
Shivkumar KalyanaramanRensselaer Polytechnic Institute

1

TCP (Part II)

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute

shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma

Shivkumar KalyanaramanRensselaer Polytechnic Institute

2

q TCP interactive data flow

q TCP bulk data flow
q TCP congestion control
q TCP timers

q TCP futures and performance
Ref: Chap 19-24; RFC 793, 1323, 2001, papers

by Jacobson, Chiu/Jain, Karn/Partridge

Overview

Shivkumar KalyanaramanRensselaer Polytechnic Institute

3

Reliability Models
q Reliability => requires redundancy to recover from

uncertain loss or other failure modes.

q Two types of redundancy:
q Spatial redundancy: independent backup copies

q Forward error correction (FEC) codes
q Problem: requires huge overhead, since the FEC

is also part of the packet(s) it cannot recover from
erasure of all packets

q Temporal redundancy: retransmit if packets lost/error
qLazy: trades off response time for reliability
q Design of status reports and retransmission

optimization (see next slide) important

Shivkumar KalyanaramanRensselaer Polytechnic Institute

4

Temporal Redundancy Model
Packets • Sequence Numbers

• CRC or Checksum

Status Reports • ACKs
• NAKs,
• SACKs
• Bitmaps

• Packets
• FEC information

Retransmissions

Timeout

Shivkumar KalyanaramanRensselaer Polytechnic Institute

5

Status Report Design
q Cumulative acks:
q Robust to losses on the reverse channel

q Can work with go-back-N retransmission
q Cannot pinpoint blocks of data which are lost
q The first lost packet can be pinpointed

because the receiver would generate
duplicate acks

Shivkumar KalyanaramanRensselaer Polytechnic Institute

6

Status Report Design (Continued)
q Selective acks: (SACKs)

q For a byte-stream model like TCP, need to specify
ranges of bytes received (requires large overhead)

q SACK is a TCP option over-and-above the cumulative
acks

q Bitmaps: identify received and lost information

q Not efficient for TCP: a bit is needed for every byte!

q NAKs have same problems like SACKs and bitmaps, but
also are not robust to reverse channel losses

Shivkumar KalyanaramanRensselaer Polytechnic Institute

7

Retransmission Optimization

q Default retransmission:
qGo-back-N: I.e. retransmit the entire window.
q Triggered by timeout or persistent loss in TCP

q Not efficient if windows are large: high speed
n/ws

Shivkumar KalyanaramanRensselaer Polytechnic Institute

8

Retransmission Optimization
(Continued)

q Selective retransmission:
q Retransmit one packet based upon duplicate

acks
q Recovers quickly from isolated loss, but not

from burst loss
q TCP-SACK is an enhancement which

identifies a block of packets to be
retransmitted.

q Such retransmitted packets must finally be
confirmed by acks since SACK is only an
option and not reliable

Shivkumar KalyanaramanRensselaer Polytechnic Institute

9

TCP Interactive Data Flow
q Problems:
qOverhead: 40 bytes header + 1 byte data

q Packets: To batch or not to batch: response
time important

q Batching acknowledgements:

q Delay-ack timer: piggyback ack on reverse
traffic if available

q 200 ms timer (fig 19.3) if no reverse traffic

Shivkumar KalyanaramanRensselaer Polytechnic Institute

10

TCP Interactive Data Flow

q Batching data:
q Nagle’s algo: Don’t send packet until next ack

is received.
q Developed because of congestion in WANs

Shivkumar KalyanaramanRensselaer Polytechnic Institute

11

TCP Bulk Data Flow
q Sliding window:
q Send multiple packets while waiting for acks

(fig 20.1) upto a limit (W)
q Receiver need not ack every packet

q Acks are cumulative.
q Ack # = Largest consecutive sequence

number received + 1

q Two transfers of the data can have different
dynamics (eg: fig 20.1 vs fig 20.2)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

12

TCP Bulk Data Flow (Continued)
q Receiver window field:
q Reduced if TCP receiver short on buffers

q End-to-end flow control
qWindow update acks: receiver ready
q Default buffer sizes: 4096 to 16384 bytes.

q Ideal: window and receiver buffer = bandwidth-
delay product

Shivkumar KalyanaramanRensselaer Polytechnic Institute

13

TCP Bulk Data Flow (Continued)

q TCP window terminology: figs 20.4, 20.5, 20.6
q Right edge, Left edge, usable window

q “closes” => left edge (snd_una) advances
q “opens” => right edge advances (receiver

buffer freed => receiver window increases)
q “shrinks” => right edge moves to left (rare)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

14

The Congestion Problem
q Problem: demand outstrips available capacity …

q Q: Will the “congestion” problem be solved when:

q a) Memory becomes cheap (infinite memory)?

No buffer Too late

All links 19.2 kb/s Replace with 1 Mb/s

S S S S S S S S

File Transfer Time = 7 hoursFile Transfer time = 5 mins

q b) Links become cheap (high speed links)?

Shivkumar KalyanaramanRensselaer Polytechnic Institute

15

A

B
S

C

D
Scenario: All links 1 Gb/s. A & B send to C.

The Congestion Problem (Continued)

q c) Processors become cheap (fast routers
switches)?

Shivkumar KalyanaramanRensselaer Polytechnic Institute

16

λi

µλ
µi

q If information about λi , λ and µ is known in a
central location where control of λi can be
effected with zero time delays,

q the congestion problem is solved!

The Congestion Problem (Continued)
λλ1

λλn

Shivkumar KalyanaramanRensselaer Polytechnic Institute

17

The Congestion Problem (Continued)

q Problems:
q Incomplete information (eg: loss indications)

q Distributed solution required
q Congestion and control/measurement

locations different
q Time-varying, heterogeneous time-delay

Shivkumar KalyanaramanRensselaer Polytechnic Institute

18

TCP Congestion Control
q Window flow control: avoid receiver overrun
q Dynamic window congestion control:

avoid/control network overrun

qObservation: Not a good idea to start with a
large window and dump packets into network

q Treat network like a black box and start from a
window of 1 segment (“slow start”)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

19

TCP Congestion Control (Continued)

q Dynamic window congestion control:
avoid/control network overrun (Continued).
q Increase window size exponentially

(“exponential increase”) over successive RTTs
=> quickly grow to claim available capacity.

q Technique: Every ack: increase cwnd (new
window variable) by 1 segment.

q Effective window = Min(cwnd, Wrcvr)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

20

Dynamics

q Rate of acks = rate of packets at the
bottleneck: “Self-clocking” property.

100 Mbps 10 Mbps

Router
Q

1st RTT 2nd RTT 3rd RTT 4th RTT

Shivkumar KalyanaramanRensselaer Polytechnic Institute

21

Congestion Detection
q Packet loss as an indicator of congestion.

q Set slow start threshold (ssthresh) to min(cwnd,
Wrcvr)/2

q Retransmit pkt, set cwnd to 1 (reenter slow start)

Time (units of RTTs)

Congestion
Window
(cwnd)

Receiver Window

Idle
Interval

Timeout

1

ssthresh

Shivkumar KalyanaramanRensselaer Polytechnic Institute

22

Congestion Avoidance
q Increment cwnd by 1 per ack until ssthresh

q Increment by 1/cwnd per ack afterwards
(“Congestion avoidance” or “linear increase”)

q Idea: ssthresh estimates the bandwidth-delay
product for the connection.

q Initialization: ssthresh = Receiver window or
default 65535 bytes. Larger values thru
options.

q If source is idle for a long time, cwnd is reset
to one MSS.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

23

q Implications of using packet loss as congestion
indicator
q Late congestion detection if the buffer sizes

larger

q Higher speed links or large buffers => larger
windows => higher probability of burst loss

q Interactions with retransmission algorithm and
timeouts

Congestion Avoidance (Continued)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

24

Congestion Avoidance (Continued)

q Implications of ack-clocking
qMore batching of acks => bursty traffic (harder

to manage)

q Less batching leads to a large fraction of
Internet traffic being just acks (huge overhead)

q Additive Increase/Multiplicative Decrease
Dynamics:

q TCP approximates these dynamics

Shivkumar KalyanaramanRensselaer Polytechnic Institute

25

Timeout and RTT Estimation
q Timeout: for robust detection of packet loss

q Problem: How long should timeout be ?
q Too long => underutilization; too short =>

wasteful retransmissions
q Solution: adaptive timeout: based on RTT

Shivkumar KalyanaramanRensselaer Polytechnic Institute

26

Timeout and RTT Estimation
(Continued)

q RTT estimation:
q Early method: exponential averaging:

q R ← α*R + (1 - α)*M { M =measured RTT}
q RTO = ββ*R {β = delay variance factor}
q Suggested values: α = 0.9, β = 2
qJacobson [1988]: this method has problems

w/ large RTT fluctuations

Shivkumar KalyanaramanRensselaer Polytechnic Institute

27

RTT Estimation
q New method: Use mean & deviation of RTT
q A = smoothed average RTT

q D = smoothed mean deviation
q Err = M - A { M = measured RTT}

q A ← A + g*Err {g = gain = 0.125}

q D ← D + h*(|Err| - D) {h = gain = 0.25}
q RTO = A + 4D
q Integer arithmetic used throughout.

Complex initialization process ...

Shivkumar KalyanaramanRensselaer Polytechnic Institute

28

Timer Backoff/Karn’s Algorithm
q Timer backoff: If timeout, RTO = 2*RTO

{exponential backoff}

q Retransmission ambiguity problem:
q During retransmission, it is unclear whether

an ack refers to a packet or its
retransmission. Problem for RTT estimation

q Karn/Partridge: don’t update RTT
estimators during retransmission.
qRestart RTO only after an ack received

for a segment that is not retransmitted

Shivkumar KalyanaramanRensselaer Polytechnic Institute

29

TCP Performance Optimization

q SACK: selective acknowledgments: specifies
blocks of packets received at destination.

q Random early drop (RED) scheme spreads the
dropping of packets more uniformly and reduces
average queue length and packet loss rate.

q Scheduling mechanisms protect well-behaved
flows from rogue flows.

q Explicit Congestion Notification (ECN): routers
use a explicit bit-indication for congestion instead
of loss indications.

Shivkumar KalyanaramanRensselaer Polytechnic Institute

30

Congestion Control Summary
q Sliding window limited by receiver window.

q Dynamic windows: slow start (exponential rise),
congestion avoidance (linear rise), multiplicative
decrease.

q Adaptive timeout: need mean RTT & deviation

q Timer backoff and Karn’s algo during
retransmission

Shivkumar KalyanaramanRensselaer Polytechnic Institute

31

Congestion Control Summary
(Continued)

q Go-back-N or Selective retransmission
q Cumulative and Selective acknowledgements
q Advanced topics:
q Timeout avoidance: Fast Retransmit
q Drop policies

q Scheduling
q ECN: Explicit congestion notification

Shivkumar KalyanaramanRensselaer Polytechnic Institute

32

Gigabit Networks
q “Higher Bandwidth Networks”
q Propagation latency unchanged.
q Increasing bandwidth from 1.5Mb/s to 45 Mb/s

(factor of 29) decreases file transfer time of
1MB by a factor of 25.

q But, increasing from 1 Gb/s to 2 Gb/s gives an
improvement of only 10% !

q Transfer time = propagation time +
transmission time + queueing/processing.

q Design networks to minimize delay (queueing,
processing, reduce retransmission latency)

Shivkumar KalyanaramanRensselaer Polytechnic Institute

33

q Long Fat Pipe Networks (LFN): Satellite links
q Need very large window sizes.

q Normally, Max window = 216 = 64 KBytes
q Window scale: Window = W × 2Scale

Window Scaling Option

Kind = 3 Length = 3 Scale

q Max window = 216 × 2255

q Option sent only in SYN and SYN

+ Ack segments.

q RFC 1323
Shivkumar KalyanaramanRensselaer Polytechnic Institute

34

Timestamp Option
q For LFNs, need accurate and more frequent RTT

estimates.

q Timestamp option:
q Place a timestamp value in any segment.
q Receiver echoes timestamp value in ack

q If acks are delayed, the timestamp value
returned corresponds to the earliest segment
being acked.

q Segments lost/retransmitted => RTT
overestimated

Shivkumar KalyanaramanRensselaer Polytechnic Institute

35

PAWS: Protection against wrapped
sequence numbers

q Largest receiver window = 2^30 = 1 GB
q “Lost” segment may reappear before MSL, and

the sequence numbers may have wrapped
around

Shivkumar KalyanaramanRensselaer Polytechnic Institute

36

PAWS: Protection against wrapped
sequence numbers (Continued)

q The receiver considers the timestamp as an
extension of the sequence number => discard
out-of-sequence segment based on both seq #
and timestamp.

q Reqt: timestamp values need to be monotonically
increasing, and need to increase by at least one
per window

Shivkumar KalyanaramanRensselaer Polytechnic Institute

37

Summary

q Interactive and bulk TCP flow
q TCP congestion control
q Informal exercises: Perform some of the

experiments described in chaps 19-21 to see
various facets of TCP in action

