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Abstract

The smooth operation of the Internet depends on the careful configuration of routers in thousands
of autonomous systems throughout the world. Configuring routers is extremely complicated because
of the diversity of network equipment, the large number of configuration options, and the interaction
of configuration parameters across multiple routers. Network operators have limited tools to aid in
configuring large backbone networks. Manual configuration of individual routers can introduce errors
and inconsistencies with unforeseen consequences for the operational network. In this paper, we describe
how to identify configuration mistakes by parsing and analyzing configuration data extracted from the
various routers. We first present an overview of IP networking from the viewpoint of an Internet Service
Provider (ISP) and describe the kinds of errors that can appear within and across router configuration
files. To narrow the scope of the problem, we then focus our attention on the configuration commands
that relate to traffic engineering—tuning the intradomain routing protocol to control the flow of traffic
through the ISP network. We present a case study of a prototype tool, developed in collaboration with
AT&T IP Services, for checking the configuration of the AT&T IP Backbone and providing input to
other systems for network visualization and traffic engineering.

1 Introduction

An autonomous system (AS) consists of a collection of routers and links managed by a single institution,

such as a company, university, or Internet Service Provider. The efficient operation of the network depends

on the configuration of the individual routers. Configuration controls the selection of a wide range of param-

eters that affect the allocation of resources (e.g., link bandwidth and buffers), the operation of the routing

protocols (e.g., BGP policies and OSPF weights), and access to the network (e.g., packet filters). Network

operators configure routers when installing new equipment, enabling new features, and adapting to network

failures and shifts in traffic demands. Configuring a large backbone network is extremely difficult for a

variety of reasons:

� Consistency of neighboring routers: The correct operation of an IP network depends on consistent
configurations across a collection of routers. Correct configuration of each individual router does
not ensure the correct operation of the network. For example, two directions of a point-to-point link



should belong to the same OSPF area. Similarly, a BGP session requires compatible configuration of
the pair of BGP speakers.

� Complex configuration options: Router vendors offer a wide array of configuration commands and
options. For example, Cisco’s Internet Operating System (IOS) has over 600 commands. Configu-
ration options and default parameter settings vary across different router products and IOS versions,
and multiple types of routers may be active in the network at the same time. Configuring a large
IP network requires substantial domain knowledge and attention to detail. In practice, routers are
configured by a small number of local experts.

� Rapid changes to the network: Large IP backbones experience frequent changes in network topol-
ogy and configuration. Routine events such as the addition of a new customer or peer, the installation
of a new link, the enabling of measurement functions, and the upgrading of software require changes
in router configuration. In addition, link failures and traffic fluctuations may require the network
operators to tune the configuration of the routing protocols to alleviate congestion.

� Limited configuration tools: Configuration typically involves manual interaction with a command-
line interface, or a primitive Web interface. Basic commercial tools provide templates for certain con-
figuration operations, such as the provisioning of new customers, and higher-level languages support
the specification of interdomain routing policies [1]. However, support for operating a large backbone
network is fairly limited. This problem is exacerbated by the fact that commercial configuration tools
often lag behind the release of new high-end routers and advanced features.

In theory, router configuration could be driven by a database containing all necessary information about

the IP network. However, complete automation of router configuration and network operation is extremely

difficult in practice. Manual intervention is necessary for some configuration tasks, such as installing new

equipment and adapting to network failures and shifts in user demands. However, manual configuration of

individual routers can introduce errors and inconsistencies with unforeseen consequences for the operational

network. Checking the router configuration for errors and inconsistencies is a crucial part of the day-to-day

operation of a large network. In addition, having an accurate network-wide view of the current topology

and configuration is a prerequisite for a variety of higher-level tasks, such as traffic engineering and ca-

pacity planning. A network-wide view is necessary for predicting how configuration and topology changes

would affect the flow of traffic in the backbone. An abstract view is useful for hiding the many low-level

configuration details that do not affect the resource-allocation policies at the IP level.

This paper describes our experiences in checking for configuration mistakes and constructing an abstract

view of the network by parsing and analyzing the configuration data available from each router. Configuring

an IP backbone network requires an understanding of routing protocols and the basic operation of IP routers,

as discussed in Section 2. In Section 3, we describe router configuration files and identify the dependen-

cies that arise within and across these files. Checking for configuration mistakes involves comparing the

configuration of the routers against a network model. In Section 4, we discuss the challenges of defining a

general model that captures all aspects of router configuration. We focus our attention on a relatively simple
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Figure 1: Topology of an IP backbone network

model that captures the key information needed to adapt the configuration of the intradomain routing proto-

col to the prevailing traffic. Then, Section 5 describes the application of the tool to check for configuration

errors in the AT&T IP Backbone [2] and to provide an abstract, network-view view for a variety of traffic

engineering studies [3, 4, 5]. We summarize the contributions of the paper in Section 6.

2 ISP Backbone Network

In this section, we present an overview of IP networking from the viewpoint of a large Internet Service

Provider (ISP). The discussion focuses on a network that employs static routes and the Border Gateway

Protocol (BGP) to exchange routing information with neighboring domains, and the Open Shortest Path

First (OSPF) routing protocol to select paths within the ISP backbone.

2.1 Network Architecture

The Internet consists of thousands of autonomous systems (ASes) that interact to coordinate the delivery of

IP traffic. An AS is a collection of routers and links administered by a single institution, such as a company,

university, or ISP. The routers within the ISP backbone are interconnected using core links, as shown in

Figure 1. An ISP has complete control over the configuration and operation of a core link, by virtue of

controlling the adjacent routers. The edge links include access links that connect to the ISP’s customers,
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such as business or university campuses, small regional providers, and local services like modem banks for

dial-up users or a Web-hosting complex. The ISP may also have peering links that connect to other large

providers via dedicated connections or public Internet exchange points. Configuration of access and peering

links depends on interaction with the customers and the peers, respectively. In practice, an ISP may have

multiple connections to the same customer or peer for load balancing and fault tolerance.

The delivery of traffic through an ISP network depends on the interaction between the various routers. A

router typically consists of a route processor, a switching fabric, and a collection of interfaces, as shown in

Figure 2. The route processor is identified by one or more loopback IP addresses, assigned by the network

operators as part of configuring the router. The processor may run a variety of applications, such as a finger

daemon and routing protocols. The processor combines information from the intradomain and interdomain

routing protocols to construct a forwarding table that is used to select the next-hop interface for each incom-

ing packet. Each entry in the forwarding table concerns a particular network address or prefix, represented

by a 32-bit address and a mask length. With the advent of Classless Inter-Domain Routing (CIDR) [6], any

mask length from 0 to 32 is permissible. For example, the prefix 172.12.4.0/24 has a network address of

172.12.4.0 and a 24-bit mask (i.e., 24 1s followed by 8 0s). This prefix consists of 256 IP addresses ranging

from 172.12.4.0 to 172.12.4.255. A forwarding table has entries such as

172.12.4.0/24 10.1.2.118 Serial1/0/0:1
12.128.0.0/9 10.126.212.1 POS2/0

The first entry directs packets destined for 172.12.4.0/24 to interface Serial1/0/0:1 to reach the next hop with

IP address 10.1.2.118. When a packet arrives, the router performs a longest prefix match on the destination

address to find the appropriate forwarding-table entry for the packet. For example, a packet with destination

address 172.12.4.103 would match the first entry. Then, the router forwards the packet to the appropriate

outgoing interface. In some cases, the forwarding entry has multiple outgoing interfaces and the router can

pick a single element from this set. The next router repeats the process, forwarding the packet closer to its

destination.

Rather than forcing each IP packet to travel through the route processor, most high-end routers have in-

terfaces that can perform packet forwarding. The incoming interface directs the switching fabric to forward

the packet to the appropriate outgoing interface. Although most traffic travels directly from an incoming

interface to an outgoing interface, certain packets must be directed to the route processor. The route proces-

sor typically handles packets that have IP options enabled and packets with expired time-to-live fields. The

route processor handles any packets sent to or from the router’s various interfaces, including the router’s

loopback IP addresses. This includes the routing protocol traffic exchanged with other routers. In addi-

tion, the route processor may respond to ping requests and Simple Network Management Protocol (SNMP)

queries. Network operators may also Telnet to the loopback address to query, configure, or reboot the router.
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Figure 2: Components of an IP router

2.2 Interfaces and Links

An interface receives incoming packets and queues and transmits outgoing packets. Each interface has a

name that indicates its position in the router. Physically, an interface resides on a card that connects to a

slot in the router’s switching fabric, as shown in Figure 3. Following Cisco’s IOS terminology, a single

card consists of one or more port adaptors. A port adaptor has one or more ports that each connect to

an underlying transmission medium, such as a Packet-Over-SONET (POS), FDDI, or ATM link. In the

simplest case, each port corresponds to a single interface connecting to one or more adjacent routers. In

other situations, the capacity of a single transmission medium may be subdivided into multiple time slots.

For example, a port may subdivide its bandwidth into 4 time slots, each with 1/4 of the bandwidth. The

router could be configured to assign one or more of these time slots to a single interface. This abstraction

is provided by a controller that directs outgoing packets to the time slots associated with this interface.

Similarly, a single port to a layer-two ATM link may support multiple Permanent Virtual Circuits (PVCs),

each corresponding to a different interface at the IP layer.

A link consists of two or more interfaces with the same network address [7]. For example, the prefix

10.1.2.116/30 consists of four IP addresses 10.1.2.116, 10.1.2.117, 10.1.2.118, and 10.1.2.119. Addresses

10.1.2.117 and 10.1.2.118 identify the two ends of a bidirectional, point-to-point link; an interface Se-

rial1/0/0:1 with IP address 10.1.2.117 connects to a neighboring router that has an interface with IP address

10.1.2.118. The other two IP addresses, 10.1.2.116 and 10.1.2.119, represent the network and broadcast

addresses, respectively. A shared medium, such as an Ethernet or an FDDI ring, may include more than two

interfaces, resulting in a prefix with a smaller mask length. The IP addresses of the interfaces are assigned

by the network operator as part of configuring the router. Interface IP addresses do not necessarily have

any relationship to the loopback IP addresses of the incident routers. Likewise, the IP addresses of various

interfaces at a router are not necessarily related.
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Figure 3: Card with three port adapters, each with multiple ports

2.3 Routing Protocols

Forwarding packets to their ultimate destinations depends on the complex interaction of various routing

protocols. Static routes provide a simple way for a router to associate destination prefixes with particular

outgoing interfaces. For example, a router could have a static route to interface Serial1/0/0:1 for prefix

172.12.4.0/24. Static routes enable an ISP to direct traffic to its customers without requiring the customers

to participate in a routing protocol with the ISP. The customer’s network can direct all outgoing traffic to

the access link connecting to the ISP, and the ISP can configure static routes to direct inbound traffic to the

access link. If a customer connects to the ISP in multiple locations, the ISP may have multiple static routes

to associate the same prefix with multiple access interfaces at one or more routers. The ISP must ensure

that other routers in the backbone and the rest of the Internet can reach the customer’s destination prefix, as

discussed below.

The AS also learns about destination prefixes via dynamic routing protocols, such as the Border Gateway

Protocol (BGP). BGP is a distance-vector protocol that constructs paths by successively propagating reach-

ability information [8, 9]. Each BGP advertisement concerns a particular prefix and includes the list of ASes

along the path, as well as other attributes. BGP advertisements are exchanged over a BGP session between a

pair of routers. For example, a customer may have a BGP session with one of the ISP’s routers to exchange

routing information. BGP update messages travel over a TCP connection that provides ordered, reliable

delivery of the update messages. An ISP typically has multiple BGP sessions with neighboring providers

at different geographic locations. For each BGP session, the router employs local policies to select a route

for each destination prefix, and to decide whether to advertise this route to neighboring ASes. BGP policies

can filter unwanted advertisements and assign local preferences, based on a variety of attributes. Then, the

router executes the BGP decision process to select the best route to each destination prefix. BGP export

policies determine whether, and what, to advertise to each neighboring AS.
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Figure 4: AS divided into four OSPF areas

In addition to communicating with customers and peers, an ISP may use BGP to distribute routing

information inside the backbone. A pair of routers in the same AS can communicate via interior BGP

(iBGP) sessions. For example, a router with a static route to prefix 172.12.4.0/24 can use iBGP to announce

the route to the other routers in the ISP backbone. These routers may, in turn, propagate information about

the route to neighboring ASes. The simplest way to convey routing information throughout the backbone is

to have an iBGP session between each pair of routers (i.e., a full iBGP mesh). However, this approach would

introduce considerable overhead in a large backbone network. Instead, a large AS may employ techniques

such as route reflectors or confederations to distribute BGP advertisements in a hierarchical fashion.

The AS employs an intradomain routing protocol, such as OSPF or IS-IS, to select paths across the

backbone [10]. Typically, customers and peers do not participate directly in these protocols. Under OSPF

and IS-IS, each interface to a core link is assigned an integer weight, as shown by the numbers 7 and 13 in

Figure 4. The routers exchange link weights and compute shortest paths, where path length is defined as the

sum of the link weights; in the figure, the lower-left router reaches the upper-left router via a path of cost 20.

Since these protocols use flooding to propagate link-state information, they do not scale to large networks.

To reduce overhead, a large backbone may be divided into multiple areas. Figure 4 shows an example of a

network that is divided into four OSPF areas, each represented by dotted lines. Each core link belongs to

a single OSPF area; the red links between areas belong to the backbone area (area 0) that interconnects the

other areas. Ultimately, a router combines the information from the intradomain routing protocol (OSPF, IS-

IS) with the interdomain reachability information (from static routes and BGP) to construct the forwarding

table.
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2.4 Packet and Route Filters

In addition to forwarding IP packets, an interface may perform various filtering functions. An AS may

employ packet filters to control the traffic entering or leaving the backbone via a particular interface. Access

control lists (ACLs) identify which packets should be accepted or denied, based on fields in the IP headers

such as source and destination addresses. To simplify operation, access lists are often specified using IP

prefixes. For example, consider an interface that connects to a customer that has been allocated a known

block of IP addresses 172.12.4.0/24. Packets entering the backbone via this interface can be filtered based

on the source IP address, and packets leaving the backbone via this interface can be filtered based on the

destination IP address. These addresses should lie within the customer’s range of IP addresses. Packet

filtering helps in detecting spoofed source IP addresses and protects the customer from receiving traffic

from unwanted sources [11].

In addition, routers that participate in BGP may employ route filters to discard unwanted routing adver-

tisements. A route advertisement consists of a destination prefix, a list of ASes on the path, a next-hop AS,

and a number of other attributes. Each BGP session can have route filters that discard advertisements based

on any of these attributes. This plays an important role in protecting the AS, and the rest of the Internet, from

misconfigured BGP policies in downstream routers. For example, suppose a customer connects to multiple

service providers and mistakenly forwards advertisements from one large service provider to another. In the

absence of route filtering, the two service providers may begin to exchange traffic via their common cus-

tomer. To prevent this problem, an ISP can filter routes from customers that include the AS number of other

large service providers. An AS may also use route filters to balance the load across a collection of links to

the same neighboring domain. For example, suppressing certain advertisements from a neighbor on one or

more BGP sessions allows the AS to direct traffic to alternate edge interfaces that may be less congested.

3 Router Configuration

Routers rely on input about the configuration of the hardware, the partitioning of resources, the routing

protocols, and which filters to apply. The commands applied to a router are captured in a configuration

file. In this section, we present a brief review of the information available in router configuration files using

Cisco IOS as an example. Other router vendors, such as Avici and Juniper, produce configuration files with

similar information. Then, we identify the dependencies within and across files and discuss how to exploit

these dependencies to check for configuration mistakes.

3.1 Router Configuration Files

Commercial IP routers have a large number of configuration options that control the operation of the route

processor and the various interfaces. For example, configuration determines which routing protocols are
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enabled (e.g., BGP, OSPF, IS-IS, RIP), as well as the selection of parameters (e.g., OSPF weight and area

for each interface) and policies (e.g., import and export policies for each BGP session). Configuration also

determines if and how the capacity of single physical medium (e.g., an ATM trunk or a channelized POS

link) is partitioned across multiple layer-three links, and what packet filters are applied to incoming and

outgoing traffic on a particular interface. Configuration of a router is achieved by applying commands to

the router’s operating system. These commands can be specified via a command-line interface or a simple

Web-based interface, or by uploading a configuration file to the router.

The current configuration of the network is reflected in the configuration file of each router. In an

operational network, these files are routinely logged for backup purposes and, as such, provide a valuable

snapshot of the state of the network. An abbreviated example of a Cisco router configuration file is shown

in Figure 5. In contrast to most high-level programming languages, existing router configuration languages

have a very loose structure, limited nesting, and a large number of syntactic elements. This complexity

reflects the continuing evolution of IP router technology. As IP network technology matures, new router

specification languages may provide better structure and richer abstractions.

Currently, Cisco’s Internet Operating System (IOS) [12] serves as a de facto standard for router con-

figuration. The configuration file includes global settings and a number of sections that relate to different

aspects of the router. For example, Figure 5 has four global settings—identifying the IOS version (“version

xx.x”), disabling the finger daemon (“no service finger”), specifying the router’s name (“hostname router1”),

and enabling classless interdomain routing (“ip classless”). Global settings have implications for the entire

router. The IOS version, hostname, and finger daemon relate to the general operation of the route processor.

The “ip classless” command enables the router to forward packets based on classless interdomain routing

(CIDR), which allows a IP prefix to have an arbitrary mask length [6]. Other global variables that are not

specified in the configuration file have default values.

In addition to global settings, the file includes a number of sections that relate to different aspects of

router configuration. For example, Figure 5 includes a controller section with a single controller entry and an

interface section with three interface entries. The Loopback0 interface is associated with the route processor,

whereas Serial1/0/0:1 refers to a serial interface associated with channel group 1 of the T1 1/0/0 (slot 1, port

adapter 0, and port 0). The controller section indicates that channel group 1 is bound to timeslot 12 on the

channelized T1. The Serial1/0/0:1 interface has IP address 10.1.2.117 in the 10.1.2.116/30 network (with

the 30-bit mask specified by 255.255.255.252), and is associated with access-control list 70 that is specified

later in the file. The access-list allows traffic for the 10.1.2.116/30 prefix and for the customer’s prefix

172.12.4.0/24. The interface entry also includes a “description” statement, indicating that the link connects

to customer MoneyBags, and a “bandwidth” statement indicating the link capacity. The POS2/0 interface

(slot 2, port adapter 0) refers to a core link that participates in OSPF routing.

The router section has entries for the various routing protocols, such as OSPF, BGP, and static routes.

Each statement in the OSPF entry associates a network address with an OSPF area. The Loopback0 interface
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version xx.x router bgp 7018
no service finger bgp dampening
! network 10.1.3.0 route-map XXX1
hostname router1 .......
! aggregate-address 10.252.0.0 255.255.0.0
controller T1 1/0/0 redistribute static

channel-group 0 timeslots 8-11 speed 64 neighbor intra-att-cluster peer-group
channel-group 1 timeslots 12 neighbor intra-att-cluster remote-as 7018

! neighbor 10.126.236.94 peer-group intra-att-cluster
....... .......
interface Loopback0 neighbor 10.1.2.118 remote-as 65001

ip address 10.126.236.3 255.255.255.255 neighbor 10.1.2.118 route-map XXX3 out
! .......
interface Serial1/0/0:1 no auto-summary

description link to customer MoneyBags !
ip address 10.1.2.117 255.255.255.252 ip classless
ip access-group 70 in ip route 10.1.2.116 255.255.255.252 Serial1/0/0:1
bandwidth 56 ip route 172.12.4.0 255.255.255.0 Serial1/0/0:1

! ip community-list 10 permit bbbb
interface POS2/0 .......

description to router in NY access-list 70 permit 10.1.2.116 0.0.0.3
ip address 10.126.212.2 255.255.255.252 access-list 70 permit 172.12.4.0 0.0.0.255
ip ospf cost 5 .......

! route-map XXX1 permit 10
....... match community 10
router ospf 2 .......

network 10.126.236.3 0.0.0.0 area 0 !
network 10.126.212.0 0.0.0.3 area 1 .......

.......
!

Figure 5: Sample IOS router configuration file

(address 10.126.236.3 and a 32-bit mask) is associated with area 0 (the backbone area) and the POS2/0

interface (address 10.126.212.2 with a 30-bit mask) is associated with area 1. The configuration file also

specifies static routes that associate destination prefixes with a particular interface (e.g., the two “ip route”

commands involving Serial1/0/0:1). The BGP entry identifies the AS number (7018) and includes a number

of commands that enable/disable certain features (e.g., route dampening and auto-summary) and control the

aggregation of route advertisements involving certain IP prefixes (e.g., the “aggregate-address” command).

The “neighbor” commands are used to configure eBGP sessions with a router in another AS (e.g., the

“neighbor” commands with IP address 10.1.2.118 in AS 65001). Each BGP session is associated with

import and export policies, specified via route-maps that appear later in the configuration file. In addition,
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the “neighbor” commands are used to create labels, such as “intra-att-cluster,” that allow the operator to

assign the same BGP attributes (such as the AS number) to multiple BGP sessions.

3.2 Dependencies Within a File

Interdependencies between various parts of the configuration file can result in unintentional errors. Parsing

and checking a configuration file is similar to compiling a computer program. The compilation process must

check for references to undefined variables and inconsistent definitions of each variable. In addition, some

compilers generate a warning when a variable is defined but never used, or when a variable is used without

being initialized. Similar checks can be applied to router configuration files. In processing configuration

commands, the router checks for basic syntax errors. However, the router does not detect other kinds of

configuration mistakes. Instead, a configuration error could cause a router, link, or routing protocol to

function incorrectly. For example, a misconfigured interface could result in a link that cannot carry traffic.

In other cases, a configuration mistake could cause the router to use default parameter values. For example,

a misconfigured access-control list could cause an interface to accept any traffic rather than performing the

intended packet-filtering functions.

3.2.1 Domain-Independent Violations

Domain-independent violations include basic errors that do not require an understanding of the semantics

of the configuration commands.

Referencing undefined items: Many of the statements in a router configuration file refer to information

specified in other entries. For example, the Serial1/0/0:1 entry refers to channel-group 1 defined in the 1/0/0

controller and to access-group 70 defined in the access-list section. Similarly, the “neighbor 10.1.2.118

route-map XXX3 out” command refers to route-map XXX3. This introduces dependencies between the

various parts of the configuration file that have implications on the application of error checks. The specifi-

cation of interface Serial1/0/0:1 cannot be fully understood without consulting the controller and access-list

sections. In addition, references to undefined items should be flagged as errors. For example, referencing

an access-group 60, instead of access-group 70, should generate an error since this access-control list is un-

defined. On the other hand, specification of an interface Serial1/0/0:2 is not possible since controller 1/0/0

does not define channel-group 2.

Unused items: In addition to missing or inconsistent definitions, the configuration file may define items

that are never used. For example, the file might specify an access-list 80 that is never associated with an

interface, or a route-map XX4 that is never associated with a BGP session. These extra definitions do not

affect the operation of the router and, hence, are not errors. Still, generating warnings about unused items

is useful to enable the network operator to remove unnecessary entries or fix mistakes. The unused entries
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could lead to erroneous assumptions or errors in the future. For example, the operator may associate a

new interface with access-list 80 without realizing that some prefixes have already been associated with this

access-control list. In addition, some unused entries may result from mistakes in configuring the router. For

example, the operator may have meant to type “70” (to associate the access-list with Serial1/0/0:1) rather

than “80.”

3.2.2 Domain-Dependent Violations

Domain-dependent violations relate to the internal consistency of the configuration of the router. Although

the router resolves the violations, the default handling may result in different behavior than intended by the

human operator.

Inconsistent definitions: The router configuration language permits inconsistent definitions. For exam-

ple in the Cisco command-line interface, the bandwidth of an interface can be specified in multiple ways,

including the “speed” field in the channel-group command and the “bandwidth” command in the interface

entry. These two definitions may not be consistent with each other, or with the actual capacity of the un-

derlying communication medium. In the example configuration of Figure 5, both statements are consistent

for interface Serial1/0/0:1 since the channel-group 1 on controller 1/0/0 consists of one timeslot which on a

T1 controller has a default bandwidth of
���

Kbits/sec and the bandwidth statement specifies a value of
���

.

Inconsistencies can have several negative consequences. First, inconsistent definition of interface capacity

can result in incorrect SNMP statistics for link utilization. For example, if the interface capacity was mistak-

enly configured to 64 Kbits/sec, a traffic load of 50 Kbits/sec would result in a link utilization of 78% rather

than the correct value of 89%. Second, the interface capacity may play an indirect role in defining other

configurable parameters. For example, an interface participating in OSPF has a default weight (cost) that is

inversely proportional to the link capacity (as defined via the bandwidth statement). Inconsistent definitions

can also arise from the global settings. For example, suppose that configuration file did not include the

“ip classless” statement. This could cause the router to discard packets destined to an IP prefix that is not

aligned with octet boundaries.

Dependence on default parameters: Many configuration options have default parameter settings. In

some cases, dependence on default parameters may be dangerous. Consider the process of configuring an in-

terface to participate in OSPF. This involves assigning an OSPF weight in the interface section and an OSPF

area in the router section. Inadvertently skipping either of these two steps has important consequences. If

the router section does not assign an OSPF area, then the interface does not actually participate in OSPF

(despite the fact that the interface entry includes an OSPF weight). On the other hand, suppose that the

router section assigns an OSPF area, causing the link to participate in OSPF. If the interface entry does not

assign an OSPF weight, then a default value is used (inversely proportional to interface capacity). However,

the operator may have simply neglected to assign an OSPF weight. The use of the default value could have
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significant impact on the selection of routes in the network.

Dependence on order: Many configuration options depend on the order of entries. For example, fil-

ter lists such as access-lists and route-filters depend on the order in which the entries are specified. For

access-list 70 in Figure 5, the order of the entries is not important since the filters do not overlap. As another

example, consider two access-list commands with “permit 10.1.2.0 0.0.0.255” followed by “deny 10.1.2.116

0.0.0.3”. The “deny” statement does not have any effect, since any packets matching this statement would

have matched the previous “permit” statement. Flagging unnecessary access-list statements alerts the op-

erator to inadvertent mistakes in configuring packet and route filters. For example, the operator may have

intended the “deny” statement to precede the “permit” statement.

3.3 Dependencies Across Files

Correct operation of the network depends on the interaction between the various routers. Having a correct

and consistent configuration file for each router is not sufficient. The interaction between routers implies

additional dependencies. This is conceptually similar to the dependencies that arise in linking a collection

of software modules. These software modules should not have multiple definitions of global variables or

inconsistent interfaces between the modules.

Inconsistent definitions: A configuration file contains many entries that have significance at the router

level. For example, defining access-list 70 in one file does not affect any other router. Similarly, the same

prefix could be associated with access lists in more than one router. For example, an ISP may connect to a

customer over multiple edge interfaces at different routers; each of these interfaces may have an access list

with the same set of customer prefixes. Other parts of the configuration file have network-wide significance.

Consider a core link with interfaces on two routers. If the link participates in OSPF, then the two routers

should agree on the selection of an OSPF area; otherwise, the link cannot carry traffic. In addition, the

two routers may need to agree on a variety of other configuration options (e.g., cyclic redundancy check

algorithm). Similarly, the correct functioning of an iBGP session requires consistent configuration of the

two end points. For example the two iBGP sessions should agree on the AS number of the autonomous

system. Suppose an operator made a simple typographical mistake, such as replacing “intra-att-cluster”

with “intra-att-bluster” in the iBGP session definition “neighbor 10.126.236.94 peer-group intra-att-cluster”

of Figure 5. This would disable the iBGP session with the router with IP address 10.126.236.94 since the

peer group intra-att-bluster is not defined.

Inconsistent references to remote nodes: For an eBGP session, one of the two end points resides

outside of the ISP network, on a router controlled by another organization. This limits the opportunity to

check the consistency of the configuration. In some cases, an ISP has multiple eBGP sessions to the same

remote end point (i.e., the same remote IP address). These eBGP sessions should refer to the same remote

autonomous system. For example, suppose one router has the statement “neighbor 10.1.2.118 remote-as
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65001” and another router has the statement “neighbor 10.1.2.118 remote-as 65002.” This would be a

mistake. If two configuration files refer to the same item, they should have the same view of this item. In

fact, this observation can be applied in a variety of situations, including iBGP sessions where the remote

end point resides inside the autonomous system.

3.4 Taking Advantage of Dependencies

The dependencies across configuration files have several important implications. First, the dependencies

within a file enable us to identify the relationships between the router, interface, access-list, and static

routes. For example, an interface is associated with a particular router, a set of access lists, and a set of static

routes. This configuration information is spread throughout the file. Second, the dependencies across files

can be exploited to derive abstractions such as links and BGP sessions that represent the physical and logical

connectivity, respectively, between the various routers in the network. For example, each link is associated

with a prefix (e.g., 10.1.2.116/30) and one or more interfaces. The interfaces belong to different routers

and, hence, are specified in different configuration files. Yet, these interfaces can be associated with each

other based on the common prefix. Similarly, each iBGP session is associated with a pair of end points,

identified by IP addresses. The configuration file of each router identifies the IP address of the other end

point in the “neighbor” statements. Third, the dependencies within and across files define a natural ordering

for processing the configuration data to identify configuration errors.

Identifying mistakes requires an accurate snapshot of the configuration state of the network. The con-

figuration files must be accurate in two key aspects. First, configuration data should be available for all of

the routers in the IP backbone. Missing configuration files can lead to missing or incorrect error messages.

For example, if the configuration file of the router in NY is missing, the link from interface POS2/0 will

be incomplete, resulting in erroneous error messages. The tool may miss certain errors because only the

information in the NY router configuration files reveal the fact that inconsistencies actually exist. Second,

the files must provide a consistent snapshot of the configuration of the network. That is, the configuration

should not change while the files are collected from the various routers. For the most part, these two require-

ments are satisfied by a routine backup strategy. The entire set of routers can be polled during a short period

of time to log the configuration files. Care can be taken to ensure that the configuration changes do not occur

during this time period. In the unlikely event that one or more routers are reconfigured, the logging process

can be repeated to provide a consistent view of the network.

Identifying the dependencies between parts of the configuration files depends heavily on the notion of IP

addresses. IP addresses are used to identify routers and interfaces, and to associate these components with

links, BGP sessions, and access-control lists. The correct functioning of a tool depends on the assumption

that the IP addresses are unique. Using the same IP address for two active interfaces constitutes a serious

misconfiguration of the network. Assigning an existing IP address to an inactive interface is permissible
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but not advisable—a simple command to enable the inactive link could introduce a serious problem in the

operational network. Indeed, a tool for detecting configuration mistakes should note the duplication of an

IP address and flag this as an error. The assumption that every interface, once provisioning has completed,

has at least one IP address, and that these IP addresses are unique, is quite reasonable. Any large AS should

have a sufficiently large set of IP addresses available for assigning to the routers and interfaces.

4 Network Model

This section discusses practical issues that arise in developing a tool that checks for configuration mistakes in

an operational network. Detecting errors requires comparing the configuration data against a network model.

However, the complexity of IP networks and existing configuration languages hampers the development of

a general network model. Rather than trying to capture all aspects of router configuration, we present a case

study of a simple network model that is relevant for a variety of traffic engineering tasks. Then, we discuss

how to extend the model as the network evolves and how to customize the model to accommodate local

policies and conventions.

4.1 Scoping the Problem

Configuration languages, like Cisco IOS, have hundreds of commands that relate to a wide range of router

products, network protocols, and interface technologies. Commercial tools [13] that check for configuration

mistakes typically have to support the full range of configuration options. As a result, the development of

these tools typically falls behind the deployed base of high-end router products. Yet, in practice, operational

networks are remarkably homogeneous, in terms of the link-level technologies, router types, and configu-

ration commands they employ. A tool for testing network configuration can, and should, capitalize on this

homogeneity. Rather than understanding, and modeling, all possible configuration options, the tool should

focus on the limited set of commands actually used in the operational network. This offers a considerable

reduction in complexity, and enables the tool to keep pace with the gradual introduction of new features and

new router products.

Even in a relatively homogeneous environment, checking the correctness of every aspect of network

configuration is very difficult. Configuration commands are complicated and often interact with one an-

other. In addition, these commands relate to a diverse collection of network mechanisms and protocols. In

practice, the task of configuring an operational network does not belong to a single person or group. Rather,

different aspects of network configuration may be handled by different groups. Each group may want to

perform certain checks on the router configuration and run other network management applications that rely

on a particular model of the operational network. Focusing on a specific class of applications simplifies the

network model and allows the tool to ignore many configuration commands (or certain interactions between
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Object Attributes
router router name, � loopback IP address �
interface interface name, router, � IP address � , capacity, up/down, OSPF weight
link IP prefix, � interface � , core/edge, OSPF area
BGP end-point router, remote IP address, remote AS, � interface �
static route IP prefix, � interface �
access list � interface � , packet/route, in/out, � IP prefix, permit/deny �

Table 1: Network model (with italics for object names and “ ��� ” for sets)

commands). As part of checking for configuration mistakes, the tool can populate the network model to

represent the current state of the network, which can serve as an input to other network management appli-

cations. Over time, the tool can evolve to include additional configuration information and support a broader

set of applications.

4.2 Network Model for Intradomain Traffic Engineering

Our motivating application is intradomain traffic engineering—tuning the configuration of the routing pro-

tocols to the prevailing traffic in the backbone. This application depends on having an accurate view of the

topology and routing configuration of the ISP backbone, along with detailed measurements of the traffic

traveling through the network; the techniques for collecting the measurement data [4, 14] are not discussed

in this paper. An ISP network does not connect directly to the hosts responsible for sending and receiving

this traffic. Instead, the traffic enters and leaves the network at edge links that connect the ISP to other do-

mains. As a result, traffic engineering in an ISP network requires a way to associate source and destination

IP addresses with particular ingress and egress links. To support intradomain traffic engineering, our sim-

ple network model focuses on the physical components (e.g., routers and interfaces), physical and logical

connectivity (e.g., links and BGP sessions), the intradomain routing protocol (e.g., OSPF), and information

about end-host addresses (e.g., packet filters, route filters, and static routes).

Each router is identified by a unique name and one or more loopback IP addresses, as shown in Table 1.

A router is associated with a collection of interfaces. Each interface is identified by a unique name and one

or more IP addresses. The interface has a capacity and a status (either up or down). An interface that is part

of a core link is associated with an OSPF weight. Each link is identified by an IP prefix and is associated

with one or more interfaces in the ISP network. The link is classified as either a core or edge link; a core

link is associated with an OSPF area. Each BGP end-point is identified by the associated router and the IP

address of the remote end-point. The remote end-point belongs to some AS. If the two end-points belong

to the same AS, then the session is an iBGP session; otherwise, the session is an eBGP session. The router

forwards BGP advertisements toward the remote end-point via one or more interfaces.
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Each static route is identified by an IP prefix and is associated with one or more interfaces. Each access

list consists of an ordered list of IP prefixes, where each prefix is either permitted or denied (to accept or

reject traffic, respectively). The access list is used either as a packet filter or a route filter in either the

inbound or outbound direction for one or more interfaces. In practice, BGP sessions may have quite diverse

and complex import and export policies. We focus specifically on route filters that indicate which destination

prefixes may be advertised on a particular BGP session. In addition, our model focuses on a single AS that

uses static routes and BGP to connect to neighboring domains, iBGP to distribute reachability information

inside the backbone, and OSPF to route across the backbone. In constructing an abstract model, we have

modeled interfaces without capturing the many different layer-two technologies that exist in an operational

network. Hiding these low-level details results in a much simpler model for traffic engineering. The model

also omits numerous parameters related to the packet scheduling and buffer management policies for each

interface.

4.3 Extending the Model

Focusing on a single application results in a simpler network model and allows the configuration tool to

consider a smaller set of configuration options. However, new router features and configuration commands

arise as a network continues to evolve. Some commercial tools parse unknown commands without perform-

ing checks, assuming that these commands relate to new router features that are not supported in the current

version of the tool. However, support for error and consistency checking is most important precisely when

new router features are enabled. In addition, ignoring a new command may result in an incorrect model

of the network, which would affect other network management applications. Yet, a tool for checking for

configuration mistakes should not preclude the use of new commands. A relatively simple approach is to

maintain a list of the configuration commands supported by the tool. Upon encountering a new command,

the tool should generate an error message to alert the network operator to consider the implications (if any)

on the network model. This approach detects inadvertent use of a new command or feature in the produc-

tion network. Flagging an error also ensures that people, and systems, that rely on the network model are

informed when the underlying model changes.

When new commands arise, the tool can be extended to support the changes to the model and to incor-

porate new error checks. In some cases, a new command can be ignored since it does not affect any aspects

of the network model. In other cases, the new command may require extending the software to incorporate

a new way of defining an existing parameter. Finally, in some cases, a new command may require a change

to the underlying model. Possible changes in the network include:

� New parameter settings: Day-to-day operation of the network results in changes in the values of
parameters of existing objects. For example, the operator may tune an interface’s OSPF weight in
response to network congestion. This does not require any changes to the network model or the tool
for checking the configuration.
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� New instances of objects: Installing additional hardware or software component such as interfaces
or routers would result in additional instances of the various kinds of objects. This does not require
any changes to the network model or the tool for checking the configuration.

� New ways of deriving existing parameters: A network operator may use a different configuration
command, or set of commands, to specify an existing parameter in the model. This requires a change
to the software for generating error checks and populating the network model, without requiring
modifications to the underlying model.

� New parameters: Extensions to the network model only arise when the operators employ a new
feature that relates to an object in the network model. In many cases, the new feature may not be
relevant to the higher-level applications of the model. In other cases, the tool and the model can be
extended to incorporate an additional attribute (e.g., a buffer threshold for Random Early Detection
for each interface).

� New objects: The AS occasionally undergoes significant architectural changes, such as the intro-
duction of a new routing protocol (e.g., MPLS or multicast). New protocols, if relevant for traffic
engineering, require the addition of new objects to the model. Fortunately, major changes do not
occur very often in an operational network. In addition, these architectural shifts are planned well in
advance of the actual changes in the configuration files.

4.4 Customization

Operating a large IP backbone requires more than correct configuration of the routers. Often, network

operators obey local guidelines in configuring the routers. The network model and consistency checks can

be customized based on these conventions. Sometimes it can also be advantageous to include some of this

derived information in a network model. These extensions could draw on information from a variety of

sources:

� Router hostnames: By convention, the router hostname may convey additional attributes about the
router. For example, the name could include the city where the router is located. This provides an
inventory of the equipment in each city and supports visualization of the network topology. The
hostname may also include information about the router type or version, which may be used to define
additional consistency checks.

� Input files: Additional information could be conveyed in separate data sources. For example, an
input file could indicate the location (in latitude and longitude) of each city or router. Similarly, an
input file could indicate what type of commercial relationship the AS has with each of the neighboring
autonomous systems. This information can be used to classify each edge link as a customer, peering,
or provider link [15], based on the remote AS of the BGP session. The classification may have
implications on the desired BGP import and export policies [16, 17]. Indeed, policies such as BGP
import and export policies or default access lists could be contained in a separate input file.

� Description fields: Extra information may be embedded in description fields in the router config-
uration files. For example, the description could indicate the length of each link (e.g., in terms of
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fiber miles or propagation delay). For edge links, the description field could include the name of the
neighboring customer or peer. The description fields could also be used to convey information about
the underlying layer-two topology (e.g., which ATM links are traversed by a particular PVC); this
information is not typically available at the IP level.

� Configuration parameters: The network operator may assign particular meaning to certain config-
uration parameters. For example, a certain (large) OSPF weight could be used to identify new links
that are still in the testing/provisioning phase. Likewise, BGP parameters, such as community sets
and local preferences, may have specific values (or ranges of values) that can be used to classify the
router, the BGP session, or the remote AS.

Exploiting local conventions is a crucial part of applying the tool to an operational network, since several

important parts of the network model are not visible at the IP level (e.g., geographic locations, propagation

delays, layer-two connectivity, commercial relationships with neighboring ASes, and customer/peer names).

The tool should be able to incorporate this information. Besides allowing extensions to the network model,

local conventions can be used to define additional error and consistency checks. These conventions include

default global settings, access-control lists, and BGP import/export policies that should appear in every

router configuration file.

4.5 Higher-Level Checks

An operational network may have high-level policies that result in additional error checks. For example,

certain checks could be customized based on the type of the router or link. A BGP session with a customer

may employ different import and export policies than a session with a peer [17]. These BGP policies can

be codified in separate input files, and checked against each BGP session in the router configuration files.

Similarly, conventions for iBGP configuration can be expressed in a separate input file. For example, an

AS may use route reflectors to reduce the overhead of distributing BGP information inside the core. An AS

may have policies for configuring the route reflectors (e.g., in a full mesh) and the route-reflector clients

(e.g., every client communicates with at least two route reflectors). In fact, the full desired route reflector

hierarchy may be specified in an external file and checked against the actual configuration. This approach

has the side benefit of encouraging network operators to keep the specification of the intended architecture

up-to-date.

As part of checking for configuration mistakes, the tool creates a snapshot of the current state of the

backbone by populating the network model. Incorporating this snapshot into other tools facilitates a wider

range of error checks. In particular, an accurate model of intradomain routing [3] enables verification of

assertions about the physical and logical topology of the network. For example, an operator may want to

verify that every layer-three link resides on at least one path. In an OSPF network, this can be tested by

computing the shortest path(s) between each pair of routers based on the OSPF weights and area assign-

ments. Similarly, an operator could verify that a BGP route reflector is close (in the OSPF sense) to each
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of its route-reflector clients. Going one step further, the intradomain routing model can be combined with

information about customer traffic subscriptions for guaranteed services, such as IP telephony. By applying

the routing model to the current network configuration, the operator could ensure that each link has sufficient

bandwidth resources to satisfy the service-level agreements (SLAs) for the high-priority traffic. Applying

these higher-level checks can help network operators handle the growing challenge of managing a large IP

backbone network.

5 The Tool

In collaboration with AT&T IP Services, we have developed a tool that populates the network model and de-

tects possible configuration errors for the AT&T IP Backbone. The network consists of hundreds of routers

and thousands of links, including connections to the WorldNet modem banks, the Web-hosting platform,

business customers, and other large service providers. The tool is a Perl script that parses configuration files

in IOS format. Running the tool on the configuration files for the operational network requires a few minutes

on a Sun Enterprise server. In this section, we describe its design and operation and present sample error

messages that illustrate what kind of configuration problems the tool can detect.

5.1 Parsing and Debugging

Router configuration files have poor structure, with unusual nesting and forward and backward dependen-

cies. To aid in parsing, the tool reads through the files to create a table that stores every line, as shown

in Figure 6. Then, for each router, it creates data structures for global settings and sections—controllers,

interfaces, access lists, route maps (including communities and AS paths), static routes, OSPF routes, and

BGP routes. The set of known global settings and section names is relatively small, and is provided in an

input file. Each section can include multiple entries. For example, the interface section in Figure 5 has

three interface entries. For each router and each section, the tool stores a list of entries. For each entry, it

stores the set of commands from the router configuration file. For example, the interfaces for the sample

configuration file of router ’router1’ would contain “Loopback0 � Serial1/0/0:1 � POS2/0” while the commands

for “router1 � POS2/0” would be “description � ip address � ip ospf”, where “ � ” is used as a field separator. The

value associated with each attribute is stored in a hash table. For example, “router1 � POS2/0 � ip address”

would map to “10.126.10.2 255.255.255.252”.

The tool generates an error message upon encountering an unfamiliar global setting or section name.

After identifying section boundaries, it parses and checks the global settings, and checks if all desired global

variables have been specified. As part of processing each global setting, it assigns the associated parameter

in the network model. This process repeats across all of the routers. Next, each of the sections is parsed,

one at a time, across all of the routers. The processing order derives from the dependencies identified in
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read configuration files of all routers
read keywords for global settings and section names
forall routers �

identify section boundaries
parse global variables
check global variables

�

foreach section in (controllers, access lists, interfaces,
other filter sections, static routes, OSPF, BGP) �

read section keywords
read customization input files
forall routers

parse section and check keywords, network model violations
forall routers

perform error checks
�

forall routers �
forall objects

report unassigned attributes
forall statements

report unused statements
�

Figure 6: Processing order of the tool

Section 3—controllers, access lists, interfaces, other filter sections, static routes, OSPF, and finally BGP.

Earlier sections do not depend on later sections (e.g., a controller specification does not depend on the

access lists). Often, a single error (such as an incorrect interface IP address), manifests itself in multiple

places in the configuration files. Respecting the dependencies between sections permits the tool to process

the configuration files in a single pass, and to identify errors at the lowest possible level.

In addition, processing the sections in this order simplifies the process of populating the network model

and identifying errors. For example, consider an interface entry that refers to an access-control list. By

the time the interface entry is processed, all of the access-control lists have already been parsed. The tool

flags an error if the interface entry refers to an access-control list that does not exist. Similarly, consider the

processing of the OSPF “network” statement that associates an IP prefix with a particular OSPF area. By

the time the OSPF section is processed, the tool has already parsed all of the interface sections across all

of the routers. As such, it already knows which interfaces have IP addresses in this prefix. If two or more

interfaces fall within this prefix, the tool can infer the existence of a backbone link in a particular OSPF
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area. Otherwise, it can flag an error. If another router’s configuration file has an OSPF “network” statement

that applies to the same IP prefix, the tool can check that the two statements assign the same OSPF area.

In the process of parsing a section, the tool creates objects, assigns the attributes of existing objects, and

generates error messages. The link objects are the only class of objects that does not correspond to a section.

Link objects are created as the interface entries within the interface section are parsed. For each interface

entry, the tool considers the IP prefix associated with the interface’s IP address. For the first occurrence of a

prefix, it creates a new link object. The link object is associated with the IP prefix and with the IP address

of the particular interface. If the tool encounters the prefix in another interface entry, the existing link object

is extended to include the IP address in the set of interface addresses.

Following our philosophy of extensibility, each section has an input file that specifies the set of expected

keywords. For example, a file for OSPF-related keywords could include

1 � ospf log-adjacency-changes
2 � network
2 � neighbor

The first field indicates whether the keyword should appear at most once (“1”) or can appear multiple times

(“2”) in an entry. For example, a single OSPF entry can have multiple network and neighbor statements.

A keyword may consist of multiple words, separated by white spaces. Hence, in parsing the configuration

files, the tool performs a longest-prefix match to associate each statement with the appropriate keyword.

Following our philosophy of customization, each section may have one or more input files that specify

additional information, policies, or default values.

After processing all of the sections, the tool has two remaining error-checking tasks. First, some of the

objects may have attributes that have not been assigned. For example, each backbone link should belong

to an OSPF area, specified in an OSPF “network” statement. Hence, the script sequences through the link

objects to generate an error for each backbone link that does not belong to an OSPF area. Second, some

statements in the router configuration file may not relate to any existing object. For example, a configuration

file may define an access-control list that is never associated with a particular interface or BGP session. As

part of populating the network model, the tool keeps track of which statements have been applied one or

more times. As the final stage of processing, it generates warnings for statements that were never applied.

5.2 Error-Checking Examples

The tool’s error checks generate a variety of error messages, as shown by the sample output in Figure 7.

The first example illustrates how it flags unknown entries. In the second example, the tool flags the fact

that BGP community 1000 is referenced but not defined. Both of these errors relate to mistakes within a

single router configuration file. The third, fourth, and fifth examples illustrate OSPF problems—a backbone
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router1: unknown interface keyword: hold-queue value: ......
router2: ROUTE-MAP ERROR: community 1000 undefined ROUTEMAP1: community 1000 1010
router3: OSPF ERROR: ospf network 10.127.6.132/30 should either be in area 14 or 3
router4: OSPF ERROR: network: 10.126.212.0 0.0.0.3 area 2 with only one IP address 10.126.212.2
router5: OSPF ERROR: network: 10.126.12.172 0.0.0.3 area 3 with no IP address
router6: BGP ERROR: cannot resolve IP: 10.11.12.56 from ...BGP statement...

Figure 7: Examples of error messages from the tool

router1: GLOBAL ERROR: missing parameter BGP-COMMUNITY
router2: GLOBAL ERROR: incorrect parameter CEF value: ip cef
router3: ACL WARNING: default acl 6 missing
router3: ACL WARNING: default acl 7 differs from specification: deny 172.0.0.0/8
router4: ACL ERROR: customer needs in and out ACL; (customer MoneyBags)
router5: CONTROLLER ERROR: missing clock sync for interface Serial2/1/0:2
router6: BGP ERROR: wrong rr definition for rr client 10.126.236.3 with peer-group abc

Figure 8: Examples of error messages from the tool for policy violations

link that has two interfaces with different OSPF areas, the assignment of an OSPF area to a link that has

only one interface (i.e., an edge link), and the assignment of an OSPF area to a link that has no interfaces.

Detecting these three errors requires joining information from multiple router configuration files. The sixth

example concerns an eBGP session where the associated router does not have a route to the BGP peer in

the neighboring autonomous system. The router configuration file should either define a static route to the

remote IP address or specify that the peer is reachable via an attached interface.

The tool performs a wide variety of consistency checks; Figure 8 presents a small example. The first

two messages show that particular global settings are not set to their desired default values. These kinds

of mistakes can arise when a new router is added to the network. The third message concerns a missing

access list. Unlike the errors discussed in Section 5.1, this message concerns the absence of a default

access list, rather than a reference to a non-existent access-control list. The fourth message identifies an

access-control list that differs from the expected configuration. The fifth message identifies a customer

for which either the access-control list on the input or on the output side was missing. The sixth message

indicates that a particular interface entry is missing a statement related to clock synchronization. The seventh

message concerns a misconfigured route-reflector client. Each of these messages identify violations of local

conventions, rather than actual configuration errors. Yet, detecting deviations from local policies is critical

to the “correct” operation of the network.
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node � 11 � Backbone router � Los Angeles, CA � router1 � 10.126.236.3 � -118.2 � 34.0
node � 12 � Backbone router � New York, NY � router21 � 10.126.236.94 � -74.0 � 41.5
node � 13 � Peer router � PEER1 � PEER1 � � -10.0 � 11.0
link � 3 � Core link � 11 � 12 � 10.126.212.2 � 10.126.212.3 � POS2/0 � POS1/1 �

2.4Gbits � 2.4Gbits � 5 � 5 � 1 � to router in NY � to router in LA
link � 4 � Access link � 11 � 3127 � 10.1.2.117 � � Serial1/0/0:1 � � 56Kbits � 56Kbits �

� � � link to customer MoneyBags �

Figure 9: Instantiation of a network model generated by the tool

5.3 Applications of the Network Model in NetScope

In addition to generating error reports, the tool can export parts of an extended network model. For example,

the script produces a concise representation of the network topology and OSPF configuration, as shown by

the sample output in Figure 9. The first two fields identify the object type (e.g., node or link) and an identifier

(integer). The third field identifies the type (e.g., backbone router or access link). For nodes the fourth, fifth,

and sixth fields specify the city, router name, and loopback IP address, and the last two fields identify the

geographic location of the city in longitude and latitude. The router names and loopback addresses are

derived from the configuration files; the other information is derived in the customization process from the

router name. For links, the fourth through eleventh fields specify the adjacent routers via their identifiers, the

interface IP addresses, the card names, and their capacities. For example, the interface IP address for core

link 3 is 10.126.212.2 in one direction and 10.126.212.1 in the other. The twelfth through fourteenth field

consist of the OSPF weight (for each direction) and the OSPF area. Edge links have empty fields regarding

the remote end point and the OSPF configuration. The remaining fields contain the up/down status and the

description fields of the two interfaces of the link. Other output types are defined for other parts of the

network model.

This instantiation of the network model is one of the key inputs to the NetScope toolkit for IP traffic

engineering [3]. NetScope combines the configuration data with traffic measurements to support a variety

of analysis and visualization applications:

� Visualization of traffic statistics: The configuration data provides NetScope with a network-wide

view of the backbone topology, including the geographical location of each of the routers. NetScope

displays the topology on a map with the links and routers colored and sized based on traffic measure-

ment data. SNMP polling provides a periodic view of router and link utilization statistics, identified

by router name and SNMP index numbers. These statistics can be associated with the appropriate

routers and interfaces in the network model. Other traffic statistics, such as active measurements of

delay, throughput, and loss [18], can be associated with the underlying topology in a similar way.
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� Visualizing and optimizing routes: NetScope allows the network operator to identify which path

a packet follows through the network from an ingress link to an egress link. The configuration data

provides a snapshot of the topology and the intradomain routing configuration, including the OSPF

weight for each core interface and the OSPF area for each core link. NetScope uses this information

to compute the shortest path(s) between each ingress and egress point. The operator can experiment

with changes in the topology and the weights to determine how the paths would change.

� Computing and visualizing traffic demands: Understanding the flow of traffic through the backbone

depends on detailed measurements at various points in the network. The measurement data may

be available from packet monitors or from flow-level measurements at the routers. Constructing

a network-wide view of the traffic requires associating the measurement data with the appropriate

interfaces and routers in the backbone [4]. This association is provided by the configuration data.

Then, NetScope identifies how the traffic flows through the backbone, based on the network topology

and routing configuration. This enables the network operator to identify the traffic responsible for

congested links. In addition, the operator can invoke an optimization module to tune the OSPF weights

to the prevailing traffic [5].

NetScope constructs a network-wide view of the backbone by combining the topology and configuration data

with traffic measurements and a model of intradomain routing. NetScope models and displays the network-

wide implications of local changes in topology, configuration, and traffic. This provides a powerful and

extensible platform for “what-if” traffic-engineering investigations in a simulated environment. This would

not be possible without an accurate, abstract representation of the network topology and configuration.

6 Conclusions

Parsing and analyzing routing configuration files is an effective way to check for configuration mistakes

and to provide input data for network management tools. Our methodology capitalizes on the dependencies

within and across configuration files to derive the network model and identify configuration errors. We

discussed the operational requirements for collecting configuration data, evolving the network model, and

customizing the error checks. The paper presented a case study of a network model for intradomain traffic

engineering and showed how to check the actual configuration of the network with regards to its consistency.

Our approach has been realized in a prototype tool that has been applied in the AT&T IP Backbone. This

work is part of a larger effort to develop a suite of tools to help network operators manage the growing

complexity of large IP networks.
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