Domain Name System (DNS)

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu

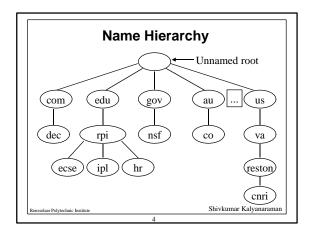
http://www.ecse.rpi.edu/Homepages/shivkuma

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

- Naming hierarchy
- Server hierarchy
- Name resolution
- Other information in name servers
- □ Ref: Chap 14, RFC 1034

Rensselaer Polytechnic Institute


Shivkumar Kalyanaraman

Why Names?

- Computers use addresses
- □ Humans cannot remember IP addresses
 - ⇒ Need names
 - Example, "shiva" for 128.113.50.56
- Simplest Solution: Each computer has a unique name and has a built in table of name to address translation (mapping)
- □ Problem: Not scalable
- □ Solution: DNS (Adopted in 1983)
- □ Hierarchical Names: shiv.ecse.rpi.edu

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

Name Hierarchy

- Unique domain suffix is assigned by Internet Authority
- □ The domain administrator has complete control over the domain
- □ No limit on number of sub-domains or number of levels
- □ computer.site.division.company.com
- Domains within an organization do not have to be uniform in number of subdomains or levels

ensselaer Polytechnic Institute

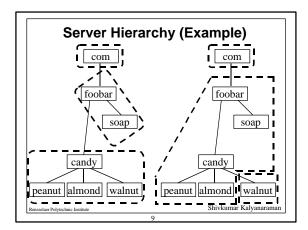
Shivkumar Kalyanaraman

Name Hierarchy (Continued)

- Name space is not related to physical interconnection, e.g., ecse.rpi.edu and ipl.rpi.edu could be on the same floor or in different cities
- Geographical hierarchy is also allowed, e.g., cnri.reston.va.us
- □ A name could be a *subdomain* (eg: ecse.rpi.edu) or an individual *object* (eg: cortez.rpi.edu)

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

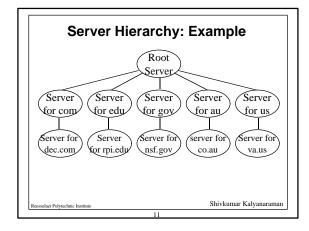

To	pp Level Domains
Domain Name	e/Assignment
com	Commercial
edu	Educational
gov	Government
mil	Military
net	Network
org	Other organizations
arpa	Advanced Research Project Agency
country code	au, uk, ca
Rensselaer Polytechnic Institute	Shivkumar Kalyanaraman

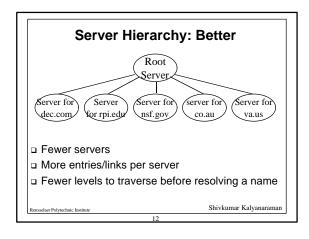
Server Hierarchy

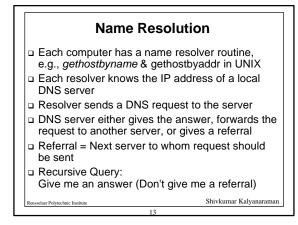
- □ Servers are organized in a hierarchy
- Each server has an authority over a part of the naming hierarchy
- It needs to know other servers who are responsible for other subdomains
- A single node in the naming tree cannot be split among multiple servers
- A given level of hierarchy can be partitioned into multiple servers

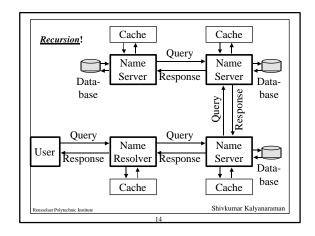
tensselaer Polytechnic Institute

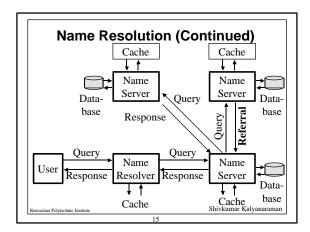
Shivkumar Kalyanaraman

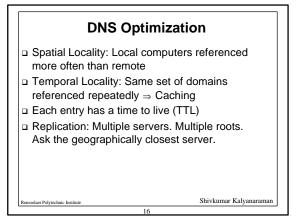


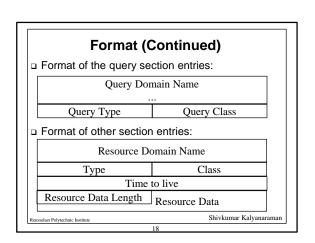

Server Hierarchy (Continued)


- $\hfill \hfill \hfill$
- □ Responsible ⇒ Either has the name to address translation table or knows the server who has
 - But such a reply is called "non-authoritative" reply
- Root server knows about servers for top-level domains, e.g., com
- Each server knows the root server


Rensselaer Polytechnic Institute


Shivkumar Kalyanaraman





Identification	Parameter
Number of Questions	Number of Answers
Number of Authority	Number of Additional
Quest	ion Section
	•••
Answ	er Section
	•••
Autho	rity Section
Additional Ir	formation Section

Bit	Meaning
0	Operation: 0=Query, 1=Response
1-4	Query type: 0=Standard, 1=Inverse, 2,3 obsolete
5	Set if answer authoritative
6	Set if message truncated
7	Set if recursion desired
8	Set if recursion available
9-11	Reserved
12-15	Response type: 0=No error, 1=Format error,
	2=Server Failure, 3=Name does not exist

Types of DNS Entries

- □ DNS used other types of resolution
- □ Eg: also for finding mail server, pop server, responsible person, etc for a computer
- □ DNS database has multiple "types"
 - \square Record type A \Rightarrow Address of X
 - □ Record type $MX \Rightarrow Mail$ exchanger of X

Shivkumar Kalyanaraman

Types of DNS Entries (Continued)

- DNS database may also have multiple "classes"
 Can support name resolution for multiple protocols eg: IP, SNA, DECbit etc
- □ Pointer queries: given IP address find name

Rensselaer Polytechnic Institute

Shivkumar Kalyanaramar

Resource Record Types Type Meaning Host Address CNAME Canonical Name (alias) HINFO CPU and O/S MINFO Mailbox Info MX Mail Exchanger NS Authoritative name server for a domain PTR Pointer to a domain name (link) RP Responsible person SOA Start of zone authority (Which part of naming hierarchy implemented) TXT Arbitrary Text Shivkumar Kalyanaraman

- □ DNS: Maps names to addresses
- Names are hierarchical. Administration is also hierarchical.
- □ No standard for number of levels
- Replication and caching is used for performance optimization.

ensselaer Polytechnic Institute

Shivkumar Kalyanaraman