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q TCP interactive data flow

q TCP bulk data flow
q TCP congestion control
q TCP timers

q TCP futures and performance 
Ref: Chap 19-24; RFC 793, 1323, 2001, papers 

by Jacobson, Chiu/Jain, Karn/Partridge

Overview
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Reliability Models
q Reliability => requires redundancy to recover from 

uncertain loss or other failure modes.

q Two types of redundancy: 
q Spatial redundancy: independent backup copies

q Forward error correction (FEC) codes
q Problem: requires huge overhead, since the FEC 

is also part of the packet(s) it cannot recover from 
erasure of all packets

q Temporal redundancy: retransmit if packets lost/error
qLazy: trades off response time for reliability
q Design of status reports and retransmission 

optimization (see next slide) important
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Temporal Redundancy Model
Packets • Sequence Numbers

• CRC or Checksum

Status Reports • ACKs
• NAKs, 
• SACKs
• Bitmaps

• Packets
• FEC information

Retransmissions

Timeout
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Status Report Design
q Cumulative acks: 
q Robust to losses on the reverse channel

q Can work with go-back-N retransmission
q Cannot pinpoint blocks of data which are lost 
q The first lost packet can be pinpointed 

because the receiver would generate 
duplicate acks
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Status Report Design (Continued)
q Selective acks: (SACKs)

q For a byte-stream model like TCP, need to specify 
ranges of bytes received (requires large overhead)

q SACK is a TCP option over-and-above the cumulative 
acks

q Bitmaps: identify received and lost information

q Not efficient for TCP: a bit is needed for every byte!

q NAKs have same problems like SACKs and bitmaps, but 
also are not robust to reverse channel losses
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Retransmission Optimization

q Default retransmission: 
qGo-back-N: I.e. retransmit the entire window. 
q Triggered by timeout or persistent loss in TCP

q Not efficient if windows are large: high speed 
n/ws
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Retransmission Optimization 
(Continued)

q Selective retransmission: 
q Retransmit one packet based upon duplicate

acks
q Recovers quickly from isolated loss, but not 

from burst loss
q TCP-SACK is an enhancement which 

identifies a block of packets to be 
retransmitted. 

q Such retransmitted packets must finally be 
confirmed by acks since SACK is only an 
option and not reliable
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TCP Interactive Data Flow
q Problems: 
qOverhead: 40 bytes header + 1 byte data

q Packets: To batch or not to batch: response 
time important

q Batching acknowledgements:

q Delay-ack timer: piggyback ack on reverse 
traffic if available

q 200 ms timer (fig 19.3) if no reverse traffic
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TCP Interactive Data Flow

q Batching data:
q Nagle’s algo: Don’t send packet until next ack

is received.
q Developed because of congestion in WANs
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TCP Bulk Data Flow
q Sliding window:
q Send multiple packets while waiting for acks 

(fig 20.1) upto a limit (W)
q Receiver need not ack every packet

q Acks are cumulative. 
q Ack # = Largest consecutive sequence 

number received + 1

q Two transfers of the data can have different 
dynamics (eg: fig 20.1 vs fig 20.2)
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TCP Bulk Data Flow (Continued) 
q Receiver window field:
q Reduced if TCP receiver short on buffers

q End-to-end flow control
qWindow update acks: receiver ready 
q Default buffer sizes: 4096 to 16384 bytes. 

q Ideal: window and receiver buffer = bandwidth-
delay product
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TCP Bulk Data Flow (Continued)

q TCP window terminology: figs 20.4, 20.5, 20.6
q Right edge, Left edge, usable window 

q “closes” => left edge (snd_una) advances
q “opens” => right edge advances (receiver 

buffer freed => receiver window increases)
q “shrinks” => right edge moves to left (rare)
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The Congestion Problem
q Problem: demand outstrips available capacity … 

q Q: Will the “congestion” problem be solved when:

q a) Memory becomes cheap (infinite memory)?

No buffer Too late

All links 19.2 kb/s Replace with 1 Mb/s

S S S S S S S S

File Transfer Time = 7 hoursFile Transfer time = 5 mins

q b) Links become cheap  (high speed links)?
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A

B
S

C

D
Scenario: All links 1 Gb/s. A & B send to C.

The Congestion Problem (Continued)

q c) Processors become cheap (fast routers 
switches)?
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λi

µλ
µi

q If information about λi , λ and µ is known in a 
central location where control of λi can be 
effected with zero time delays,

q the congestion problem is solved!

The Congestion Problem (Continued)
λλ1

λλn
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The Congestion Problem (Continued)

q Problems: 
q Incomplete information (eg: loss indications)

q Distributed solution required
q Congestion  and control/measurement 

locations different
q Time-varying, heterogeneous time-delay
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TCP Congestion Control
q Window flow control: avoid receiver overrun
q Dynamic window congestion control: 

avoid/control network overrun

qObservation: Not a good idea to start with a 
large window and dump packets into network

q Treat network like a black box and start from a 
window of 1 segment (“slow start”)
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TCP Congestion Control (Continued)

q Dynamic window congestion control: 
avoid/control network overrun (Continued).
q Increase window size exponentially 

(“exponential increase”) over successive RTTs
=> quickly grow to claim available capacity.

q Technique: Every ack: increase cwnd (new 
window variable) by 1 segment.

q Effective window = Min(cwnd, Wrcvr)
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Dynamics

q Rate of acks = rate of packets at the 
bottleneck: “Self-clocking” property.

100 Mbps 10 Mbps

Router
Q

1st RTT 2nd RTT 3rd RTT 4th RTT
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Congestion Detection
q Packet loss as an indicator of congestion.

q Set slow start threshold (ssthresh) to min(cwnd, 
Wrcvr)/2

q Retransmit pkt, set cwnd to 1 (reenter slow start)

Time (units of RTTs)

Congestion
Window
(cwnd)

Receiver Window

Idle
Interval

Timeout

1

ssthresh
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Congestion Avoidance
q Increment cwnd by 1 per ack until ssthresh

q Increment by 1/cwnd per ack afterwards 
(“Congestion avoidance” or “linear increase”)

q Idea: ssthresh estimates the bandwidth-delay 
product for the connection. 

q Initialization: ssthresh = Receiver window or 
default 65535 bytes. Larger values thru 
options.

q If source is idle for a long time, cwnd is reset 
to one MSS.
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q Implications of using packet loss as congestion 
indicator
q Late congestion detection if the buffer sizes 

larger

q Higher speed links or large buffers => larger 
windows => higher probability of burst loss

q Interactions with retransmission algorithm and 
timeouts

Congestion Avoidance (Continued)
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Congestion Avoidance (Continued)

q Implications of ack-clocking
qMore batching of acks => bursty traffic (harder 

to manage)

q Less batching leads to a large fraction of 
Internet traffic being just acks (huge overhead)

q Additive Increase/Multiplicative Decrease 
Dynamics: 

q TCP approximates these dynamics
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Timeout and RTT Estimation
q Timeout: for robust detection of packet loss 

q Problem: How long should timeout be ?
q Too long => underutilization; too short => 

wasteful retransmissions
q Solution: adaptive timeout: based on RTT
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Timeout and RTT Estimation 
(Continued)

q RTT estimation:
q Early method: exponential averaging: 

q R ← α*R + (1 - α)*M   { M =measured RTT}
q RTO = ββ*R {β = delay variance factor} 
q Suggested values: α = 0.9, β = 2
qJacobson [1988]: this method has problems 

w/ large RTT fluctuations
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RTT Estimation
q New method: Use mean & deviation of RTT
q A = smoothed average RTT

q D = smoothed mean deviation 
q Err = M - A  { M = measured RTT}

q A ← A + g*Err  {g = gain = 0.125}

q D ← D + h*(|Err| - D) {h = gain = 0.25}
q RTO = A + 4D
q Integer arithmetic used throughout. 

Complex initialization process ...
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Timer Backoff/Karn’s Algorithm
q Timer backoff: If timeout, RTO = 2*RTO 

{exponential backoff}

q Retransmission ambiguity problem:
q During retransmission, it is unclear whether 

an ack refers to a packet or its 
retransmission. Problem for RTT estimation

q Karn/Partridge: don’t update RTT 
estimators during retransmission.
qRestart RTO only after an ack received 

for a segment that is not retransmitted
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TCP Performance Optimization

q SACK: selective acknowledgments: specifies 
blocks of packets received at destination. 

q Random early drop (RED) scheme spreads the 
dropping of packets more uniformly and reduces 
average queue length and packet loss rate.

q Scheduling mechanisms protect well-behaved 
flows from rogue flows.

q Explicit Congestion Notification (ECN): routers 
use a explicit bit-indication for congestion instead 
of loss indications.
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Congestion Control Summary
q Sliding window limited by receiver window.

q Dynamic windows: slow start (exponential rise), 
congestion avoidance (linear rise), multiplicative 
decrease.

q Adaptive timeout: need mean RTT & deviation

q Timer backoff and Karn’s algo during 
retransmission
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Congestion Control Summary 
(Continued)

q Go-back-N or Selective retransmission
q Cumulative and Selective acknowledgements
q Advanced topics:
q Timeout avoidance: Fast Retransmit
q Drop policies

q Scheduling
q ECN: Explicit congestion notification
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Gigabit Networks
q “Higher Bandwidth Networks”
q Propagation latency unchanged. 
q Increasing bandwidth from 1.5Mb/s to 45 Mb/s 

(factor of 29) decreases file transfer time of 
1MB by a factor of 25.

q But, increasing from 1 Gb/s to 2 Gb/s gives an 
improvement of only 10% !

q Transfer time = propagation time + 
transmission time + queueing/processing. 

q Design networks to minimize delay (queueing, 
processing, reduce retransmission latency)
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q Long Fat Pipe Networks (LFN): Satellite links
q Need very large window sizes.

q Normally, Max window = 216 = 64 KBytes
q Window scale: Window = W × 2Scale

Window Scaling Option

Kind = 3 Length = 3 Scale

q Max window = 216 × 2255 

q Option sent only in SYN and SYN 

+ Ack segments.

q RFC 1323
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Timestamp Option
q For LFNs, need accurate and more frequent RTT 

estimates. 

q Timestamp option: 
q Place a timestamp value in any segment.
q Receiver echoes timestamp value in ack

q If acks are delayed, the timestamp value 
returned corresponds to the earliest segment 
being acked. 

q Segments lost/retransmitted => RTT 
overestimated 
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PAWS: Protection against wrapped 
sequence numbers

q Largest receiver window = 2^30 = 1 GB
q “Lost” segment may reappear before MSL, and 

the sequence numbers may have wrapped 
around
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PAWS: Protection against wrapped 
sequence numbers (Continued)

q The receiver considers the timestamp as an 
extension of the sequence number => discard 
out-of-sequence segment based on both seq # 
and timestamp.

q Reqt: timestamp values need to be monotonically 
increasing, and need to increase by at least one 
per window
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Summary

q Interactive and bulk TCP flow
q TCP congestion control
q Informal exercises: Perform some of the 

experiments described in chaps 19-21 to see 
various facets of TCP in action


