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A Decision-Theoretic Approach to Call
Admission Control in ATM Networks

Richard J. Gibbens, Frank P. Kelly, and Peter B. Key
(Invited Paper)

Abstract—This paper describes a simple and robust ATM call
admission control, and develops the theoretical background for its
analysis. Acceptance decisions are based on whether the current
load is less than a precalculated threshold, and Bayesian decision
theory provides the framework for the choice of thresholds. This
methodology allows an explicit treatment of the trade-off between
cell loss and call rejection, and of the consequences of estimation
error. Further topics discussed include the robustness of the
control to departures from model assumptions, its performance
relative to a control possessing precise knowledge of all unknown
parameters, the relationship between leaky bucket depths and
buffer requirements, and the treatment of multiple call types.

1. INTRODUCTION

SYNCHRONOUS transfer mode (ATM) is the recom-

mended transfer mode for the introduction of broadband
services, capable of integrating services as diverse as telemetry
and broadcast TV. (ATM divides all information into short,
fixed length cells of 53 octets, comprising a 5-octet header
and a 48-octet payload which allows simple and fast hardware
switching.) Integrating all services onto a common platform
brings a number of benefits, one of which is increased effi-
ciency.

One aspect of efficiency is statistical multiplexing: Infor-
mation to be transmitted usually varies in time, with peaks
and troughs, and if we can fit different calls together in such
a way that the peaks do not coincide, then we can carry
more calls than by purely allocating capacity according to
peak requirements. Typical examples are provided by video,
where the rate may depend upon the scene being viewed, and
traffic interconnecting local area networks, which is bursty
in nature. In fact, one could argue that all information is
inherently variable, and it is only the limitations of technology
that created constant-rate encoders. For example, the most
ubiquitous telecommunications service is telephony, which is
usually encoded as a constant bit-rate stream, yet silences exist
within speech which can be exploited: Indeed this is done on
international links to pack more calls.

Statistical multiplexing offers large potential gains, yet the
nature of future traffic is largely unknown. We are unsure what
the dominant service in a future integrated broadband network
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will be; applications are being developed all the time, and the
applications can use different coding schemes. On the other
hand, ATM has to be capable of offering a very high quality
of service. For instance, one of the key quality of service
parameters is the cell loss ratio, and values of 1 in 10° or
better are discussed [41]. How is it possible to guarantee such
a high quality of service if we don’t know what the traffic
will look like, and where in applications such as video the
information rate can depend on what is being viewed?

This dilemma has led some to shrink back from statistical
multiplexing, and argue that a peak rate should be allocated
to each connection. Others have argued that the only way to
achieve worthwhile gains is to tightly constrain (police) each
source, thus solving the characterization problem by forcing
sources to fit into a certain mold. Still others, influenced by
computing technologies, advocate feedback controls, which
throttle back the source if the network gets congested.

We take a different view. Peak rate allocation solves the
problem by ignoring it—treating all sources as though they
are constant bit rate—which may be very inefficient. Tightly
policing a source potentially requires more of customers than
they know, and could have the effect of requiring equipment
to be designed according to the policing policy of a particular
network. Feedback controls are inappropriate for real-time
services, and can result in a very different network structure.
Instead, we argue that with a minimum of information, coupled
with observation of the network, it is possible to achieve
worthwhile statistical multiplexing gains, at the same time
meeting stringent quality of service targets.

A major ingredient of our approach is the time-scale decom-
position, introduced by Hui [21]. ATM is a connection-oriented
transfer mode. If we consider a particular resource, then calls
will be set up for a certain time (perhaps minutes) and then
cleared down. On a shorter time-scale information is sent in
bursts (the burst-scale), interspersed with silences, and on a
cell-scale cells may be transmitted at the line rate.

On the cell-scale the peak rate of a source is limited
by hardware constraints, and declaration of a peak cell rate
is mandatory in current ATM standards [39], [40]. These
standards allow some variation about the peak rate, the cell
delay variation, to account for physical layer overheads and
distortion introduced into the cell stream by multiplexing with
other streams. The standards [39], [40], [18] describe how
declarations of peak cell rate and cell delay variation are
to be policed by a leaky bucket. Our model assumes cell-
scale buffers at each resource, large enough to interleave
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simultaneous cell arrivals from different streams and to cope
with cell delay variation.

At the burst level, efficient statistical multiplexing requires
some implicit or explicit estimation of the mean rate of a
source. We claim that it is possible to estimate this quantity
in such a way that quality of service is guaranteed. Simple
estimation will not do—underestimating the mean may cause
us to admit too many sources, thus compromising the quality
of service standard. Bayesian decision theory allows us to
quantify the damage of misestimation, and also incorporate
prior knowledge into the model.

In our approach call acceptance decisions are based on a
simple threshold rule: An offered call is accepted if the current
load is less than a precalculated threshold. The threshold
implements an implicit robust estimation procedure, and the
decision-theoretic framework facilitates the essential trade-off
between the benefits of accepting a call (earning revenue, cus-
tomer satisfaction) and the disadvantages (threatening quality
of service targets).

The problem of call admission control has received con-
siderable attention in the literature: We note in particular the
approaches of [4], [20], [33], [35] and the recent work reported
in [26]. The approach taken in this paper, developing on [1],
121, 161, 8], (191, [27], [30] differs in that we eschew any
attempt to police mean rates, or to gain benefit from burst-scale
queueing. For obvious statistical reasons a long-term mean
(over, say, the life of a call) cannot be policed efficiently.
Similarly the tail behavior of a burst-scale queue is too
sensitive to the characteristics of burst lengths to permit robust
statistical multiplexing over time. Instead we focus on a very
simple scheme, which aims to extract maximum benefit from
statistical multiplexing over different calls without requiring
detailed knowledge of their mean rates.

The organization of the paper is as follows. In Section II
we develop the stochastic process describing the number of
calls in progress. This involves thresholds which determine
whether or not an offered call is accepted, and in Section II
we review various rationales for the choice of these thresholds.
We shall find that Bayesian decision theory provides a coherent
and general framework within which the several trade-offs
involved may be effected. In Section IV we investigate the
robustness of our threshold scheme to departures from the
model assumptions. In Section V we review the performance
of our scheme, and find that it compares favorably with
the performance achieved by a scheme which has precise
knowledge of all unknown parameters. In Section VI we
outline the interrelationship between the parameters of our
cell-scale and burst-scale analyses. Finally, in Section VII,
we briefly indicate how our approach extends to the case of
multiple call types.

II. THE CALL PROCESS

In Sections II-A and II-B we describe our basic model for
the number of calls in progress. This model assumes calls are
“on” or “off” and have unit peak rate, and that the resource is
unbuffered and of capacity C. Later, in Section VI, we relate
these assumptions to a detailed model of the cell level: In
particular, we relate the parameter C'to the leak rate and bucket
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depth of leaky bucket policers and the transmission speed
and buffer size at a switch. In Section II-C we collect some
numerical and analytical observations which aid calculation
with our model of the call process.

A. The Basic Model
Suppose that

Sa(t) = X1(t) + Xo(t) + - + Xalt) 1)

where X;(t), for distinct values of i and ¢, are independent,
identically distributed random variables with

P{X{t)y=1}=p, P{Xi(t)=0}=1-p.
We interpret X;(t) as the load produced by call ¢ at time ¢,
and the superposition S, (t) as the instantaneous load on the
resource at time ¢t. We shall call p the burstiness parameter:
Note that 1/p measures the peak to mean ratio of the load
produced by a call. We suppose for the moment that the
resource is unbuffered and of capacity C: The proportion of

cells (or load) lost is then

o M(np)
L(n;p) = T 3)
where
M(n;p) = E(S, — C)*F @)
n—C
=Y mP{S, =C+m}. )
m=1

The quantities I and M may be calculated, since under our
assumptions S,, has a binomial distribution B(n,p).

The schemes we shall consider have the following basic
form: When a call is offered it is accepted if the current load,
S,,, is less than s(n). Here n is the number of calls currently
in progress, and the vector s = (s(n),n = 0,1,---) defines
the call admission scheme. In Section II-B we shall discuss
the choice of the vector s: Here we analyze the consequences
for the stochastic process describing the number of calls in
progress of a given vector s. Assume that calls arrive as a
Poisson process of rate v, and that holding times of accepted
calls are independent, exponentially distributed random vari-
ables with unit mean. (These and our other assumptions will
be discussed in Section IV.) Then n will be a birth and death
process with transition rates

g(n,n—1)=mn, q(n,n+1) =va(n) (6)

where a(n), the acceptance probability when n calls are

carried, is given by
ny i —i
(Z)p (L=p)"™"

The stationary distribution for this birth and death process is

s(n)—1

a(n) = Z

=0

)

®
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where the constant of proportionality is determined by the
requirement that 7(n),n = 0,1, - - - sums to unity. Call A = vp
the offered load. When we wish to emphasize the dependence
of 7 on p and A we shall write 7#(n) = w(n;p, ).

The overall cell loss rate is

o0

M(p,A) =Y w(n;p, A)M(n;p) ©)

n=1
while the cell loss ratio is

Lo, A) = — Mp,A)
> w(n;p, \)np

n=1

(10)

The call loss probability is

E(p,)) =) m(n;p, A)(1 — a(n))

n=0

an

and the utilization is

[eS)

U(p,A) =3 w(nip, A)(np — M(n;p))

n=1

=M1 = E(P,A) = M(p, ).

(12)
(13)

B. Backoff

The offered load to a resource has an important impact upon
the performance of a call admission control. If the load is very
high, then it may not be enough that a call admission control
makes the correct decision on any single occasion with high
probability: If calls are offered at a very high rate, the rate
at which calls are admitted in error may become too large.
A natural defence against high offered loads is the following
backoff strategy, first described by Bean [1], [2].

Suppose that when an arriving call is rejected, no other
calls are considered for acceptance until after a call currently
in progress has ended. The embedded discrete time chain
obtained by observing the system just after departure and
acceptance epochs has transition probabilities

va(n
P(n,n+1) = %;Z—

P(n,n—-1)=1—- P(n,n+1).

(14
(15)
The time spent by the continuous time process in state n has
mean

1 v 1 1
(1 —-a(n)— =

n n

(1- P(n,n+1)). (16)

v+mn v+n

Thus, the stationary distribution for the continuous time
process can be deduced [2] and is

1

2
|

1 _va(r) o _19...
71'(77,) e no r+v(l—a(r))’ 15 a7n
%, n = 0.

Interestingly n is not Markov: To make it Markov append
a 0 or 1 according as the system is awaiting an arrival or
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a departure. The augmented process (n,d) is Markov, with
transition rates

g((n,0),(n+ 1,0)) = va(n) (18)
q((n,0),(n,1)) = v(1 - a(n)) (19)
q((n,0),(n - 1,0)) = q((n,1),(n - 1,0)) =n (20)

and stationary distribution
m(n,0) = 7r(n)m n=12...- (21)
m(n,1) = n(n) v(1 = an)) n=12-- (22)

n+v(l —a(n))

with 7(0,0) = =(0) and #(0,1) = 0.

The effectiveness of the backoff strategy is well illustrated
by its performance under very heavy traffic: Observe that the
limiting case of the distribution (17), as v — o0, is

n—1

w(n) « % H T=ar i(z)

T=MNmin

(23)

T 2 Tmin

where nmin = 1+ max{r: a(r) = 1}, a distribution with mode
n* where a(n*) = % This model, and a variation where a
deterministic wait is imposed after any change in the number
of calls before a new connection request is considered, are
further discussed by Bean [1], [2].

The backoff strategy may lose a little efficiency when the
offered load A is known (for example, an optimized scheme
with backoff may have a slightly lower utilization for the same
cell loss ratio than an optimized scheme without backoff),
but this seems to be more than outweighed by its robustness
against unpredicted variations in A. Of course there are many
other methods of producing a delay following a rejection
decision, or of otherwise limiting the offered load. We choose
the backoff strategy as one that is easy to define and to
analyze, and which captures the essential features of a good
scheme. Except where explicitly indicated, we shall henceforth
compute 7w from (17).

C. Computational Preliminaries

The Chernoff bound [3] for a binomial random variable is

P{S, > C} = P{S, > na} < ¢ "EP) (24)
where
1—
K(a,p) :alogg-l—(l—a) log (25)
P L—-p

and a = C/n. This bound is often used as an approximation,
the large deviations approximation, and is asymptotically tight,
in that
lim llogP{Sn > C} = —K(a,p). (26)
n—oo 1,
The approximation is not used directly in our later calculations,
but it provides a useful check and it gives some analytical
insight into our results.
Later we shall find it convenient to have quantities such
as the cell loss rate defined as continuous functions of a real
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Fig. 1. Call acceptance boundaries: Introductory examples (C = 50). The

region below or to the left of a curve indicates where a new call may be
accepted.

vector s: This may be achieved by randomizing acceptance
decisions. When s(n) is nonintegral, extend (7) as follows

=3 (%)

+stm) = LoD oy J)pmnu (1= py-lso,
27

The interpretation is straightforward: A call is accepted if
S, < |s(n)], rejected if S, > [s(n)], and accepted with
probability s(n) — [s(n)] if Sp, = [s(n)].

III. CHOICE OF THRESHOLDS

In this section we discuss the choice of the vector s. There
are many possibilities, some of them illustrated in Fig. 1. If
the burstiness parameter p is known, then one possibility is
to accept a call if and only if the proportion of cells lost
L(n;p) remains less than a predefined limit. This corresponds
to a vertical line whose position depends upon p. Another
possibility, available if the offered load X is also known, is to
accept a call if and only if the cell loss ratio L(p, A) remains
less than a predefined limit. This corresponds to a vertical line
whose position depends upon both p and A. (The vertical line
in Fig. 1 achieves a cell loss ratio of 107 when (p,\) =
(0.25,25).) Other possibilities, more appropriate when neither
p nor X are known with certainty, are shown labeled A, B and
C, (where, to the left of the sections shown, s(n) = +00). A
horizontal line corresponds to a call admission control which
uses only the measured load S,,, and requires no knowledge
of n.

There are various rationales for the choice of the vector
s. The first approach we describe, in Section III-A, is a
straightforward but naive attack on the problem of estimating
a source type’s effective bandwidth [20]-{22]. Essentially it
assumes the peak rate of a source is known, and uses the
current load to estimate the source burstiness. The difficulty
with this approach is that it does not adequately deal with the
uncertainty inherent in the resulting estimate of burstiness, and
as a consequence cell loss ratios can become too high. It is
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possible to make the approach more conservative, by adding
safety margins, but there is no clear criterion for the choice
of these margins.

Section III-B describes a simple Bayesian approach. This
assumes a prior distribution is available for the burstiness
parameter. Different choices of prior can represent differing
amounts of uncertainty about the parameter. Additionally
information is available from measurements of load. The
Bayesian formulation allows these two forms of information,
prior and data based, to be integrated. A minimax variant is
discussed in Section III-C.

In Section III-D we describe our preferred approach, a
Bayesian decision-theoretic approach. This provides a coherent
and general framework within which to combine prior knowl-
edge and measurement data, and to trade off utilization and
cell loss. In Section III-E we describe its application to the
important case where we may have load measurements only.

A. A Naive Approach

From knowledge of n, the number of calls in progress, and
S, (t), the instantaneous load at time ¢, can we learn something
of the parameter p, and hence of whether or not an additional
call should be accepted? Consider the following very simple
scheme: Estimate p by § = Sn/n, and accept a newly offered
call if and only if

L(n+1;p) <1077, (28)
Thus the estimate P is treated as an exact observation on p,
and a newly offered call is admitted if, for this value of p, the
quality of service guarantee can be met with 1 + 1 accepted
sources. The vector s, defined in Section II-A, is determined by
s(n) :max{s :L(n—i—l;i) < 10_"’} (29)
n
and the cell loss ratio and utilization may be calculated from
the earlier equations.

The basic scheme described above can be refined in several
ways. For example, the estimate S, /n might be improved
by averaging over a longer period, and a more conservative
estimate of p might be used. For example, since Sy, /n has an
approximate N (p, p(1 — p)/n) distribution

Sn (] — Sa
S"-I—a n(l n)
n n

p= (30
estimates the mean of §n—" plus « standard deviations. The
parameter o > 0 is then a safety margin which reduces
the proportion of cells lost. The curve labeled A in Fig. 1
illustrates this approach with the choice C = 50, v = 10 and
a = 1

B. A Simple Bayes Model

The approach in Section III-A leaves unclear how a control
variable such as o should vary with parameters such as the
capacity C' or the desired cell loss ratio 1077. Next, we
consider an approach which attempts to avoid arbitrary choices
of control variables, through a Bayesian formulation.
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We now suppose that the parameter p has a known prior
distribution f(p) over p € [0,1]. Then, conditional on the
load S,,(0) = s at time ¢ = 0, we can calculate the posterior
distribution f(p | S,(0) = s). For example, if f(p) is the Beta
distribution with parameters « and [

_ Tla+p)
I#) = Fayra)

then f(p | S,(0) = s) is again a Beta distribution, with
parameters a+ s, 8+mn —s [5]. Conditional on the observation
S,(0) = s, the ratio of the expected number of cells lost to
the expected number of cells offered, over the following short
interval, from n + 1 calls in progress is

p* (1~ p)! 31

L(n+1,s)
_ El(Sua(9) = O)* | Sul0) = o
(n + DE[X1(e) | $.(0) = 5]

1n+1-C
Uf 21 mP{Sn41(e) = C+m |p}f(p| S:.(0) =s)dp

(32)

(n+1) Dflmp | 5.(0) = s)dp
(33)

for € > 0. Consider now the following call acceptance strategy:
Accept a new call if and only if

L(n+1,s) <1077, 34)

The rationale is that a new call is accepted when the estimated
cell loss proportion appears satisfactory.

The above approach is extensively illustrated in [6], [19]
and the case with uniform prior f(p) = 1, v = 10, C = 50
is shown in Fig. 1 labeled B. A fully sequential Bayesian
approach would repeatedly update the posterior distribution
with each successive observation of load: The mean of the
posterior distribution would converge to p while its variance
would converge to zero. For simplicity and robustness we
prefer not to adopt this approach: Rather, in Section III-D,
we shall further develop our simple Bayes model within a
decision-theoretic framework. We shall see in Section V that
the loss of efficiency is minimal.

C. A Minimax Approach

Some analytical insight into the issues of this paper is given
by the following simplified model [2], [6]. Suppose we replace
the condition (34) by the condition

max P{S,(e) >C and S,(0)<s|p}<e s
p€e(0,1]

(35)

for € > 0. We thus control the probability that a measurement
Sn(0) = s will appear low enough to accept further calls,
and yet the subsequent load S, (e¢) will be too large. In the
simplified model the criterion is resource-based rather than
stream-based, in that it is expressed in terms of the event
that the resource is overloaded, rather than directly in terms
of the proportion of cells from the offered stream that are
lost. Otherwise the simplified model may be viewed as a
variant of the Bayesian approach, where the prior is chosen to
concentrate mass on the worse case value of p.
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Using the large deviation approximation and bound of
(24)-(26)

P{S, > C | p} < e nE@P (36)
where ¢ = C/n. Similarly
P{S,<s|pt=P{n—-8,>n—s|p} 37
< e mK(-a1-p) (38)
= ¢ "K(or) (39

where a = s/n. Thus since under our assumptions S,(0) and
Sn(€) are independent given p, (35) is implied by

max [e‘”K(%vi’)e—”K(%J’)] <et, (40)
¥4
The maximum over p occurs where
C+s
P=—5 41)
n
Thus (35) is implied by
C
“[K<970+5)+K(f, ”H >e @)
n 2n n 2n

Observe that the maximizing p is halfway between the
unbiased estimator s/n and the saturating level C'/n: Overload
in this simplified model is caused by the joint occurrence of a
moderately low value of S,,(0) and a moderately high value of
Sp(€), rather than an 2specially extreme value of either alone.
This, the estimation effect, is an important insight: Errors in
estimation can be a major cause of cell loss.

We have used some simplifying approximations in order to
obtain the above analytical insight. It is, however, possible
to define the minimax approach without such approximations,
and with a stream-based criterion: We simply define s(n) to
the maximum value of s such that
[(S"‘Fl(e) - C)+ |p] <1077,
(n+1)p -

(43)
Thus if we consider a single call acceptance decision and the
immediately following interval, this criterion limits, over all
values of p, the expected cell loss ratio on the event that a
call is accepted. The resulting s curve for the case v = 10 is
illustrated in Fig. 1 labeled C.

The approaches of Sections III-A, III-B, and III-C are
concerned to bound cell loss over the period immediately
following a call admission. For example, the maximizing p
in (35) or (43) is recomputed for each distinct value of n. It
seems unduly pessimistic to suppose that changes in p are this
malevolent, and next we describe an approach which assumes
that p, while unknown, is relatively stable.

max | P{S,(0) < s |p}E
P

D. A Decision-Theoretic Framework

Now suppose that we have a prior distribution f(p, ) for
the parameters p and A, and that we choose the control s to
maximize

[/ [Z (: 9, A — yM () | £(p, Ndpd

n=1

(44)

=// U(p,A) = (y — L)M(p, M) f(p, \)dpdA. (45)
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Fig. 2. Optimized s curves. As prior information on burstiness parameter p,
becomes more precise, the optimal curve approaches a vertical line.

Fig. 3. Cell loss for s the dashed curve from Fig. 2. Over a wide range
of offered load, ), and burstiness parameter, p, the cell loss ratio is well
controlled.

Expression (44) is proportional to the expected reward per unit
time if each offered cell atiracts a reward of one unit while
each lost cell incurs a penalty of y units. Thus the constant y
measures our trade-off between utilization and cell loss.

Note that the optimization of (45) is just a maximization
of expected utilization for a given expected cell loss rate,
with y — 1 a Lagrange multiplier attached to the cell loss
constraint. Thus y measures the marginal cell loss ratio: If
a perturbation to the s curve allows additional carried traffic,
then each additional offered cell has probability y~* of being
lost. In the classical theory of loss networks the use of a
marginal loss rate in capacity expansion decisions is known
as Moe’s principle [11, pp. 216-210]. Although we do not
discuss routing in this paper, we note in passing the importance
of marginal rather than average loss rates in system optimal
routing strategies [23, sec. 6].

The dashed line illustrated in Fig. 2 shows the form of the
optimizing s curve for C' = 50, y = 10° and f(p, \) uniform
on (0,1) x (0,25). The cell loss ratio (10) and utilization (12)
achieved by this s curve are illustrated in Fig. 3 and Fig. 4,
respectively. Note that the cell loss ratio is well controlled
over a wide range of values of p and A: This property is not
explicitly sought in the optimization procedure, but is a natural
consequence of the form of the objective function (45) and the
use of a uniform prior distribution. Bean [2], in his study of
the case A\ = oo, shows that, when this is the objective, it is
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Fig. 4. Utilization for s the dashed curve from Fig. 2. Utilization necessarily
drops below offered load when p is small and X is large.

logio L(p, A)

ALaLiiih,
~NOUNA LN -AOWD

04
03

w
o

A 15 0

Fig. 5. Cell loss with load measurements only: s horizontal. Note that the
region used is smaller than in Fig. 3.

possible to choose the s curve so that the cell loss ratio is
approximately constant over nearly all values of p, apart from
a small interval close to p = 1.

The solid line in Fig. 2 illustrates the form of the optimal s
curve for f(p, ) uniform on (0.2,0.3) x (0,25) (to the right
of the section shown, s(n) = 0). As the prior information on
the parameter p becomes more precise the optimal s curve
approaches a vertical line. If p is known, then the load mea-
surement s(n) conveys no useful information, and the number
of calls which may be safely admitted can be precomputed
[21], [22]. Of course such an admission control is highly
vulnerable to errors in the specification of p. Next we consider
another extreme, where the s curve is a horizontal line, an
extreme which is much more robust against misspecification
of the parameter p.

E. Load Measurements Only

Now we consider a scheme where s(n) = s for all n, so that
call admission decisions are taken on the basis of the known
peak rate and the instantaneous load, and without knowledge
of the number of sources already connected. In Fig. 5 we
illustrate the cell loss ratio for a scheme with s = 26.83
for C = 50, for various values of p and X. This value of
s optimizes the objective function (44) when y = 10° and
f(p, \) places mass 1 on (p,A) = (0.2,25) : From Fig. 5 we
see that the cell loss ratio is fairly well controlied for a range
of (p, ) values about (0.2,25): Compared with Fig. 3 the cell
loss ratio falls away more quickly as p increases.

Recall that the cell loss ratio L(p, \) is defined, via equa-
tions (9) and (10), in terms of the weighted sum M(p,A). In
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Fig. 6. Terms of M(p,A) for varying n. Larger values of M(n:p) are
associated with rapidly diminishing values of 7(n:p. ).

Fig. 6 we show the magnitude of the various contributions to
this sum, when (p, ) = (0.2,25) and L(p, \) = 107933, We
note that the largest contribution occurs at n = 115, where
w(n;p, ) = 0.009 and M(n;p) = 107537, At n = 131,
7(n;p,A) = 107887 and M(n;p) = 107611, corresponding
to a proportion of cells lost of 107611/131 x 0.2 = 107829,
Thus, while the overall cell loss ratio is 10723, for a fraction
10769 of the time the proportion of cells lost is 1083,
Any call admission control which admits the possibility of
estimation error may occasionally have too many calls in
progress: Our methodology allows this effect to be quantified
and assessed.

In Fig. 7 we illustrate how s varies with capacity C; for
given p and C we plot the value s optimizing the objective
function (44) when y = 10° and f(p, ) places unit mass on
(p.C).

As p approaches zero the distribution 7 places probability
mass on increasingly large values of n. This can complicate
numerical calculations, but fortunately there are simple an-
alytical relationships for the limit case, as p — 0. In this
limit the product np converges in distribution to a constant
0: Consideration of the mode of the distribution 7 fixes § as
the solution to

APs(s) = 6 + A(1 — Ps(s)) (46)
where Ds(s) is constructed from the Poisson distribution
function by

QJl

"Z - QJ)LJI

The cell loss rate is E(S — C)* where S has a Poisson
distribution with mean 6 and is thus

47

M P §C+m
- 4,
S W
The cell loss ratio is thus
M0
L0, ) = MON 49)

)
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Fig. 8. Mixed call types: L-(p). The assumption that calls have the same
burstiness parameter, p, is conservative: It corresponds to the choice ¢ = 0.

and the utilization is

U(0,0) = 6(1 — L(0, \)). (50)
These relations can be used to compute the p = 0 values in
Fig. 3, 5, 7, and 11.

The above limit analysis complements the discussion of the
estimation effect, in Section III-C. For p small and C large,
typical values of n are larger, and thus many call admissions
are needed to substantially increase the carried load. However
for C' smaller and p larger, relatively fewer call admissions
may be enough to overload the resource, and we may expect
the estimation effect to be more marked. See also Griffiths and
Key [19], where the simple estimator (41) is related to a limit
case, as n — o<, of the model of Section III-B.

We note here that a good starting point for the optimization
of Section III-D can be constructed as follows. Choose the
value s(p) so thats = (s(p),n = 0,1, --) optimizes (45), with
a prior which concentrates mass on a point (p, A). Let n(p) be
the mode of the distribution (n(n),n = 0,1,---), under this
scheme. Then define the curve s = (s(n),n = 0,1,--) by
s(n) > n+1for 0 <n < C, and by s(n) = s(p*) where
n(p*) = n forn > C.

To give some feel for the various levels of cell loss ratio,
we remark that on a 150 Mb/s link, fully utilized, a cell loss
ratio of 1071 corresponds to losing about three cells per day:
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Fig. 9. Fluctuating burstiness: The effect of changes in p(t) on the cell loss ratio L(t).

A cell loss ratio of 1013 corresponds to losing about one cell
per year.

IV. ROBUSTNESS

In this section we assume a control s is specified and study
its behavior under departures from the model assumptions.

A. Mixed call types

Suppose that while n calls are in progress, [%J of them
have burstiness parameter p — ¢, and n — \_%J have burstiness

parameter p + ¢}, where
[gJ(p —e)+ (n - [gJ)(IH— €,) = np.

Thus the expected proportion of calls active remains at p. The
birth and death process n is altered, since

(5

s(n)—1
ac(n) = Z P.{X =i} (52)
1=0
where
Puctot = = e 3] o <ton 3.6 )
k=0 (53)
and
. m ; ;

g(n,m,j) = <j>(pfn)](1 -p+n)"7. (54)

Hence the altered stationary distribution 7.(n) can be calcu-
lated, using (17). The altered cell loss ratio can be determined
using
n—C
M.(n,p) = Z mP, {X =C+m}

m=1

(55)

and hence L.(p), the altered cell loss ratio, can be calculated
from (9) and (10).

Fig. 8 shows L.(p) as a function of ¢ for various values
of p where C = 50, A = 25 and s is the dashed curve
from Fig. 2. Observe that as ¢ increases, the cell loss ratio
improves. This is not unexpected [1], [6], [19], [33]: The
sum of a collection of independent, not necessarily identical,

Bernoulli random variables has largest variance for given
mean when the Bernoulli random variables are identically
distributed. Nevertheless, the magnitude of the effect is quite
striking.

It is perhaps even clearer that our use of a Bernoulli random
variable for the load produced by a call is conservative: See
[19] for a formalization of this remark in terms of the Chernoff
bound (24).

B. Fluctuating burstiness

Next we investigate the sensitivity of our results to fluctu-
ations over time in the burstiness parameter p. We suppose
that p = p(t), where p(t) = 0 for t < 0 so that the system
starts empty at time ¢ = 0. The subsequent evolution of the
distribution 7 (n, d;t) is given by the forward equations

om(n,d;t) ~
8 Q(t)m(n,d;t)

where the g-matrix Q(¢) is given through (18)—(20) and (27)
in terms of p(t). Thus the time dependent cell loss ratio,
L(t) = L(p, A; t), can be calculated from (5) and (9)-(10).

We illustrate the case C = 50, A = 25, and use the s
shown as the dashed line in Fig. 2. Let us suppose that p(t),
t > 0 is given by the top graph of Fig. 9; then the cell loss
ratio, calculated as described above, is given by the lower
graph. The system starts empty, at time ¢ = 0, and so initially
L(t) increases from zero. The equilibrium cell loss ratio for
p = 0.2is 1071928 and we see that L(¢) converges to this
value in about two call holding times. At ¢ = 5 the parameter
p(t) is suddenly increased to 0.25, and L(t) increases to
10~7-14, After about one call holding time L(t) has dropped
to 1071925 Similarly, after p(t) drops suddenly to 0.15, it
takes one or two call holding times for near equilibrium to be
restored. The exponential convergence to equilibrium, and the
fact that it takes just a few call holding times to reach near
equilibrium, are straightforward consequences of the simple
structure of the Markov chain describing the number of calls
in progress.

We have used sudden changes in the parameter p(t) to
illustrate the essential time constants of the system, rather
than because such changes are likely to occur with real traffic.
A more realistic fluctuation in p would be either of smaller

(56)
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magnitude, corresponding to changes in the nature of a single
call, or continuous, corresponding to a gradual shift in the
nature of many different calls. We next discuss such changes.
Suppose, that from ¢ = 15 to ¢ = 20 the parameter p(t)
increases so that p’(¢) = 0.2p(t). Then we observe a slight,
but not substantial, upward displacement in the cell loss ratio
over the same time interval. Similarly as p(¢) decreases so
that p’(t) = —0.2p(¢) over the interval beginning at ¢ = 23
up until p(¢) = 0.2, there is a slight downward displacement
in the cell loss ratio.

The cell loss ratio is relatively insensitive to the level of
the parameter p, but is affected by its rate of change and,
in particular, the derivative of logp. The final part of Fig. 9
illustrates the system’s response when p is driven by the
equation

d(log p(t)) = 0.1(dW (¢) + dt) 7

where W(t) is a standard Brownian motion.

It is perhaps worth emphasising that Fig. 9 is calculated
assuming all calls share the same parameter p: If fluctuations
in the parameter p are independent between calls, with the
average parameter p behaving as illustrated in Fig. 9, then
the cell loss ratio will be improved (see Section IV-A). We
conclude that the call admission control is able to respond
flexibly and robustly to changes in the burstiness of calls.

C. Sensitivity to Traffic Processes

There has been much discussion recently about the traffic
models appropriate for high-speed networks [32], [37] and
part of our motivation has been to develop a call admission
model that does not depend critically upon traffic assumptions.
We note here that the bufferless burst-scale model, leading to
(3), makes no assumptions about burst lengths, while our cell-
scale queueing model, described in Section VI, makes minimal
assumptions on the policing of peak rates. At the call-scale,
the distribution (17) is relatively robust to departures from
the Poisson and exponential assumptions: Indeed the simple
model leading to the distribution (8) is, like the Erlang loss
model, insensitive to the holding time distribution of accepted
calls [12], [15], [23].

D. Separation of Time-Scales

Our analysis assumes a complete separation of time-scales
between the call, burst and cell levels. The assumed separa-
tion between call and burst time-scales is embodied in our
supposition in Section II-A that the random variables X;(¢)
are independent for distinct values of ¢, while the assumed
separation between burst and cell time-scales will allow our
stationary analysis at the cell level in Section VI.

The separation of burst and cell levels has been well studied
{38]. The assumed separation between call and burst levels
requires more discussion. Bean [1] adapts a weak convergence
theorem of Hunt and Kurtz [17] to establish the separation
as an asymptotic result, as the ratio of mean burst length to
mean call holding time approaches zero. This limit result is
reassuring, as too is the observation that given n and p a
positive correlation between loads at distinct times makes less

1109

likely the dangerous combination identified in Section III-C
of a low value of S,(0) and a high value of S,(¢). There
remains, however, one further point to explore. If successive
load measurements are positively correlated, then under a very
high offered load a sequence of calls may be admitted in
quick succession as a consequence of a sequence of positively
correlated load measurements. We note that there are several
safeguards which will prevent this, and the simplicity of the
basic model allows many of them to be readily analyzed.
For example, Bean’s analysis [1], [2] includes a deterministic
wait after an admission before a new connection request
is considered. Alternatively, we could analyze the model
with v = oo, and assume that several connections may be
accepted together, as a result of a single load measurement.
For example, if a measurement S,, leads to the acceptance of
s(n)— S, calls, then the stationary distribution for the number
of calls in progress becomes

n—1

1 P{S,_1 <s(r—1)—-1}
T = 58
m(n) o« n 7:1:[ P{S, > s(r)— 1} (58)
For comparison distribution (23) may be rewritten as
n—1
P{S,
(1) o H P{S, <s(r)} (59)

e P{S, > s(r)}
The explicit forms (58) and (59) allow the effects of multiple
acceptances to be readily assessed.

V. PERFORMANCE

In this section we compare the performance of a scheme
s with the best performance possible when the burstiness
parameter p and the offered load A are known.

A. Optimal Performance

If the parameters p and A are known then the policy
maximizing the utilization U for a given cell loss ratio L is of
a very simple form. The policy is as follows: Accept an offered
call if the number of calls in progress, 7, is less than a critical
value N; reject an offered call if n > NN; and accept an offered
call with probability 7 if n = N. The parameters N and 7 are
chosen so that the cell loss ratio is exactly the desired level L.
Thus the optimal scheme has stationary distribution (8) with

1, n<N
a(n)=¢0, n>N (60)
7, n=N

where N and 7 depend upon p and A.

B. Comparisons

How do the schemes s of Sections III-D and III-E compare
with the optimal scheme? In Fig. 10 we plot the ratio of the
utilizations achieved over different values of p and A, for s the
dashed line of Fig. 2. For each value of p and ), the optimal
scheme is chosen to achieve the same cell loss ratio (10) as
is achieved at the point (p, A) by the scheme s. This plot is
necessarily bounded above by 100%, by the definition of the
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Fig. 10. Utilization relative to optimal scheme where the parameters p and
A are known (C' = 50).

optimal scheme. The important point to note is that, relative
to the optimal scheme, the scheme s looses no more than 3%
utilization over a very wide range of values of p and A.

We note that any scheme which uses repeated measurements
in order to estimate p and A could not perform better than the
optimal scheme; hence, as mentioned at the end of Section III-
B, the loss of efficiency through using but a single observation
of load is minimal.

In Fig. 11 we plot the utilizations achieved by the schemes
of Section III-E, with A = C and with s values as given
in Fig. 7. We also plot the utilizations achieved by the op-
timal scheme, where for each value of p and A = C the
optimal scheme is chosen to match the cell loss ratio of the
corresponding scheme of Section III-E. The optimal schemes
necessarily achieve a higher utilization, but we note that the
dominance is not great. We have seen in Fig. 5 that the “load
measurement only” schemes of Section III-E are relatively
robust to variations in p and A: Fig. 11 shows that they are also
nearly as efficient as a scheme that knows p and A precisely.

VI. TIME SCALES, BUFFERS AND CELL DELAY VARIATION

The development of earlier sections has assumed a very
simple model of the relationship between the cell and burst
levels: We have assumed, in (1) and (2), that the load produced
by a call is either O or 1, In this section we explore the
cell time-scale in more detail, and show how the essential
parameter of the burst level, the capacity C, may be deduced
from the parameters describing the cell level. We adopt a
direct approach, motivated by ATM standards [39], [40], [18].
These standards require that each connection has to specify
two parameters to the network, a peak rate and a cell delay
variation (CDV) tolerance 7, which allows a specified variation
about the peak rate. A tolerance of zero corresponds to
no variation. The network can check that the connection is
behaving by using a policer such as a simple leaky bucket,
which has a specified leak rate of r cells per second and
specified depth of b cells. The “bucket” is a counter which
increments by 1 when a cell is admitted, and decreases at rate
r when positive. Cells are discarded or delayed if the counter
would otherwise increase beyond b. The CDV tolerance [39],
[40] is then 7 = (b — 1)/r.

Suppose now we have a number of active connections
which are multiplexed together in a switch, where the switch
has a buffer of B cells, and a maximum service rate of R
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Fig. 11. Utilization relative to optimal scheme where the parameters p and
A are known. For each value of p the upper curve is the optimal scheme and
the lower curve is the load only scheme. Note that the relative utilization’s
natural scale is 0%-100%, while our scale runs from 20% to 70%.

cells/s. This is a realistic model of common ATM switches
which approximate to a nonblocking cross connect with output
buffering [30]. Each connection is policed by a leaky bucket
with parameters (r;,b;).

In order not to overload the buffer, the traffic intensity must
be less than 1, say less than p, that is

ZT‘i S pR.

i

(61)
Now in a time interval of length ¢, the number of cells allowed
through leaky bucket ¢ is bounded above by

b; +tr; (62)

so that the number of cells arriving at the buffer in an interval
of length ¢ is bounded by

Zbi+tZTi.

But the queue length @ of the buffer at an arbitrary time is
bounded [13] by

(63)

< su t T, + bl — Rt} (64)
@s t>Ig{ Z Z
<Y b (65)
using (61). Therefore no cells will be lost provided that
(66)

ZbigB.

Equation (61) corresponds to peak rate allocation, where we
use the contracted peak rate or bucket leak rate to decide
whether to admit calls, subject to the CDV tolerances being
within the limits of the buffer, as given by (66). Note that (66)
is implied by (61), provided that
he D (67)
i ~ pR
a relation bounding the time to empty each bucket in terms of
the time to empty the buffer.
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Inequality (66) is a worst case bound, and can be overly
pessimistic for large numbers of sources. In this case the
N x D/D/1 or > D;/D/1 analysis [38, sec. 6] is able
to provide better bounds, under the assumption that distinct
sources are independent. Suppose, for example, that we have
1000 sources, all with the same rate and with zero CDV
tolerance (b = 1). Then the random phasing of these constant
bit rate sources is described by an N« D/D/1 queue, whose
analysis [38] shows that with buffer B of 150 cells the
proportion of cells lost remains negligible (less than 10712,
say) even when the traffic intensity is high (p = 0.9, say). If
the traffic intensity is moderate (p < 0.75, say) then a buffer
B of 50 cells will produce a negligible cell loss.

The N« D/D/1 analysis provides a bound for much larger
CDV tolerances. Suppose, for example, that sources are each
policed by a leaky bucket of depth b, and that each source
emits through the leaky bucket a cluster of b cells at infinite
rate, every b/r units of time. Then a buffer of size B = 150b
cells is large enough to cope with the random phasing of the
clusters, even when the load is high (p = 0.9, say).

More generally, suppose that », R, b, B are given. Then, we
can calculate the number of sources C that can be simultane-
ously carried, by determining the traffic intensity p = Cr/R
at which the proportion of cells lost, determined by the
N % D/D/1 analysis with N = C, is negligible (10~12, say).
Fig. 12 shows how C varies with the ratios R/r and B/b.
Similarly the load S used in earlier sections can be defined
rather simply on the cell-scale as A/b where A is the number
of cells that arrive at the buffer B in b/r units of time.

The above discussion, and Fig. 12, indicate the importance
of the buffer ratio B/b. To provide a reference for the absolute
levels of buffers, we remark that a 150 Mb/s link between
Europe and North America will have around 10 000 cells
in flight along the link at any given instant. For a buffer
substantially smaller than 10000 cells, the delay in passing
through the buffer will be substantially smaller than the
transatlantic delay.

In earlier sections we have assumed that if the load S, is less
than C, then no cells are lost, while if the load S, is greater
than C, then the excess, (S, — C)¥, is lost. If C' is chosen by
the above analysis then when the load S,, is less than C the
proportion of cells that are lost will be negligible (less than
107!2), while when S,, exceeds C, a simple coupling argument
shows that no more than (S,, — C)* of the load will be lost.
Of course if any particular model is adopted for the cell scale,
then a less conservative argument is available. For example,
under the cell-scale model of this section, we could let M(N)
be the rate of cell loss from /N connections, calculated from
an N x D/D/1 analysis, and replace expression (4) by

M(n;p)= > (;\;)pN(l —p)" Y M(N). (68)

N=0

We have used the simpler expressions (3)—(5) in our earlier
analysis, since the particular cell-scale model described in this
section is not essential to that analysis.

This section has given one possible outline of the in-
terrelationship between the parameters of the cell-scale and
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Fig. 12. Relationship between R/r and B/b for fixed C. There is a trade-off
between buffer B and service rate R at the switch, as well as between the
bucket depth b and leak rates r at each source.

burst-scale analyses. There are, of course, many other cell-
scale effects that are important. For example [8], [27] discusses
how a slightly higher leak rate r than the agreed peak rate
might be chosen so as not to penalize a source for unavoidable
CDV introduced by an earlier multiplexing stage, and [8], [28]
discuss the CDV introduced by many stages of multiplexing.
For a detailed review of recent work on CDV, see [16]. If
further constraints upon source behavior may be enforced
or assumed, then other source models than that used in our
worst-case analysis can be constructed [14], [7], [22], [25].
In particular, we expect that real data, obtained under a
plausible policing and tariffing regime, will allow Fig. 12 to
be recomputed in a less conservative manner. There has been
much discussion recently of scheduling algorithms [31], [34],
[36]. Here we simply note that our analysis assumes only that
the cell-scale scheduling algorithm is work conserving.

VII. MULTIPLE CALL TYPES

In this section we briefly indicate, through two examples,
that the schemes described earlier may be readily extended to
deal with multiple call classes.

A. Aggregated Load Measurements

We have seen the effectiveness of schemes based on load
mesurements only, in Section III-E. When distinct call classes
have differing peak rates, it is important that load measure-
ments for different classes be aggregated separately [6, ch. 4].
We now illustrate a simple and effective mechanism.

Suppose that

n;(t)

Si(t) =" Xji(t) (69)
1=1

J
S(t) =3_8i(t),

where X ;;(t), for distinct values of 4, j, and ¢, are independent
random variables with
P{X;i(t) = hj} =p;  P{X;(t) =0} =1-p;. (70)
Here, X ;(t) is the load produced by a call of class j at time
t, and the calls of class j have peak rate h;, and mean rate
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TABLE 1
CeLL Loss RATIO AND UTILIZATION FOR 3 CALL CLASSES
(C = 50); Note THAT THE CELL Loss RATIO 1S WELL
CONTROLLED WHATEVER THE COMPOSITION OF THE OFFERED LOAD
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A A2 Az Cell loss ratio  Utilization

log,o(L) %

25.000 0.000 0.000 -10.17 23.86

12.500 12.500  0.000 -11.95 16.19

0.000 25.000 0.000 -12.06 12.99

0.000 12.500 12.500 -10.00 8.39

0.000 0.000 25.000 -10.55 5.69

12.500  0.000 12.500 -10.88 8.42

6.250 9.375  9.375 -9.01 9.69

6.250  6.250 12.500 -10.33 8.41

9.375 6.250 9.375 -10.18 9.73

12,500 6.250  6.250 -9.97 11.67

9.375 9.375  6.250 -9.90 11.52

6.250 12.500  6.250 -9.89 11.30

8.333 8.333  8.333 -9.01 10.25

m; = pjh;. The cell loss rate is

MMm)=E(S-0C)*t (71)
where n = (ny,n2,--+,ny). Assume that calls of class ki

arrive as a Poisson process of rate v;. Let A; = v;my, and
call A = Z]J.:l A; the offered load. Assume, for simplicity,
that the holding times of accepted calls are independent and
exponentially distributed with unit mean. Suppose that a call
arriving at time ¢ is accepted if

J

> 0S8, < L. (72)
j=1

Then n(t) is a multidimensional birth and death process, with
transition rates which can be readily evaluated. Observe that if
v; = 0 for j # k we recover the model of Section ITI-A, with
C replaced by C/hg. But how does the model perform in the
presence of multiple call classes? In Table I we show the cell
loss ratio and utilization achieved in a system with A = 25,
C = 50, J = 3, and call class parameters as follows

hiy = 1.0 he = 20 hs = 4.0
m; = 0.5 mey = 05 m3 = 05 (73)
oy = 0.032 Qg = 0.08 a3 = 1.0.

We note that the cell loss ratio remains under good control
throughout the region.

By construction the call loss probability is identical for the
various call classes. This might be appropriate if, for example,
a tariff structure, such as that described in [24], has accounted
for the different resource requirements of the different call
classes. If, however, it is desired to differentiate call loss
between different call classes then this can be achieved by
a simple extension of the above acceptance rule designed to
imitate trunk reservation [9], [10]: Accept an arriving call of
class j if

J
> a;S;(t) <165

i=1

(74)

Note that the larger 3;, the lower the priority of call class j.
Of course other simple priority mechanisms are possible, one
of which we discuss next.

e

Class 2

_Class1
100

0 10 20 30 40 50 60 70 80 90
Time (call holding times)

Fig. 13. System evolution with 2 call classes (C' = 100). Class 1 has peak
rate 1, while class 2 has peak rate 10. Differential backoff is used to give
priority to class 1.

B. Differential Backoff

The introduction of backoff into the scheme in Section VII-
A provides a further mechanism to differentiate between call
classes. As an illustration consider a system with C = 100,
A1 = A2 = A\/2 and two classes with parameters

hy = 1.0 ho = 100
m = 05 mp = 05 (75)
a; = 001 ap = 0.07.

But suppose now that when a call of either class is rejected,
the system refuses to consider for acceptance any call of
class 2 for an exponentially distributed period with mean o1
(clearly several refinements are possible). In Fig. 13 we show
the performance of such a scheme with o = 1.0. Observe
that as the offered load X increases, the cell loss rate remains
controlled, and the utilization steadily increases. The increase
in utilization is achieved since, as the load increases, priority
is given to calls with lower peak rate. Note how the call loss
probability for calls of class 1 increases slowly, while that
for calls of class 2 increases steeply. Of course many other
refinements and variations are possible, and in particular there
are many other forms of backoff. For example, when a call of
either class is rejected, instead of locking out arriving calls of
class 2, the system might require all calls of class 2 in progress
to reduce their peak rate. The essential point is that robust and
effective multitype call admission controls may be constructed
using a weighted load criterion of the form (72).

VIII. CONCLUSION

This paper has described a family of simple and robust call
admission controls, which are able to adapt to unknown and
possibly varying mean rates while achieving stringent quality
of service targets.
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A separation of time-scales provides the framework for our
analysis. Buffering caters for the cell delay variation, while
a bufferless model is used on the burst-scale. Load measure-
ments on the cell-scale are used to control call admission in
such a way that strict cell loss requirements are met.

A call need only specity its peak rate and a CDV tolerance:
Mean rates are implicitly and robustly estimated through
the operation of simple threshold rules. Our analysis does
not presume any particular choice of buffer size within the
network: There might be small buffers, 150 cells, say, for
certain real-time services, but if data services produce clumps
of say 1000 cells, then buffers might be measured in thousands
of cells. Similarly our examples have used tight quality of
service constraints, aiming for cell loss rates of 1 in 10° or
better, but the analysis could equally well have used less strict
requirements, with increased multiplexing gains.

A major feature of our approach is the simplicity of the
basic model. Such simplicity is, we believe, essential if a full
understanding of the behavior of a call admission control is
to be achieved.
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