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Abstract—Open Shortest Path First (OSPF) is the most commonly used
intra-domain internet routing protocol. Traffic flow is routed along shortest
paths, splitting flow at nodes where several outgoing links are on shortest
paths to the destination. The weights of the links, and thereby the shortest
path routes, can be changed by the network operator. The weights could
be set proportional to their physical distances, but often the main goal is to
avoid congestion, i.e. overloading of links, and the standard heuristic rec-
ommended by Cisco is to make the weight of a link inversely proportional
to its capacity.

Our starting point was a proposed AT&T WorldNet backbone with de-
mands projected from previous measurements. The desire was to optimize
the weight setting based on the projected demands. We showed that opti-
mizing the weight settings for a given set of demands is NP-hard, so we re-
sorted to a local search heuristic. Surprisingly it turned out that for the pro-
posed AT&T WorldNet backbone, we found weight settings that performed
within a few percent from that of the optimal general routing where the flow
for each demand is optimally distributed over all paths between source and
destination. This contrasts the common belief that OSPF routing leads to
congestion and it shows that for the network and demand matrix studied
we cannot get a substantially better load balancing by switching to the pro-
posed more flexible Multi-protocol Label Switching (MPLS) technologies.

Our techniques were also tested on synthetic internetworks, based on a
model of Zegura et al. (INFOCOM’96), for which we did not always get
quite as close to the optimal general routing. However, we compared with
standard heuristics, such as weights inversely proportional to the capac-
ity or proportional to the physical distances, and found that, for the same
network and capacities, we could support a 50%–110% increase in the de-
mands.

Our assumed demand matrix can also be seen as modeling service level
agreements (SLAs) with customers, with demands representing guarantees
of throughput for virtual leased lines.

Keywords— OSPF, MPLS, traffic engineering, local search, hashing ta-
bles, dynamic shortest paths, multi-commodity network flows.

I. INTRODUCTION�
ROVISIONING an Internet Service Provider (ISP) back-
bone network for intra-domain IP traffic is a big challenge,

particularly due to rapid growth of the network and user de-
mands. At times, the network topology and capacity may seem
insufficient to meet the current demands. At the same time,
there is mounting pressure for ISPs to provide Quality of Ser-
vice (QoS) in terms of Service Level Agreements (SLAs) with
customers, with loose guarantees on delay, loss, and throughput.
All of these issues point to the importance of traffic engineering,
making more efficient use of existing network resources by tai-
loring routes to the prevailing traffic.

A. The general routing problem

The general routing problem is defined as follows. Our net-
work is a directed graph, or multi-graph, �������	��
� whose

nodes and arcs represent routers and the links between them.
Each arc � has a capacity ������� which is a measure for the amount
of traffic flow it can take. In addition to the capacitated network,
we are given a demand matrix � that for each pair ��������� of nodes
tells us how much traffic flow we will need to send from � to � .
We shall refer to � and � as the source and the destination of the
demand. Many of the entries of � may be zero, and in particu-
lar, �	��������� should be zero if there is no path from � to � in � .
The routing problem is now, for each non-zero demand �	��������� ,
to distribute the demanded flow over paths from � to � . Here, in
the general routing problem, we assume there are no limitations
to how we can distribute the flow between the paths from � to � .

The above definition of the general routing problem is equiv-
alent to the one used e.g. in Awduche et al. [1]. Its most con-
troversial feature is the assumption that we have an estimate of
a demand matrix. This demand matrix could, as in our case for
the proposed AT&T WorldNet backbone, be based on concrete
measures of the flow between source-destination pairs. The de-
mand matrix could also be based on a concrete set of customer
subscriptions to virtual leased line services. Our demand matrix
assumption does not accommodate unpredicted bursts in traffic.
However, we can deal with more predictable periodic changes,
say between morning and evening, simply by thinking of it as
two independent routing problems: one for the morning, and
one for the evening.

Having decided on a routing, the load ������� on an arc � is the
total flow over � , that is ������� is the sum over all demands of
the amount of flow for that demand which is sent over � . The
utilization of a link � is ����������������� .

Loosely speaking, our objective is to keep the loads within the
capacities. More precisely, our cost function  sums the cost of
the arcs, and the cost of an arc � has to do with the relation
between ������� and ������� . In our experimental study, we had

 !�#"$&%�'  $ �(���������
where for all �*)+
 ,  $ ��,��-�., and
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Fig. 1. Arc cost
���������	��
�


as a function of load
��	��


for arc capacity � �	��
����
.

The function  $ is illustrated in Fig. 2. The idea behind  $ is
that it is cheap to send flow over an arc with a small utilization.
As the utilization approaches 100%, it becomes more expensive,
for example because we get more sensitive to bursts. If the uti-
lization goes above 100%, we get heavily penalized, and when
the utilization goes above 110% the penalty gets so high that this
should never happen.

The exact definition of the objective function is not so im-
portant for our techniques, as long as it is a a piece-wise linear
increasing and convex function.

Proposition 1: If each  $ is a piece-wise linear increasing
and convex function, we can solve the general routing problem
optimally in polynomial time.

Knowing the optimal solution for the general routing problem
is an important benchmark for judging the quality of solutions
based on, say, OSPF routing.

The above objective function provides a general best effort
measure. We have previously claimed that our approach can also
be used if the demand matrix is modeling service level agree-
ments (SLAs) with customers, with demands representing guar-
antees of throughput for virtual leased lines. In this case, we
are more interested in ensuring that no packet gets sent across
overloaded arcs, so our objective is to minimize a maximum
rather than a sum over the arcs. However, due to the very high
penalty for overloaded arcs, our objective function favours solu-
tions without overloaded arcs. A general advantage to working
with a sum rather than a maximum is that even if there is a bot-
tleneck link that is forced to be heavily loaded, our objective
function still cares about minimizing the loads in the rest of the
network.

B. OSPF versus MPLS routing protocols

Unfortunately, most intra-domain internet routing protocols
today do not support a free distribution of flow between source
and destination as defined above in the general routing problem.
The most common protocol today is Open Shortest Path First
(OSPF) [2]. In this protocol, the network operator assigns a
weight to each link, and shortest paths from each router to each
destination are computed using these weights as lengths of the
links. In each router, the next link on all shortest paths to all
possible destinations is stored in a table, and a demand going
in the router is sent to its destination by splitting the flow be-
tween the links that are on the shortest paths to the destination.
The exact mechanics of the splitting can be somewhat compli-
cated, depending on the implementation. Here, as a simplifying
approximation, we assume that it is an even split.

The quality of OSPF routing depends highly on the choice of
weights. Nevertheless, as recommended by Cisco [3], these are
often just set inversely proportional to the capacities of the links,
without taking any knowledge of the demand into account.

It is widely believed that the OSPF protocol is not flexible
enough to give good load balancing as defined, for example, in
our objective function. This is one of the reasons for introducing
the more flexible Multi-protocol Label Switching (MPLS) tech-
nologies ([1], [4]). With MPLS one can in principle decide the
path for each individual packet. Hence, we can simulate a so-
lution to the general routing problem by distributing the packets
on the paths between a source-destination pair using the same
distribution as we used for the flow. The MPLS technology has
some disadvantages. First of all, MPLS is not yet widely de-
ployed, let alone tested. Second OSPF routing is simpler in the
sense that the routing is completely determined by one weight
for each arc. That is, we do not need to make individual routing
decisions for each source/destination pair. Also, if a link fails,
the weights on the remaining links immediately determines the
new routing.

C. Our results

The general question studied in this paper is: Can a suf-
ficiently clever weight settings make OSPF routing perform
nearly as well as optimal general/MPLS routing?

Our first answer is negative: for arbitrary � , we construct an
instance of the routing problem on ����� nodes where any OSPF
routing has its average flow on arcs with utilization ���� � times
higher than the max-utilization in an optimal general solution.
With our concrete objective function, this demonstrates a gap
of a factor approaching

H ,�,�, between the cost of the optimal
general routing and the cost of the optimal OSPF routing.

The next natural question is: how well does OSPF routing
perform on real networks. In particular we wanted to answer
this question for a proposed AT&T WorldNet backbone. In addi-
tion, we studied synthetic internetworks, generated as suggested
by Calvert, Bhattacharjee, Daor, and Zegura [5], [6]. Finding a
perfect answer is hard in the sense that it is NP-hard to find an
optimal setting of the OSPF weights for an arbitrary network.
Instead we resorted to a local search heuristic, not guaranteed
to find optimal solutions. Very surprisingly, it turned out that
for the proposed AT&T WorldNet backbone, the heuristic found
weight settings making OSPF routing performing within a few
percent from the optimal general routing. Thus for the proposed
AT&T WorldNet backbone with our projected demands, and
with our concrete objective function, there would be no sub-
stantial traffic engineering gain in switching from the existing
well-tested and understood robust OSPF technology to the new
MPLS alternative.

For the synthetic networks, we did not always get quite as
close to the optimal general routing. However, we compared our
local search heuristic with standard heuristics, such as weights
inversely proportional to the capacities or proportional to the
physical distances, and found that, for the same network and
capacities, we could support a 50%–110% increase in the de-
mands, both with respect to our concrete cost function and, si-
multaneously, and with respect to keeping the max-utilization
below 100%.



D. Technical contributions

Our local search heuristic is original in its use of hash tables
to avoid cycling and for search diversification. A first attempt of
using hashing tables to avoid cycling in local search was made
by Woodruff and Zemel [7], in conjunction with tabu search.
Our approach goes further and avoids completely the problem
specific definitions of solution attributes and tabu mechanisms,
leading to an algorithm that is conceptually simpler, easier to
implement, and to adapt to other problems.

Our local search heuristic is also original in its use of more ad-
vanced dynamic graph algorithms. Computing the OSPF rout-
ing resulting from a given setting of the weights turned out to
be the computational bottleneck of our local search algorithm,
as many different solutions are evaluated during a neighborhood
exploration. However, our neighborhood structure allows only
a few local changes in the weights. We therefore developed ef-
ficient algorithms to update the routing and recompute the cost
of a solution when a few weights are changed. These speed-ups
are critical for the local search to reach a good solution within
reasonable time bounds.

E. Contents

In Section II we formalize our general routing model as a lin-
ear program, thereby proving Proposition 1. We present in Sec-
tion III a scaled cost function that will allow us to compare costs
across different sizes and topologies of networks. In Section IV,
a family of networks is constructed, demonstrating a large gap
between OSPF and multi-commodity flow routing. In Section V
we present our local search algorithm, guiding the search with
hash tables. In Section VI we show how to speed-up the calcula-
tions using dynamic graph algorithms. In Section VII, we report
the numerical experiments. Finally, in Section VIII we discuss
our findings.

Because of space limitations, we defer to the journal version
the proof that it is NP-hard to find an optimal weight setting
for OSPF routing. In the journal version, based on collaborative
work with Johnson and Papadimitriou, we will even prove it NP-
hard to find a weight setting getting within a factor 1.77 from
optimality for arbitrary graphs.

II. MODEL

A. Optimal routing

Recall that we are given a directed network � � ���	��
 � with
a capacity ������� for each � )	
 . Furthermore, we have a demand
matrix � that for each pair ��������� ) � � � tells the demand�	��������� in traffic flow between � and � . We will sometimes re-
fer to the non-zero entries of � as the demands. With each pair��������� and each arc � , we associate a variable

������� �
	$ telling how
much of the traffic flow from � to � goes over � . Variable �������
represents the total load on arc � , i.e. the sum of the flows go-
ing over � , and  $ is used to model the piece-wise linear cost
function of arc � .

With this notation, the general routing problem can be formu-

lated as the following linear program.

����  � "$&%�'  $
subject to

"
��� � � � ��	 %�' � ����� �
	� � � ��	�� "

��� ����� � 	 %�' � ����� �
	����� � 	 �
46 7���� ����� �
	 if ��� �!�

� ���!� �
	 if ���"�#�$
otherwise,

% � ����� )I� � (1)

�������-� "
����� �&	 %�')(*' � ����� �
	$ � )	
 � (2)

 $,+ ������� � )	
 � (3) $ + B&������� �.-� ������� � )	
 � (4) $ + 8 , ������� �0/#1� ������� � )	
 � (5) $ + G , ������� � /#243� ������� � )	
 � (6) $ + H ,�,&������� �5/768193� ������� � )	
 � (7) $,+ H ,�,�, ������� � /9:468143� ������� � )	
 � (8)
� ����� �
	$ + , �*)+
<;-����� ) �>= (9)

Constraints (1) are flow conservation constraints that ensure the
desired traffic flow is routed from � to � , constraints (2) define
the load on each arc and constraints (3) to (8) define the cost on
each arc.

The above program is a complete linear programming for-
mulation of the general routing problem, and hence it can be
solved optimally in polynomial time (Khachiyan [8]), thus set-
tling Proposition 1. In our experiments, we solved the above
problems by calling CPLEX via AMPL. We shall use  @? A"B to
denote the optimal general routing cost.

B. OSPF routing

In OSPF routing, we choose a weight C ����� for each arc.
The length of a path is then the sum of its arc weights, and
we have the extra condition that all flow leaving a node aimed
at a given a destination is evenly spread over arcs on short-
est paths to that destination. More precisely, for each source-
destination pair ���������>)E� � � and for each node 2 , we have
that

� ����� �
	� � � ��	 � , if ��2 � % � is not on a shortest path from � to � ,
and that

� ���!� �
	� � � ��	 � � ����� �
	� � � ��D�	 if both ��2 � % � and ��2 � % 0 � are on short-
est paths from � to � . Note that the routing of the demands is
completely determined by the shortest paths which in turn are
determined by the weights we assign to the arcs. Unfortunately,
the above condition of splitting between shortest paths based on
variable weights cannot be formulated as a linear program, and
this extra condition makes the problem NP-hard.

We shall use  E?GF � ?IHJA K to denote the optimal cost with OSPF
routing.

III. NORMALIZING COST

We now introduce a normalizing scaling factor for the cost
function that allows us to compare costs across different sizes
and topologies of networks. To define the measure, we introduce

 EL�M�N $ F � "
����� �&	 %�')(*' ���	���������PO8Q ��R9S / �����������8= (10)



Above Q ��R9S / �9O � is distance measured with unit weights (hop
count). Also, we let  L M � � ?IHJA K denote the cost of OSPF rout-
ing with unit weights. Below we present several nice properties
of  EL�M�N $ F and  EL�M � � ?�H�A K . It is (ii) that has inspired the name
“Uncapacitated”.

Lemma 2:
(i)  L MJN $ F is the total load if all traffic flow goes along unit
weight shortest paths.
(ii)  L MJN $ F �  EL M � � ?IHJA K if all arcs have unlimited capacity.
(iii)  EL�M�N $ F is the minimal total load of the network.
(iv)  L MJN $ F =E E?�A"B .
(v)  L M � � ?�HJA K @ H ,�,�, O  L M�N $ F .
Above,

H ,�,�, is the maximal value of  0 $ .
Proof: Above (i) follows directly from the definition. Now

(ii) follows from (i) since the ratio of cost over load on an arc
is 1 if the capacity is more than 3 times the load. Further (iii)
follows from (i) because sending flow along longer paths only
increases the load. From (iii) we get (iv) since 1 is the smallest
possible ratio of cost over load. Finally we get (v) from (ii) since
decreasing the capacity of an arc with a given load increases the
arc cost with strictly less than a factor 5000 if the capacity stays
positive.
Our scaled cost is now defined as:

 � �  �� EL�M�N $ F = (11)

From Lemma 2 (iv) and (v), we immediately get:8 =? �?�A"B =E �?GF � ?IHJA K =. �L M � � ?�HJA K @ H ,�,�, = (12)

Note that if we get  � � 8
, it means that we are routing along

unit weight shortest paths with all loads staying below 1/3 of the
capacity. In this ideal situation there is no point in increasing the
capacities of the network.

A packet level view

Perhaps the most instructive way of understanding our cost
functions is on the packet level. We can interpret the demand�	��������� as measuring how many packets — of identical sizes —
we expect to send from � to � within a certain time frame. Each
packet will follow a single path from � to � , and it pays a cost
for each arc it uses. With our original cost function  , the per
packet cost for using an arc is  $ �(�����������&������� . Now,  can be
obtained by summing the path cost for each packet.

The per packet arc cost  $ � �����������&������� is a function
/

of
the utilization ����������������� . The function

/
is depicted in Fig. 2.

First
/

is
8

while the utilization is = 8 ��B . Then
/

increases to8 , � 8�� ��B � 8 , -� for a full arc, and after that it grows rapidly
towards 5000. The cost factor of a packet is the ratio of its cur-
rent cost over the cost it would have paid if it could follow the
unit-weight shortest path without hitting any utilization above
1/3, hence paying the minimal cost of 1 for each arc traversed.
The latter ideal situation is what is measured by  L MJN $ F , and
therefore  � measures the weighted average packet cost factor
where each packet is weighted proportionally to the unit-weight
distance between its end points.

If a packet follows a shortest path, and if all arcs are exactly
full, the cost factor is exactly

8 , -� . The same cost factor can
of course be obtained by some arcs going above capacity and
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Fig. 2. Arc packet cost as function of utilization
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Fig. 3. Gap between general flow solution on the left and OSPF solution on the
right

others going below, or by the packet following a longer detour
using less congested arcs. Nevertheless, it is natural to say that
a routing congests a network if  � + 8 , -� .

IV. MAXIMAL GAP BETWEEN OPT AND OSPF

From (12), it follows that the maximal gap between optimal
general routing and optimal OSPF routing is less than a factor
5000. In Lemma 3, we will now show that the gap can in fact ap-
proach 5000. Our proof is based on a construction where OSPF
leads to very bad congestion for any natural definition of conges-
tion. More precisly, for arbitrary � , we construct an instances of
the routing problem on � ��� nodes with only one demand, and
where all paths from the source to the destination are shortest
with respect to unit weights, or hop count. In this instance, any
OSPF routing has its average flow on arcs with utilization ���� �
times higher than the max-utilization in an optimal general solu-
tion. With our concrete objective function, this demonstrates a
gap of a factor approaching

H ,�,�, between the cost of the optimal
general routing and the cost of the optimal OSPF routing.

Lemma 3: There is a family of networks � M so that the opti-
mal general routing approaches being 5000 times better than the
optimal OSPF routing as ����J .

Proof: In our construction, we have only one demand with
source � and destination � , that is, �	��2 � % ��� , if and only if��2 � % � � ��������� . The demand is � . Starting from � , we have a
directed path � ��������2 / ��=�=�= � 2 M � where each arc has capacityB � . For each 	 , we have a path 
 � of length � - � 	 from 2 � to � .
Thus, all paths from � to � have length � - . Each arc in each 
 �
has capacity 3. The graph is illustrated in Fig. 3 with � being
the thick high capacity path going down on the left side.

In the general routing model, we send the flow down � , let-
ting 1 unit branch out each 
 � . This means that no arc gets
more flow than a third of its capacity, so the optimal cost  M ? A"B



satisfies

 M ? A"B = �3��� - � � �-� � 8 ��� � 8 ��� � � =
In the OSPF model, we can freely decide which 
 � we will

use, but because of the even splitting, the first 
 � used will get
half the flow, i.e. � ��D units, the second will get � ��� units, etc.
Asymptotically this means that almost all the flow will go along
arcs with load a factor ���� � above their capacity, and since
all paths uses at least � - � � arcs in some 
 � , the OSPF cost M ? F � ?�HJA K satisfies

 M ? F � ?�HJA K + � 8 � � � 8 ��� H ,�,�, � � =
We conclude that the ratio of the OSPF cost over the optimal

cost is such that
����
	���������� ������ + � 8 � � � 8 ��� H ,�,�, � H ,�,�, as � �J .

V. OSPF WEIGHT SETTING USING LOCAL SEARCH

A. Overview of the local search heuristic

In OSPF routing, for each arc � ) 
 , we have to choose
a weight C $ . These weights uniquely determine the shortest
paths, the routing of traffic flow, the loads on the arcs, and fi-
nally, the cost function  . In this section, we present a lo-
cal search heuristic to determine a weights vector �
C $ � $ % ' that
minimizes  . We let � � ��� 8 ��=�=�= ��C�� $��
� denote the set of
possible weights.

Suppose that we want to minimize a function
�

over a set�
of feasible solutions. Local search techniques are iterative

procedures in which a neighborhood � ��2 � � � is defined at
each iteration for the current solution 2 ) � , and which chooses
the next iterate 2 0 from this neighborhood. Often we want the
neighbor 2 0 )!� ��21� to improve on

�
in the sense that

� ��2 0 � @� ��21� .
Differences between local search heuristics arise essentially

from the definition of the neighborhood, the way it is explored,
and the choice of the next solution from the neighborhood. De-
scent methods consider the entire neighborhood, select an im-
proving neighbor and stop when a local minimum is found.
Meta-heuristics such as tabu search or simulated annealing al-
low non-improving moves while applying restrictions to the
neighborhood to avoid cycling. An extensive survey of local
search and its application can be found in Aarts and Lenstra [9].

In the remainder of this section, we first describe the neigh-
borhood structure we apply to solve the weight setting problem.
Second, using hashing tables, we address the problem of avoid-
ing cycling. These hashing tables are also used to avoid repeti-
tions in the neighborhood exploration. While the neighborhood
search aims at intensifying the search in a promising region, it is
often of great practical importance to search a new region when
the neighborhood search fails to improve the best solution for a
while. These techniques are called search diversification and are
addressed at the end of the section.

B. Neighborhood structure

A solution of the weight setting problem is completely char-
acterized by its vector C of weights. We define a neighbor
C 0 )"� �&C � of C by one of the two following operations ap-
plied to C .

Single weight change. This simple modification consists in
changing a single weight in C . We define a neighbor C 0 of C
for each arc �:) 
 and for each possible weight � )#�%$&� C $'�
by setting C 0$ � � and C 0( � C ( for all )+*� � .
Evenly balancing flows. Assuming that the cost function  $ ���
for an arc � ) 
 is increasing and convex, meaning that we
want to avoid highly congested arcs, we want to split the flow as
evenly as possible between different arcs.
More precisely, consider a demand node � such that, � %�' �	��������� � , and some part of the demand going to �
goes through a given node 2 . Intuitively, we would like OSPF
routing to split the flow to � going through 2 evenly along arcs
leaving 2 . This is the case if all the arcs leaving 2 belong to a
shortest path from 2 to � . More precisely, if 2 / �32 - ��=�=�= �32�F are
the nodes adjacent to 2 , and if � � is one of the shortest paths
from 2 � to � , for 	C� 8 ��=�=�=��.- , as illustrated in Fig. 4, then we
want to set C 0 such that

C 0 � � � ��/ 	 � C 0 � � / �3� C 0 � � � ��0 	 � C 0 � � - ���=�=�=�� C 0 � � � � 	 	 � C 0 � � F �8=
where C 0 � � � � denotes the sum of the weights of the arcs belong-
ing to � � . A simple way of achieving this goal is to set

C 0$ � 1 C � � C � � � � if � � ��2 � 2 � � � for 	 � 8 ��=�=�= �2- �
C $ otherwise =

where C � � 8 � �43�5 � � / �767676 � F���C � � � � � .A drawback of this approach is that an arc that does not belong
to one of the shortest paths from 2 to � may already be con-
gested, and the modifications of weights we propose will send
more flow on this congested arc, an obviously undesirable fea-
ture. We therefore decided to choose at random a threshold ratio8

between 0.25 and 1, and we only modify weights for arcs in
the maximal subset 9 of arcs leaving 2 such that

C � � � �': 	 � C � � � �A= C � � � ��; 	 � C � �=<��?> 	3)@9 �BA �)C9*�D � � � �': 	 �
CC� = 8 ����2 � 2 � �?> 	3)@9 =
In this way, flow going from � to � can only change for arcs
in 9 , and choosing

8
at random allows to diversify the search.

Another drawback of this approach is that it does not ensure
that weights remain below C � $�� . This can be done by adding
the condition that �43�5 � %�E C � � � � � ���� � %�E C � � � � = CF� $�� is
satisfied when choosing 9 .

C. Guiding the search with hashing tables

The simplest local search heuristic is the descent method that,
at each iteration, selects the best element in the neighborhood
and stops when this element does not improve the objective
function. This approach leads to a local minimum that is of-
ten far from the optimal solution of the problem, and heuris-
tics allowing non-improving moves have been considered. Un-
fortunately, non-improving moves can lead to cycling, and one
must provide mechanisms to avoid it. Tabu search algorithms
(Glover [10]), for example, make use of a tabu list that records
some attributes of solutions encountered during the recent itera-
tions and forbids any solution having the same attributes.

We developed a search strategy that completely avoids cy-
cling without the need to store complex solution attributes. The
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Fig. 4. The second type of move tries to make all paths form 
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solutions to our problem are � 
� -dimensional integer vectors.
Our approach maps these vectors to integers, by means of a
hashing function � , chosen as described in [11]. Let

D
be the

number of bits used to represent these integers. We use a
boolean table � to record if a value produced by the hashing
function has been encountered. As we need an entry in � for
each possible value returned by � , the size of � is D�� . In our
implementation,

D � 8��
. At the beginning of the algorithm, all

entries in � are set to false. If C is the solution produced at a
given iteration, we set � ��� �
CC��� to true, and, while searching the
neighborhood, we reject any solution C 0 such that � ��� �&C 0 ��� is
true.

This approach completely eliminates cycling, but may also
reject an excellent solution having the same hashing value as
a solution met before. However, if � is chosen carefully, the
probability of collision becomes negligible. A first attempt of
using hashing tables to avoid cycling in local search was made
by Woodruff and Zemel [7], in conjunction with tabu search.
It differs from our approach since we completely eliminate the
tabu lists and the definition of solution attributes, and we store
the values for all the solutions encountered, while Woodruff and
Zemel only record recent iterations (as in tabu search again).
Moreover, they store the hash values encountered in a list, lead-
ing to a time linear in the number of stored values to check if a
solution must be rejected, while with our boolean table, this is
done in constant time.

D. Speeding up neighborhood evaluation

Due to our complex neighborhood structure, it turned out that
several moves often lead to the same weight settings. For ef-
ficiency, we would like to avoid evaluation of these equivalent
moves. Again, hashing tables are a useful tool to achieve this
goal : inside a neighborhood exploration, we define a secondary
hashing table used to store the encountered weight settings as
above, and we do not evaluate moves leading to a hashing value
already met.

The neighborhood structure we use has also the drawback that
the number of neighbors of a given solution is very large, and
exploring the neighborhood completely may be too time con-
suming. To avoid this drawback, we only evaluate a randomly
selected set of neighbors.

We start by evaluating 20 % of the neighborhood. Each time

the current solution is improved, we divide the size of the sam-
pling by 3, while we multiply it by 10 each time the current so-
lution is not improved. Moreover, we enforce sampling at least
1 % of the neighborhood.

E. Diversification

Another important ingredient for local search efficiency is di-
versification. The aim of diversification is to escape from re-
gions that have been explored for a while without any improve-
ment, and to search regions as yet unexplored.

In our particular case, many weight settings can lead to the
same routing. Therefore, we observed that when a local min-
imum is reached, it has many neighbors having the same cost,
leading to long series of iterations with the same cost value. To
escape from these “long valleys” of the search space, the sec-
ondary hashing table is again used. This table is generally reset
at the end of each iteration, since we want to avoid repetitions
inside a single iteration only. However, if the neighborhood ex-
ploration does not lead to a solution better than the current one,
we do not reset the table. If this happens for several iterations,
more and more collisions will occur and more potentially good
solutions will be excluded, forcing the algorithm to escape from
the region currently explored. For these collisions to appear at a
reasonable rate, the size of the secondary hashing table must be
small compared to the primary one. In our experiments, its size
is 20 times the number of arcs in the network.

This approach for diversification is useful to avoid regions
with a lot of local minima with the same cost, but is not suffi-
cient to completely escape from one region and go to a possibly
more attractive one. Therefore, each time the best solution found
is not improved for 300 iterations, we randomly perturb the cur-
rent solution in order to explore a new region from the search
space. The perturbation consists of adding a randomly selected
perturbation, uniformly chosen between -2 and +2, to 10 % of
the weights.

VI. COST EVALUATION

We will now first show how to evaluate our cost function
for the static case of a network with a specified weight set-
ting. Computing this cost function from scratch is unfortunately
too time consuming for our local search, so afterwards, we will
show how to reuse computations, exploiting that there are only
few weight changes between a current solution and any solution
in its neighborhood.

A. The static case

We are given a directed multigraph � � ���	��
� with arc
capacities ��� $�� $ % ' , demand matrix � , and weights � C $'��$&%�' .
For the instances considered, the graph is sparse with � 
�� �� ��� ��� � . Moreover, in the weighted graph the maximal distance
between any two nodes is

� ��� ��� � .
We want to compute our cost function  . The basic problem

is to compute the loads resulting from the weight setting. We
will consider one destination � at a time, and compute the total
flow from all sources � ) � to � . This gives rise to a certain
partial load

D �$ � , � % ' ������� �
	$ for each arc. Having done the
above computation for each destination � , we can compute the
load

D $ on arc � as
,
� %�' D �$ .



To compute the flow to � , our first step is to use Dijkstra’s
algorithm to compute all distances to � (normally Dijkstra’s al-
gorithm computes the distances away from some source, but we
can just apply such an implementation of Dijkstra’s algorithm
to the graph obtained by reversing the orientation of all arcs in� ). Having computed the distance

� �� to � for each node, we
compute the set 
 � of arcs on shortest paths to � , that is,


 � � ����2 � % �A)	
 � � �� � � �� � C � � � ��	 �
For each node 2 , let � �� denote its outdegree in 
 � , i.e. � �� �
� � % ) � � ��2 � % � )+
 � � � .

Observation 4: For all � % ����� )	
 � ,
D � ��� � � 	 � /� � � ���	� % ����� � , � � � ��	 %�' � D � � � � ��	 � =

Using Observation 4, we can now compute all the loads
D � ��� � � 	

as follows. The nodes % ) � are visited in order of decreas-
ing distance

� �� to � . When visiting a node % , we first setD � /� � � ���	� % ����� � , � � � ��	 %�' � D � � � � ��	 � . Second we set
D � ����� � 	 � D

for each � % ����� )	
 � .
To see that the above algorithm works correctly, we note the

invariant that when we start visiting a node % , we have correct
loads

D �$ on all arcs � leaving nodes coming before % . In partic-
ular this implies that all the arcs ��2 � % � entering % have correctly
computed loads

D � � � � ��	 , and hence when visiting % , we compute
the correct load

D � � ��� � 	 for arcs � % ����� leaving % .
Using bucketing for the priority queue in Dijkstra’s algorithm,

the computation for each destination takes
� ��� 
� � � � ��� ��� �

time, and hence our total time bound is
� ��� ��� - � .

B. The dynamic case

In our local search we want to evaluate the cost of many dif-
ferent weight settings, and these evaluations are a bottleneck for
our computation. To save time, we will try to exploit the fact that
when we evaluate consecutive weight settings, typically only a
few arc weights change. Thus it makes sense to try to be lazy
and not recompute everything from scratch, but to reuse as much
as possible. With respect to shortest paths, this idea is already
well studied (Ramalingam and Reps [12]), and we can apply
their algorithm directly. Their basic result is that, for the re-
computation, we only spend time proportional to the number of
arcs incident to nodes 2 whose distance

� �� to � changes. In our
experiments there were typically only very few changes, so the
gain was substantial - in the order of factor 20 for a 100 node
graph. Similar positive experiences with this laziness have been
reported in Frigioni et al. [13].

The set of changed distances immediately gives us a set of
“update” arcs to be added to or deleted from 
 � . We will now
present a lazy method for finding the changes of loads. We will
operate with a set � of “critical” nodes. Initially, � consists of
all nodes with an incoming or outgoing update arc. We repeat
the following until � is empty: First, we take the node % )��
which maximizes the updated distance

� �� and remove % from
� . Second, set

D � /� � � ���	� % ����� � , � � � ��	 % ' � D � � � � ��	 � . Finally,

for each � % ����� ) 
 � , where 
 � is also updated, if
D *� D � � ��� � 	 , setD � ����� � 	 � D and add � to � .

To see that the above suffices, first note that the nodes visited
are considered in order of decreasing distances. This follows
because we always take the node at the maximal distance and
because when we add a new node � to � , it is closer to � than
the currently visited node % . Consequently, our dynamic algo-
rithm behaves exactly as our static algorithm except that it does
not treat nodes not in � . However, all nodes whose incoming or
outgoing arc set changes, or whose incoming arc loads change
are put in � , so if a node is skipped, we know that the loads
around it would be exactly the same as in the previous evalua-
tion.

VII. NUMERICAL EXPERIMENTS

We present here our results obtained with a proposed AT&T
WorldNet backbone as well as synthetic internetworks.

Besides comparing our local search heuristic (HeurOSPF)
with the general optimum (OPT), we compared it with OSPF
routing with “oblivious” weight settings based on properties of
the arc alone but ignoring the rest of the network. The oblivi-
ous heuristics are InvCapOSPF setting the weight of an arc in-
versely proportional to its capacity as recommended by Cisco
[3], UnitOSPF just setting all arc weights to 1, L2OSPF setting
the weight proportional to its physical Euclidean distance ( 	 -norm), and RandomOSPF, just choosing the weights randomly.

Our local search heuristic starts with randomly generated
weights and performs 5000 iterations, which for the largest
graphs took approximately one hour. The random starting point
was weights chosen for RandomOSPF, so the initial cost of our
local search is that of RandomOSPF.

The results for the AT&T WorldNet backbone with different
scalings of the projected demand matrix are presented in Table I.
In each entry we have the normalized cost  � introduced in Sec-
tion III. The normalized cost is followed by the max-utilization
in parenthesis. For all the OSPF schemes, the normalized cost
and max-utilization are calculated for the same weight setting
and routing. However, for OPT, the optimal normalized cost and
the optimal max-utilization are computed independently with
different routing. We do not expect any general routing to be
able to get the optimal normalized cost and max-utilization si-
multaneously. The results are also depicted graphically in Fig-
ure 5. The first graph shows the normalized cost and the hori-
zontal line shows our threshold of

8 , -� for regarding the network
as congested. The second graph shows the max-utilization.

The synthetic internetworks were produced using the gener-
ator GT-ITM [14], based on a model of Calvert, Bhattachar-
jee, Daor, and Zegura [5], [6]. This model places nodes in a
unit square, thus getting a distance � ��2 � % � between each pair of
nodes. These distances lead to random distribution of 2-level
graphs, with arcs divided in two classes: local access arcs and
long distance arcs. Arc capacities were set equal to 200 for local
access arcs and to 1000 for long distance arcs. The above model
does not include a model for the demands. We decided to model
the demands as follows. For each node 2 , we pick two random
numbers

� � � � � )�
 , � 8�� . Further, for each pair ��2 � % � of nodes
we pick a random number  � � � ��	 )�
 , � 8�� . Now, if the Euclidean
distance ( 	 - ) between 2 and % is � ��2 � % � , the demand between2 and % is

� � � � �  � � � ��	�� � � � � � ��	�� -��



Here � is a parameter and
�

is the largest Euclidean distance
between any pair of nodes. Above, the

� � and � � model that
different nodes can be more or less active senders and receivers,
thus modelling hot spots on the net. Because we are multiplying
three random variables, we have a quite large variation in the
demands. The factor � � � � � � ��	 � -�� implies that we have relatively
more demand between close pairs of nodes. The results for the
synthetic networks are presented in Figures 6–9.

VIII. DISCUSSION

First consider the results for the AT&T WorldNet backbone
with projected (non-scaled) demands in Table 5(*). As men-
tioned in the introduction, our heuristic, HeurOSPF, is within
2% from optimality. In contrast, the oblivious methods are all
off by at least 15%.

Considering the general picture for the normalized costs in
Figures 5–9, we see that L2OSPF and RandomOSPF compete
to be worst. Then comes InvCapOSPF and UnitOSPF closely
together, with InvCapOSPF being slightly better in all the fig-
ures but Figure 6. Recall that InvCapOSPF is Cisco’s recom-
mendation [3], so it is comforting to see that it is the better of
the oblivious heuristics. The clear winner of the OSPF schemes
is our HeurOSPF, which is, in fact, much closer to the general
optimum than to the oblivous OSPF schemes.

To quantify the difference between the different schemes,
note that all curves, except those for RandomOSPF, start off
pretty flat, and then, quite suddenly, start increasing rapidly.
This pattern is somewhat similar to that in Fig. 1. This is not
surprising since Fig. 1 shows the curve for a network consisting
of a single arc. The reason why RandomOSPF does not follow
this pattern is that the weight settings are generated randomly
for each entry. The jumps of the curve for Random in Figure
8 nicely illustrate the impact of luck in the weight setting. In-
terestingly, for a particular demand, the value of RandomOSPF
is the value of the initial solution for our local search heuris-
tic. However, the jumps of RandomOSPF are not transferred to
HeurOSPF which hence seems oblivious to the quality of the
initial solution.

Disregarding RandomOSPF, the most interesting comparison
between the different schemes is the amount of demand they can
cope with before the network gets too congested. In Section III,
we defined

8 , -� as the threshold for congestion, but the exact
threshold is inconsequential. In our experiments, we see that
HeurOSPF allows us to cope with 50%-110% more demand.
Also, in all but Figure 7, HeurOSPF is less than 2% from be-
ing able to cope with the same demands as the optimal general
routing OPT. In Figure 7, HeurOSPF is about 20% from OPT.
Recall that it is NP-hard even to approximate the optimal cost
of an OSPF solution, and we have no idea whether there ex-
isits OSPF solutions closer to OPT than the ones found by our
heuristic.

If we now turn out attention to the max-utilization, we get
the same ordering of the schemes, with InvCapOSPF the winner
among the oblivious schemes and HeurOSPF the overall best
OSPF scheme. The step-like pattern of HeurOSPF show the
impact of the changes in  0 $ . For example, in Figure 5, we see
how HeurOSPF fights to keep the max utilization below 1, in
order to avoid the high penalty for getting load above capacity.

Following the pattern in our analysis for the normalized cost, we
can ask how much more demand we can deal with before getting
max-utiliztion above 1, and again we see that HeurOSPF beats
the oblivious schemes with at least 50%.

The fact that our HeurOSPF provides weight settings and
routings that are simultaneously good both for our best effort
type average cost function, and for the performance guarantee
type measure of max-utilization indicates that the weights ob-
tained are “universally good” and not just tuned for our partic-
ular cost function. Recall that the values for OPT are not for
the same routings, and there may be no general routing getting
simultaneously closer to the optimal cost and the optimal max-
utilization than HeurOSPF. Anyhow, our HeurOSPF is generally
so close to OPT that there is only limited scope for improve-
ment.

In conclusion, our results indicate that in the context of known
demands, a clever weight setting algorithm for OSPF routing is
a powerful tool for increasing a network’s ability to honor in-
creasing demands, and that OSPF with clever weight setting can
provide large parts of the potential gains of traffic engineering
for supporting demands, even when compared with the possibil-
ities of the much more flexible MPLS schemes.
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Demand InvCapOSPF UnitOSPF L2OSPF RandomOSPF HeurOSPF OPT
3709 1.01 (0.15) 1.00 (0.15) 1.13 (0.23) 1.12 (0.35) 1.00 (0.17) 1.00 (0.10)
7417 1.01 (0.30) 1.00 (0.31) 1.15 (0.46) 1.91 (1.05) 1.00 (0.30) 1.00 (0.19)

11126 1.05 (0.45) 1.03 (0.46) 1.21 (0.70) 1.36 (0.66) 1.01 (0.34) 1.01 (0.29)
14835 1.15 (0.60) 1.13 (0.62) 1.42 (0.93) 12.76 (1.15) 1.05 (0.47) 1.04 (0.39)

(*) 18465 1.33 (0.75) 1.31 (0.77) 5.47 (1.16) 59.48 (1.32) 1.16 (0.59) 1.14 (0.48)
22252 1.62 (0.90) 1.59 (0.92) 44.90 (1.39) 86.54 (1.72) 1.32 (0.67) 1.30 (0.58)
25961 2.70 (1.05) 3.09 (1.08) 82.93 (1.62) 178.26 (1.86) 1.49 (0.78) 1.46 (0.68)
29670 17.61 (1.20) 21.78 (1.23) 113.22 (1.86) 207.86 (4.36) 1.67 (0.89) 1.63 (0.77)
33378 55.27 (1.35) 51.15 (1.39) 149.62 (2.09) 406.29 (1.93) 1.98 (1.00) 1.89 (0.87)
37087 106.93 (1.51) 93.85 (1.54) 222.56 (2.32) 476.57 (2.65) 2.44 (1.00) 2.33 (0.97)
40796 175.44 (1.66) 157.00 (1.69) 294.52 (2.55) 658.68 (3.09) 4.08 (1.10) 3.64 (1.06)
44504 246.22 (1.81) 228.30 (1.85) 370.79 (2.78) 715.52 (3.37) 15.86 (1.34) 13.06 (1.16)

TABLE I

AT&T’S PROPOSED BACKBONE WITH 90 NODES AND 274 ARCS AND SCALED PROJECTED DEMANDS, WITH (*) MARKING THE ORIGINAL UNSCALED

DEMAND.
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Fig. 5. AT&T’s proposed backbone with 90 nodes and 274 arcs and scaled projected demands.
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Fig. 6. 2-level graph with 50 nodes and 148 arcs.
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Fig. 7. 2-level graph with 50 nodes and 212 arcs.
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Fig. 8. 2-level graph with 100 nodes and 280 arcs.
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Fig. 9. 2-level graph with 100 nodes and 360 arcs.


