
Shivkumar KalyanaramanRensselaer Polytechnic Institute

1

UDP,
TCP (Part I)

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute

shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Shivkumar KalyanaramanRensselaer Polytechnic Institute

2

q UDP: connectionless, end-to-end service
q UDP Servers
q TCP features, Header format
q Connection Establishment
q Connection Termination
q TCP Server Design
q Ref: Chap 11, 17,18; RFC 793, 1323

Overview

Shivkumar KalyanaramanRensselaer Polytechnic Institute

3

User Datagram Protocol (UDP)
q Minimal Transport Service:
q Port addressing: for application multiplexing
q Error detection (Checksum): formerly optional
q Connectionless end-to-end datagram service

q No flow control. No error recovery (no acks)
q Used by SNMP, DNS, TFTP etc

Source
Port

Dest
Port

Check-
sum

Length

16 16 16 Size in bits16
Shivkumar KalyanaramanRensselaer Polytechnic Institute

4

UDP feature details
q Port number: Used for (de)multiplexing.
q Client ports are ephemeral (short-lived).
q Server ports are “well known”.

q UDP checksum:
q Similar to IP header checksum,
q Pseudo-header (to help double-check

source/destination address validity). Fig 11.3
q UDP checksum optional, but RFC 1122/23

(host reqts) requires it to be enabled
q Application message is simply encapsulated and

sent to IP => can result in fragmentation.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

5

Some UDP Effects
q When UDP datagram fragments at the host,

each fragment may generate an ARP request
(results in an ARP reply: ARP flooding)
q RFC 1122/23 limits max ARP rate to 1 request/ sec,

and requires the ARP Q to be at least of size one

q Datagram truncation possible at destination if
dest app not prepared to handle that datagram
size ! (note: TCP does not have this problem
because it has no message boundaries)

q UDP sources ignore source quench messages
=> can’t respond to packet losses.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

6

UDP Servers
q Most UDP servers are “iterative” => a single

server process receives and handles incoming
requests on a “well-known” port.

q Can filter client requests based on incoming IP
address, client IP address, incoming port
address, or wild card filters

q Port numbers may be reused, but packet is
delivered to at most one end-point.

q Queues to hold requests if server busy

Shivkumar KalyanaramanRensselaer Polytechnic Institute

7

TCP: Key features
q Connection-oriented

q Point-to-point: 2 end-points (no broadcast or
multicast)

q Reliable transfer: Data is delivered in-order
q Full-duplex communication

Shivkumar KalyanaramanRensselaer Polytechnic Institute

8

TCP: Key features (Continued)

q Byte-stream I/f: sequence of octets
q Reliable startup: Data on old connection does not

confuse new connections

q Graceful shutdown: Data sent before closing a
connection is not lost. Reset or immediate
shutdown also possible.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

9

Reliability features
q Reliable connection startup: Data on old

connection does not confuse new connections
q Graceful connection shutdown: Data sent before

closing a connection is not lost.
q Data segmented for transmission and

acknowledged by destination. Timeout +
Retransmission provided if data unacknowledged

q Checksum provided to catch errors.
q Resequencing of out-of-order data; discarding of

duplicate data.
q Window flow control => sender cannot overrun

receiver buffers
Shivkumar KalyanaramanRensselaer Polytechnic Institute

10

TCP Header Format

16 16 32 32 6

Source
Port

Dest
Port

Seq
No

Ack
No

Header
length

Control WindowResvd

4 6 16

16 16 x y Size in bits

Check-
sum

Urgent Options Pad Data

Also see fig: 17.2 in text
Does this header reflect the feature list we saw earlier ?

Shivkumar KalyanaramanRensselaer Polytechnic Institute

11

TCP Header
q Source Port (16 bits): Identifies source user

process
20 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, ...
q Destination Port (16 bits)

q Sequence Number (32 bits): Sequence number
of the first byte in the segment. If SYN is
present, this is the initial sequence number
(ISN) and the first data byte is ISN+1.

q Ack number (32 bits): Next byte expected

Shivkumar KalyanaramanRensselaer Polytechnic Institute

12

TCP Header

q Header length (4 bits): Number of 32-bit words in
the header. 4 bits => max header size is 60 bytes

q Reserved (6 bits)

q Control (6 bits)

q Window (16 bits): Will accept [Ack] to
[Ack]+[window]

ACKURG PSH RST SYN FIN

Shivkumar KalyanaramanRensselaer Polytechnic Institute

13

TCP Header (Continued)
q Checksum (16 bits): covers the segment +

pseudo header. Protection from mis-delivery.

q Urgent pointer (16 bits): Points to the byte
following urgent data. Lets receiver know how
much data it should deliver right away.

q Options (variable):
Max segment size (does not include TCP
header, default 536 bytes), Window scale factor,
Selective Ack permitted, Timestamp, No-Op,
End-of-options

Shivkumar KalyanaramanRensselaer Polytechnic Institute

14

TCP Checksum
q Checksum is the 16-bit one's complement of the

one's complement sum of a pseudo header,
q The TCP header, and data, (padded with

zero octets at the end if necessary to make a
multiple of two octets.)

q Checksum field filled with zeros initially
q Pseudo header (similar to UDP)

Source Adr Dest. Adr Zeros Protocol TCP Length

TCP Header TCP data
32 32 8 8 16

Shivkumar KalyanaramanRensselaer Polytechnic Institute

15

Connection Establishment
q Fig 18.3

q Client sends SYN, with an initial sequence
number (ISN) and a Max Segment Size (MSS).
Called “active open”.

q Server acks the SYN (for the forward
connection), and also sets the SYN bit, with its
own ISN (for the reverse connection). Called
“passive open”.

q Client acks the reverse direction SYN.
q 3 segments transmitted.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

16

Connection Termination

q Fig 18.3 again, also fig 18.5
q Client sends FIN. Server acks this and notifies its

application. However it can keep its half-
connection open. Each connection closed
separately.

q Server app issues a “close” and server sends
FIN to client. Client acks this.

q 4 segments transmitted.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

17

Three-Way Handshake
q 3-way handshake: necessary and sufficient for

unambiguous setup/teardown even under
conditions of loss, duplication, and delay

Shivkumar KalyanaramanRensselaer Polytechnic Institute

18

More Connection Establishment
q Socket: BSD term to denote an IP address + a

port number.
q A connection is fully specified by a socket

pair i.e. the source IP address, source port,
destination IP address, destination port.

q Initial Sequence Number (ISN): counter
maintained in OS.
q BSD increments it by 64000 every 500ms or

new connection setup => time to wrap around
< 9.5 hours.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

19

Connection Establishment (Contd)

q SYN pkt lost => retransmitted.
q Exponential timeout backoff (6, 12, 24 s etc)
q Connection timeout is 75 s.

q Timer granularity is 500 ms => first timeout
between 5.5 and 6s. See Fig. 18.7

Shivkumar KalyanaramanRensselaer Polytechnic Institute

20

MSS

q Maximum Segment Size (MSS)
q Largest “chunk” sent between TCPs.
qDefault = 536 bytes. Not negotiated.
qAnnounced in connection establishment.
qDifferent MSS possible for forward/reverse

paths.
qDoes not include TCP header
qMany BSD systems restrict MSS to be

multiples of 512 bytes: inefficient.
qPath MTU restricts size of MSS further.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

21

TCP State Transition Diagram
q Figure 18.12: client (dark line) , server (dashed

line) transitions.
q 2MSL wait: wait for final segment to be

transmitted before releasing connection (typically
2 min)
q Socket pair cannot be reused during 2MSL
q Delayed segments dropped

q Establishment: SYN_SENT, SYN_RCVD,
ESTABLISHED, LISTEN

q Close: FIN_WAIT_1, FIN_WAIT_2, CLOSING,
TIME_WAIT, CLOSE_WAIT, LAST_ACK

Shivkumar KalyanaramanRensselaer Polytechnic Institute

22

Effect of 2MSL wait
q Can’t kill server & restart immediately to use the

same well known port (1-4 min!)
q Reason: TCP cannot reallocate the socket pair

(i.e. the connection) till 2MSL.
q Kill client and restart => it will get a different port
q 2MSL wait protects against delayed segments

from the previous “incarnation” of the connection.

q If server crashes and reboots within 2 MSL wait,
it is still safe because RFC 793 prevents having
connections for 1 MSL after reboot.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

23

TCP Servers

q Most TCP servers are concurrent i.e. separate
process to handle each client - for ease of
connection management

q Server listens to well-known port.
q Socket pair distinguishes connections
q A separate “endpoint” in the ESTABLISHED

state is associated with each connection

qOne endpoint is used to listen (LISTEN state)
for new connections

Shivkumar KalyanaramanRensselaer Polytechnic Institute

24

TCP Servers (Continued)
q Endpoints in the ESTABLISHED state cannot

receive SYN packets
q Possible to wildcard or select specific interfaces

(local IP addresses) to listen to.
q Multiple connection requests => backlog queue

of connections established but new process not
yet created by server to handle it.

q Queue full => send RESET to new connection
requests

Shivkumar KalyanaramanRensselaer Polytechnic Institute

25

Summary

q UDP is connectionless and simple. No flow/error
control.

q TCP provides reliable full-duplex connections.
q TCP state diagram, 3-way handshake, Options

q UDP and TCP servers

