile your program, type make. This will produce an executable called
Frag exec in your working directory.

The deliverables in this parts are as follows.

1. Execute your version of the code and use the con�guration �les to

make sure it works.

2. Calculate the total number of packets received, total number of frag-
ments and the average number of fragments per packet in frag2.con�g.
[e�ect of MTU sizes]

3. Calculate the maximum number of partially reassembled fragments
in frag3.con�g. This is also the minimum size of the retransmission
table. [e�ect of link delays with fragmentation].

14

4. Calculate the packets dropped (due to timeout or loss of all fragments)

and number of fragments lost in the network in frag4.con�g [e�ect of
errors with fragmentation].

Compare this with the number of packets dropped (one fragment/packet)
in frag5.con�g.

You can use information from the previous con�gurations about the

total number of packets and total number of fragments expected in
this con�guration.

5. You need to provide hard copies of your code (network layer.c) and the
list of statistics mentioned above. The code should well-commented

and formatted (indented) to facilitate easy grading. There are no
graphs to submit in this lab.

11 Submissions

You must submit hard copies of the following:

� A short summary of the lab, and answers to the questions in part 1.

� Your source code and the statistics collected.

12 Miscellaneous Notes

� For questions, FIRST CHECK THE FAQ (on course web page), and then send post
questions to the bulletin board ONLY. Do not send emails directly to the instructor
or TAs. The TAs are responsible for prompt replies to your technical questions on
the bulletin board.

� TA o�ce hours: Ye Tao: Mon 3-4pm (1hr) at JEC 6212, x8289
Hua Qin: Tue 12-1pm (1hr) at JEC 6212, x8289
Karthik: Tue 2-4 pm (2hr) at JEC 6212, x8289
Jye-Young Song: Thr 2-4pm (2hrs) at JEC 6010

� The following are the only IBM AIX machines on campus: rcs-ibm1.rpi.edu, rcs-
ibm2.rpi.edu. \rcs-ibm1" is a J40 with 4 processors and 512Mb of memory and rcs-
ibm2 is a J50 with 6 processors and 512Mb of memory. Both machines are robust
and currently have a total of 74 logins at this time, with 12am-8am seeing the lowest
use. During peak usage, normally between 10am and 6pm, it is not uncommon to see
a couple hundred logins. The machines are both con�gured to prevent single users
from signi�cantly impacting available CPU time, by killing processes that single-
handedly consume more than an hour of CPU time. Between this and automatic load
balancing between the processor, the machines do not bog down easily. Currently the
load average for the last 15 minutes has been 16can reach up to 200-300impacting
user speeds, particularly for quick processes. Please use this information as you plan
to access these machines.

15

� If you are not local on an AIX machine, telnet to one and display back to you local
workstation. You need to contact your local system administrator if you are not
able to re-direct display from an rcs workstation to your local UNIX workstation.
Remember again that exporting display does not work over corporate �rewalls.

16

F
ig
u
re

3:
M
u
lt
i-
R
ou
te
r
C
on
�
gu
ra
ti
on

17

