

Per-packet processing in an IP
 Router

1. Accept packet arriving on an incoming link.
2. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
3. Manipulate packet header: e.g., decrement TTL, update header checksum.
4. Send (switch) packet to the outgoing port(s).
5. Classify and buffer packet in the queue.
6. Transmit packet onto outgoing link.

Update Rates Required

- Recent BGP studies show that updates can be:
- Bursty: several 100s of routes updated/withdrawn => insert/delete operations - Frequent: Average 100+ updates per second
- Need data structure to be efficient in terms of lookup as well as update (insert/delete) operations.

Routing Lookups in Hardware

Most prefixes are 24-bits or shorter Shivkumar Kalyanaraman

Call blocking

- Can't find a path from input to output
- Internal blocking
a slot in output frame exists, but no path
- Output blocking
a no slot in output frame is available
- Output blocking is reduced in transit switches
a need to put a sample in one of several slots going to the desired next hop

Renselaer Polytechnic Instiute \qquad 27

Circuit switch

- A switch that can handle \mathbf{N} calls has \mathbf{N} logical inputs and N logical outputs
$\square \mathrm{N}$ up to 200,000
- Moves 8-bit samples from an input to an output port \square Recall that samples have no headers
- Destination of sample depends on time at which it arrives at the switch
- In practice, input trunks are multiplexed
- Multiplexed trunks carry frames = set of samples
a Goal: extract samples from frame, and depending on position in frame, switch to output
a each incoming sample has to get to the right output line and the right slot in the output frame

Multiplexors and demultiplexors

- Most trunks time division multiplex voice samples
- At a central office, trunk is demultiplexed and distributed to active circuits
- Synchronous multiplexor
a N input lines
- Output runs N times as fast as input

Switching: what does a switch do?

- Transfers data from an input to an output a many ports (density), high speeds - Eg: Crossbar

Time division switching

- Key idea: when de-multiplexing, position in frame determines output trunk
- Time division switching interchanges sample position within a frame: time slot interchange (TSI)

Packet switches

- In a circuit switch, path of a sample is determined at time of connection establishment
- No need for a sample header--position in frame used
- In a packet switch, packets carry a destination field or label
a Need to look up destination port on-the-fly - Datagram switches
- lookup based on entire destination address (longest-prefix match)
- Cell or Label-switches
- lookup based on VCI or Labels

Rensselaer Polytechnic Instiute \qquad

Blocking in packet switches

- Can have both internal and output blocking - Internal
a no path to output
- Output
a trunk unavailable
- Unlike a circuit switch, cannot predict if packets will block (why?)
- If packet is blocked => must either buffer or drop

```
Dealing with blocking in packet switches
- Over-provisioning
    a internal links much faster than inputs
- Buffers
    a at input or output
a Backpressure
    a if switch fabric doesn't have buffers, prevent
        packet from entering until path is available
a Parallel switch fabrics
    aincreases effective switching capacity
Renselaer Polytechnic Instiute
```

\qquad

Switch fabric element

- Goal: towards building "self-routing" fabrics
- Can build complicated fabrics from a simple element

- Routing rule: if 0 , send packet to upper output, else to lower output a If both packets to same output, buffer or drop
\qquad C

Switch Fabrics: Buffered crossbar

- What happens if packets at two inputs both want to go to same output?
- Can defer one at an input buffer
- Or, buffer cross-points: complex arbiter

Blocking in Banyan S/ws: Sorting

- Can avoid blocking by choosing order in which packets appear at input ports
- If we can
a present packets at inputs sorted by outp - remove duplicates
- remove gaps
a precede banyan with a perfect shuffle stage
- then no internal blocking
- For example: $[\mathrm{X}, 010,010, \mathrm{X}, 011, \mathrm{X}, \mathrm{X}, \mathrm{X}]$:
- Sort => $\quad[010,011,011, X, X, X, X, X]$
- Remove dups $=>$ [010, 011, X, X, X, X, X, X]
- Shuffle => [010, X, 011, X, X, X, X, X]

Reneed sort, shuffle, and trap networks Shivkumar Kalyanaraman

Sorting using Merging

- Build sorters from merge networks
- Assume we can merge two sorted lists

- High speed routers: lookup, switching, classification, buffer management
- Lookup: Range-matching, tries, multi-way tries
- Switching: circuit s/w, crossbar, batcher-banyan,
- Queuing: input/output queuing issues
a Classification: Multi-dimensional geometry
problem
Shivkumar Kalyanaraman

