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o Internet Core Transport Evolution & Trends
a SONET
o Optical Networking: Components
o Control plane:
o Overlay model, peer model

o Issues: provisioning, restoration, routing, traffic
engineering
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Telephony: Multiplexing
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0 Telephone Trunks between central offices carry
hundreds of conversations: Can’t run thick bundles!
0 Send many calls on the same wire: multiplexing
0 Analog multiplexing

0 bandlimit call to 3.4 KHz and frequency shift onto
higher bandwidth trunk

0 Digital multiplexing: convert voice to samples
0 8000 samples/sec => call = 64 Kbps
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Telephony: Multiplexing Hierarchy

0 Pre-SONET:
Q Telephone call: 64 kbps
Q T1lline: 1.544 Mbps = 24 calls (aka DS1)
Q T3 line: 45 Mbps =28 T1 lines (aka DS3)
0 Multiplexing and de-multiplexing based upon strict
timing (synchronous)
Q At higher rates, jitter is a problem

0 Have to resort to bit-stuffing and complex
extraction => costly “plesiochronous” hierarchy

0 SONET developed for higher multiplexing aggregates
0 Use of “pointers” like C to avoid bit-stuffing
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Digital Telephony in 1984

Fiber Optic

Central ™.,
Office
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Post-AT&T Divestiture Dilemmas

«Siwitches ",

Leased Line ™,

- LAN Services Different
- Data Services 3 Carriers,

i.ueVendors

" Internal
* DS3 Cross
Connect

Support
Other
Topologies,

Protect Fibers
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SONET

o Synchronous Optical Network

o Layer 1 Standards For Communication over
Fiber Optic (and Electrical) Links

o Facilitates:
o Fiber Optic Link Speed Increases
o Variety Of Topologies and Grooming
Functions
o Operations, Administration, Maintenance, and
Provisioning (OAM&P)
o Used As Telephony Carrier Equipment And CPE
Interconnect
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Equipment Types

% SONET

1 Device- l.e;
i Telephony
W switch, Routel
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STS-1 Frame Format

90 Bytes
Or “Columns”

Small Rectangle =1 Byte

STS = Synchronous Transport Signal
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STS-1 Headers

Section Overhead (SOH)

90 Bytes
Or “Columns”

Path Overhead (POH)
Line Overhead (LOH)
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Headers: Section Overhead (SOH)

> <

Selected Fields:

*A1,A2 - Framing Bytes
*BIP-8 - Bit Interleaved
Parity

* F1 User - Proprietary
Management
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Headers: Line Overhead (LOH)
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Selected Fields:

*H1-3 - Payload Pointers
*K1, K2 - Automatic
Protection Switching

« D4-D12 - 576 kbps
Osl/ICMIP
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Headers: Path Overhead (POH)
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Selected
fields:
*BIP-8 - Parit

* C2 - Payload
Type Indicato
*G1 - End End
Path Status
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SPE

Defined Payloads

« Virtual Tributaries
(For DS1, DS2)

« DS3

*« SMDS

«ATM

« PPP ...

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

14

Accommodating Jitter

Positive Stuff Negative Stuff

STS-N Frame Format

90xN Bytes >
Or “Columns”

N Individual STS-1 Frames
c ite F . Examples
omposite Frames: : STS-1  51.84 Mbps
« Byte Interleaved STS-1's STS-3  155.520 Mbps

« Clock Rate = Nx51.84 Mbps STS-12 622.080 Mbps
STS-48 2.48832 Gbps

STS-192 9.95323 Gbps

Complex demultiplexing !!
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STS-Nc Frame Format

— 90xN Bytes [
Or “Columns”

[ | ]
—

Transport Overhead: SOH+LOH

Current IP over SONET technologies use concatenated
mode: OC-3c (155 Mbps) to OC-192c (10 Gbps) rates
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SONET Network Elements

Dsis
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Topologies

Automatic Protection Switching (APS)

P P — -

Line Protection Switching Path Protection Switching
Uses TOH Uses POH

Trunk Application Access Line Applications
Backup Capacity Is Idle Duplicate Traffic Sent On Protect
Supports 1:n, where n=1-14 1+1

ensseler Polytechnic Insiitute SITVRUITTAr Ay el arTierT
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Protection Topologies - Linear

o Two nodes connected to each other with two or
more sets of links

Working Protect

(1:n)
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Protection Topologies - Ring

o Two or more nodes connected to each other with
a ring of links
o Line vs. Drop interfaces
o East vs. West interfaces

21
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Protection Topologies - Mesh
a Three or more nodes connected to each other
o Can be sparse or complete meshes
o Spans may be individually protected with
linear protection
o Overall edge-to-edge connectivity is protected
through multiple paths

Rensselaer Polytechnic Insiit Kalyanaraman

23

Packet Over SONET (POS)

Special Data Scrambler
Standard PPP Encapsulation + 1+ x43 Polynomial
« Magic Number Recommended « Protects Against Transmitted
« No Address and Control Compression Frames Containing Synch Bytes
+ No Protocol Field Compression Or Insufficient Ones Density

H -

Standard CRC Computation  SONET Framing
» OC3 May Use CRC-16 » OC3, OC12, OC48, OC192 Defined
* Other SpeedsUse CRC-32 . C2 Byte = 0x16 With Scrambling

« C2 Byte = oxCF Without (OC-3)
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Quick History of Optical Networking
o 1958: Laser discovered

o Mid-60s: Guided wave optics demonstrated

1970: Production of low-loss fibers

o Made long-distance optical transmission possible!

o 1970: invention of semiconductor laser diode
o Made optical transceivers highly refined!

o 70s-80s: Use of fiber in telephony: SONET

Mid-80s: LANS/MANs: broadcast-and-select
architectures

0 1988: First trans-atlantic optical fiber laid
o Late-80s: EDFA (optical amplifier) developed
o Greatly alleviated distance limitations!
o Mid/late-90s: DWDM systems explode
rhbealg-A0sdntelligent Optical networks Shivkumar Kalyanaraman
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Geometrical Optics

a Fiber Made of Silica: SiO, (primarily)
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Geometrical Optics (cont.)

0 Basics “Laws”: Refraction and Reflection
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o Reflection: O =
o Refraction: n;sin g; =n,sin g, (Snell's Law)

a If g, = p/2: Total Internal Reflection
a then g, =sin't (n,n,), “Critical Ang}
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a Refractive Index, n = C,c,um/Cmaterial
A Neore > r‘|cladding
, L -
- - 1-1.43
b | 2a | Care 1.45
= 2 |
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Geometrical Optics (cont.)
A ] Cladding
L

o Light propagates by total internal reflection

o Modal Dispersion: Different path lengths cause
energy in narrow pulse to spread out

a dT = time difference between fastest and
slowest ray
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Optical Transmission

Attenuation
Disgersion

Nonlinearity
Reflectance

Transmitted data waveform Waveform after 1000 km
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Fiber Attenuation

o
>

o Two windows:
01310 & 1550 nm

\ i o 1550 window is
sl preferred for long-
A haul applications
window / o Less attenuation
o Wider window

01 ‘ I o Optical amplifiers
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Loss in dB/km

o
o
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Fiber Dispersion

Normal fiber
Non-dispersion shifted fiber (NDSF)
>95% of deployed pIatKA
€ 18—
X
€
c
@
o Wavelength
c 0 |
o Anm
g ]
2
Reduced dispersion fibers
Dispersion shifted fiber (DSF)
Non-zero dispersion shifted fibers (NZDSF)
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Dispersion
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o Dispersion causes the pulse to spread as it travels
along the fiber

o Chromatic dispersion is important for singlemode
fiber
o Depends on fiber type and laser used
o Degradation scales as (data-rate)?

o Modal dispersion limits use of multimode fiber to

short distances .
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Single vs. Multimode Fiber

o Silica-Based Fiber Supports 3 Low-Loss
“Windows™ 0.8, 1.3 ,1.55 m wavelength

o Multimode Fibers Propagate Multiple Modes of
Light
o core diameters from50t085 m
o modal dispersion limitations

o Single-mode Fibers Propagate One Mode Only
o core diameters from50t085 m

o chromatic dispersion limitations (pulse
spreading)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

33

Polarization Mode Dispersion (PMD)

Polarization
Hlode —p
onthe

“Fast” Axis

«“”igll':i':fl"" aMost severe in older

Signal fiber

o Caused by several
sources

o Core shape

& Differential
/' Group o External stress
Delay

a Material
\ Polarization properties
Hode onthe Becomes an issue at
“Slow” Axs Q
0C-192
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Four-Wave Mixing (FWM)

Original )
— 0 Creates in-band
; crosstalk that can not be
Frequencies filtered
a Problem increases
geometrically with
0 Numberofls

7
Optieal 0 Spacing between | s

// frequeney 0 Optical power level

0 Chromatic dispersion
minimizes FWM

Qu-ofhand

CrosTIk

i /
/ "y /

Crosstalk
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Multiplexing: WDM

o TDM: Time Division

Multiplexing B b
S
0 10Gb/s u imi
pper limit 1 LN NBbs
o WDM: Wavelength o T \JUWL

Division Multiplexing N
o Use multiple
carrier frequencies

tq transmit data ﬁ»
simultaneously 2= Vo,

Rensselaer Polytechnic Initute JUL
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Erbium-Doped Fiber Amplifier (EDFA)

40-80 km

b .
Terminal >><NNN»4><1>4!>4!<><><>4:>4:>4: Terminal

egenerator - 3R (Reamplify, Reshape and Retime)

120km ‘

?DFA amplifiesall | s

EDFA Enables DWDM!

Optical
Isplator
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0 EDFAs amplify all | s in 1550 window simultaneously
0 Key performance parameters include

0 Saturation output power, noise figure, gain
flatness/passband
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Optical Couplers
lopwi 1 v Demgeat |
Y == -

o Combines & splits signals
o Wavelength independent or dependent

o Power(Outputl) = a Power(Inputl)
o Power(Output2) = (1- a) Power(Inputl)

o Power splitter if a=1/2: 3-dB coupler
o Used to construct simple optical switches
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Multiplexers, Filters, Routers

iy P
o Filter selects one { """“h. | L
wavelength and iphphy | !
rejects all others w
0 Multiplexor combines ! 5 oy T By
: ¥ Wokagh
different wavelengths : ; mitgar d
o Router exchanges »
wavelengths fromone = a——
input to a different :"I-"-'.'-"s-h*: l..'-,:,.'\..
1
OUtlet 1.2 32 .}: w | 1 -}1 |
ko “ H-H'-:':i-"t_
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Characteristics of Filters

o Low insertion loss e
. s
a Loss independent of 1y 5¥ L Sy P
SoP e
o Filter passband i "E [
independent of i | §
temperature i [
a Flat passbands i if \“.,“:"'H' Dl
1 i -
a Sharp “skirts” on the | / i
passband T e
i
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Gratings
o Constructive interference —
at wavelength | and | =
grating pitch, a, if i
. . A
alsin(g) - sin(gg] = m | T i
= i d megrg
a m = order of the grating Hali
| v
L%
Feett 4 ‘: *
AT L]
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Bragg Gratings

o Bragg wavelengthis  ®

| 0o- 2 neffl_ % )
where L is period of  } .
grating i
a If incident wave has % E
wavelength | o, it is E
reflected by Bragg g i
grating |
R - o i
L]
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Fabry-Perot Filters

o Fabry-Perot filter also called F-P interferometer
or etalon

o Cavity formed by parallel highly reflective mirrors
a Tunable filter

Febry-Feeot

GAVILY
g Tromsmateed
. o PP | s s
Tt gl } T ey
X - -
Eirtlectiony
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Pre-DWDM: Second Gen. Optical Nets

o Broadcast and Select
o Passive broadcast to all receivers

o Number of nodes limited by finite number of
wavelengths and power splitting
o Wavelength Routing
o Allows simultaneous lightpaths using same
wavelengths
a Power not broadcast to unwanted receivers
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Second Generation Optical Nets

Wavelength Conversion
at Node D

DWDM System Design

NoOo A WNPREO
DWDM Filter

~NoUuhwWNRO

1310 nm

15 nm 15xx nm| Reamplify 131

Retime

A7

Protection for IP over DWDM

Optical Cloud

o Optical protection is not sufficient
a Only protects transmission infrastructure
o Layer 3 must provide path restoration

o Opportunity for differentiation at the service level
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Eg: 40 DWDM

D

Eg: 161 DWDM and OC-192 Ring
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IP over Optical Networks (IPO)

Rensselaer Polytechnic Institute’

IPO: Control Planes

Traditional SONET- Layering (overlay) Direct MPI S-
based approaches approaches based approach

~ "
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Multi-Protocol Lambda Switching

Packet Label Switch Router (LSR)

Link 1: label 3 b Switching fabri
Link 6: label 9
Link 4
ontrol information
physically coupled GG
with data
Ethernet (e.q., Control information

outband controf:

channel/network)
. Converters

Fiber 2: lambda blue ot switah .

b Fiber 4: lambda red chig (optianal)

"EE‘ Fiber 5
'E?—o— Fiber 6
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Multi-Protocol Lambda Switching

Key Elements Overview

Coordinate jointly with LSP control.

Wavelength channel
signaling: setupiteardown,
[

Constraint-
Based Routing

v

Neighbor
«rir:(s’ﬁti?tverr)"é Topology/resource:
4’\ distribution
Link

Management .
Protoco Added optical
metrics
Link-state
atabase w.




Link-Level Restoration Overview

Original Channel Pair

New Channel Pair
Drop port Drop port;

o Alightpaths is locally restored by selecting an
available pair of channels within the same link

a If no channel is available then the end-to-end
restoration is invoked
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End-to-End Restoration Overview |

F G
&

Share

Backu

Primary Path
Path @

Restoration
Failure

o A shared backup path is “soft-setup” for each
restorable primary path
o When local restoration fails, triggers are sent to
s ol NE: €N -N0Odes via signaling Shivkumar Kalyanaraman
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IP-SONET-WDM using POS

IP-Optical using Signaled Overlay

IP/PPP/HDLC packet
mappings to SONET
frames (OC-48, OC-192)

—)

IP routing
protocols (OSPF,

Gigabit IP Router Gigabit IP Router

== s
Point-to-point >
DWDM links
(linear or ring
de—  SONET <
topologies) +
Wideband Wavelength
+ laser
transponders,
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Optical network

Core NMS control

P
border

IP address

registration Border -
— OX

un — X
1

SONET DCS
/
Endpoint
E reachability,

service discovery

/N' SONET DCS

Software signaling
interface

Modified IP-MPLS
protocols or proprietary
signaling/routing

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

58

IP-Optical using Peer Model

Lambda switch routers
(I SR), switch purely on

wavelengths Label edge router
1P and optical (LER)
domains
= “optical LSP"

IPIMPLS @ XC IP addresse: xX
client router ( SR) z —
== = = IPIMPLS
= X client router
_____________ ==
—
Router IP x5
addresses
Full peering X
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Summary

n
o Internet Core Transport Evolution & Trends
a SONET
o Optical Networking: Components
o Control plane:

o Overlay model, peer model

o Issues: restoration, routing, traffic engineering
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