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Abstract—Destination-based forwarding in traditional IP routers has not
been able to take full advantage of multiple paths that frequently exist in
Internet Service Provider Networks. As a result, the networks may not
operate efficiently, especially when the traffic patterns are dynamic. This
paper describes a multipath adaptive traffic engineering mechanism, called
MATE, which is targeted for switched networks such as MultiProtocol La-
bel Switching (MPLS) networks. The main goal of MATE is to avoid net-
work congestion by adaptively balancing the load among multiple paths
based on measurement and analysis of path congestion. MATE adopts a
minimalist approach in that intermediate nodes are not required to per-
form traffic engineering or measurements besides normal packet forward-
ing. Moreover, MATE does not impose any particular scheduling, buffer
management, or a priori traffic characterization on the nodes. This pa-
per presents an analytical model, derives a class of MATE algorithms, and
proves their convergence. Several practical design techniques to implement
MATE are described. Simulation results are provided to illustrate the effi-
cacy of MATE under various network scenarios.

I. INTRODUCTION

A. Motivation

Internet Service Providers (ISPs) are facing the challenge of
designing their networks to satisfy customers’ demands for fast,
reliable, and differentiated services. Internet traffic engineer-
ing is emerging as a key tool for achieving these goals in a
cost-effective manner. According to the IETF, Internet traffic
engineering is broadly defined as that aspect of network engi-
neering dealing with the issue of performance evaluation and
performance optimization of operational IP networks [2]. More
specifically, traffic engineering often deals with effective map-
ping of traffic demands onto the network topology, and adap-
tively reconfiguring the mapping to changing network condi-
tions. It is worth noting that traffic engineering is more gen-
eral than QoS routing in the sense that traffic engineering typi-
cally aims at maximizing operational network efficiency while
meeting certain constraints, whereas the main objective in QoS
routing is to meet certain QoS constraints for a given source-
destination traffic flow.

The emergence of MultiProtocol Label Switching (MPLS)
with its efficient support of explicit routing provides basic mech-
anisms for facilitating traffic engineering [7], [14]. Explicit rout-
ing allows a particular packet stream to follow a pre-determined
path rather than a path computed by hop-by-hop destination-
based routing such as OSPF or IS-IS. With destination-based
routing as in traditional IP network, explicit routing can only be
provided by attaching to each packet the network-layer address
of each node along the explicit path. However, this approach
generally makes the overhead in the packet prohibitively expen-
sive. In MPLS, a path (known as a label switched path or LSP)
is identified by a concatenation of labels which are stored in
the nodes. As in traditional virtual-circuit packet switching, a

packet is forwarded along the LSP by swapping labels. Thus,
support of explicit routing in MPLS does not entail additional
packet header overhead.

Several researchers have proposed to add traffic engineering
capabilities in traditional datagram networks using shortest path
algorithms (e.g., see [15], [9]). Although such schemes have
been shown to improve the efficiency of the network, they suffer
from several limitations including:

� load sharing cannot be accomplished among paths of different
costs,

� traffic/policy constraints (for example, avoiding certain links
for particular source-destination traffic) are not taken into ac-
count,

� modifications of link metrics to re-adjust traffic mapping tend
to have network-wide effects causing undesirable and unantici-
pated traffic shifts, and

� traffic demands must be predictable and known a priori.
The combination of MPLS technology and its traffic engineer-
ing capabilities are expected to overcome these limitations. Ex-
plicit LSPs and flexible traffic assignment address the first lim-
itation. Constraint-based routing has been proposed to address
the second limitation. Furthermore, network-wide effects can
be prevented when LSPs are pinned down. A change in LSP
route will only cause the disturbance of the traffic for the corre-
sponding source-destination pair. The objective of this paper is
to address the last limitation.

In MPLS, traffic engineering mechanisms may be time-
dependent or state-dependent. In a time-dependent mechanism,
historical information based on seasonal variations in traffic is
used to pre-program LSP layout and traffic assignment. Addi-
tionally, customer subscription or traffic projection may be used.
Pre-programmed LSP layout typically changes on a relatively
long time scale (e.g., diurnal). Time-dependent mechanisms do
not attempt to adapt to unpredictable traffic variations or chang-
ing network conditions. An example of a time-dependent mech-
anism is a global centralized optimizer where the input to the
system is a traffic matrix and multiclass QoS requirements as
described in [13].

When there are appreciable variations in actual traffic that
could not predicted using historical information, a time-
dependent mechanism may not be able to prevent significant
imbalance in loading and congestion. In such a situation, a state-
dependent mechanism can be used to deal with adaptive traffic
assignment to the established LSPs according to the current state
of the network which may be based on utilization, packet delay,
packet loss, etc. In this paper, we assume that LSP layout has
been determined using a long-term traffic matrix. The focus is
on load balancing short-term traffic fluctuations among multiple
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Fig. 1. A Transit Network Running MATE

LSPs between an ingress node and an egress node.

B. Overview

We propose a state-dependent traffic engineering mechanism
called Multipath Adaptive Traffic Engineering (MATE). Some
of the features of MATE include:

� distributed adaptive load-balancing algorithm,
� end-to-end control between ingress and egress nodes,
� no new hardware or protocol requirement in intermediate
nodes,

� no knowledge of traffic demand is required,
� no assumption on the scheduling or buffer management
schemes at a node,

� optimization decision based on path congestion measure,
� minimal packet reordering, and
� no clock synchronization between two nodes.

MATE operational setting assumes that that several explicit
LSPs (typically range from two to five) between an ingress node
and an egress node in an MPLS domain have been established
using a standard protocol such as CR-LDP [10] or RSVP-TE [3],
or configured manually. This is a typical setting which exists in
an operational ISP network that implements MPLS. The goal of
the ingress node is to distribute the traffic across the LSPs so
that the loads are balanced and congestion is thus minimized.
The traffic to be balanced by the ingress node is the aggregated
flow (called traffic trunk in [12]) that shares the same destina-
tion. MATE is intended for traffic that does not require band-
width reservation with best-effort traffic being the most domi-
nant type. Figure 1 shows an example of a network environment
where there are two ingress nodes, AI and BI, and two egress
nodes, AE and BE, in an MPLS domain. MATE would be run
on AI and BI to balance traffic destined to AE and BE, respec-
tively, across the LSPs connecting from AI to AE and from BI to
BE. Note that the LSPs connecting the two pairs may be over-
lapping and sharing the same resources. However, this paper
shows that stability can be guaranteed even though the pairs op-
erate asynchronously.

Figure 2 shows a functional block diagram of MATE located
at an ingress node. Incoming traffic enters into a filtering and
distribution function whose objective is to facilitate traffic shift-
ing among the LSPs in a way that reduces the possibilities of
having packets arrive at the destination out of order. The mech-
anism does not need to know the statistics of the traffic demands
or flow state information.

The traffic engineering function decides on when and how to
shift traffic among the LSPs. This is done based on LSP statis-
tics which are obtained from measurement using probe pack-
ets. The traffic engineering function consists of two phases: a
monitoring phase and a load balancing phase. In the monitoring
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Fig. 2. MATE Functions in an Ingress Node

phase, if an appreciable and persistent change in the network
state is detected, transition is made to the load balancing phase.
In the load balancing phase, the algorithm tries to equalize the
congestion measures among the LSPs. Once the measures are
equalized, the algorithm moves to the monitoring phase and the
whole process repeats.

The role of the measurement and analysis function is to ob-
tain one-way LSP statistics such as packet delay and packet loss.
This is done by having the ingress node transmit probe packets
periodically to the egress node which returns them back to the
ingress node. Probing may be done per class, i.e., probe packets
have the same type of service header information as the traffic
class being engineered. Based on the information in the return-
ing probe packets, the ingress node is able to compute the one-
way LSP statistics. Estimators of LSP statistics from the probes
may be obtained reliably and efficiently using bootstrap resam-
pling techniques. These techniques provide a dynamic mecha-
nism for sending the probe packets so that the smallest number is
automatically selected as the traffic conditions change to provide
a given desirable degree of accuracy. Recent measurements in
the Internet indicate little variations of aggregate traffic on links
in 5-min intervals [17]. This quasi-stationarity condition where
traffic statistics change relatively slowly (much longer than the
round-trip delay between the ingress and egress nodes) facili-
tates traffic engineering and load balancing based on measure-
ment of LSP statistics.

C. Paper organization

The rest of the paper is organized as follows. Section II
presents an analytical model for multipath load balancing, de-
rives a class of MATE algorithms, and proves their stability and
optimality. Section III details the overall MATE scheme and
discusses several implementation techniques, such as traffic fil-
tering and distribution, traffic measurement, bootstrapping, etc.
Section IV describes an experimental setup to verify the effec-
tiveness of the proposed scheme. Section V presents the perfor-
mance results and illuminates the behaviors of the algorithm in
different networking environments and with traffic models rang-
ing from Poisson to traffic models with longer dependence. The
Appendix provides analytical support and proofs for the results
presented.

II. MATE ALGORITHMS

In this section we present an analytical model of multipath
load balancing, derive a class of asynchronous MATE algo-
rithms, and prove their stability and optimality.
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A. Model

We model a MATE network by a set
�

of unidirectional links.
It is shared by a set � of ingress–egress (IE) node pairs, indexed�������	�
�
�
� � . Each of these IE pairs � has a set ���� ��� of LSPs
available to it. Note that, by definition, no two (distinct) IE pair
uses the same LSP, even though some of their LSPs may share
links. Hence �  are disjoint sets.

An IE pair � has a total input traffic of rate �� and routes ����
amount of it on LSP ������ such that�

�����! �"�� # �$ � for all �
Let �"%#'&(�"�� � �)�*�+
, be the rate vector of � , and let �-#&.� �� � �/���  � ���0��, the vector of all rates.

The flow on a link 12� � has a rate that is the sum of source
rates on all LSPs that traverse link 1 :

�435# �
6�87

�
3 �$��9 �����8 

� ��
Associated with each link 1 is a cost : 3 &.� 3 , as a function of the
link flow � 3 . We assume that, for all 1 , : 3 &<;=, is convex (and
hence continuous).

Our objective is to minimize the total cost :>&(�",?#A@ 3 : 3 &(� 3 ,by optimally routing the traffics on LSPs in B  �  :
CEDGFH :>&.�",I# �

3
: 3 &.�J3K, (1)

subject to
�
�$���  � K� #L�  � for all �M��� (2)

� ��*NPO � for all �/���  � ���0� � (3)

A vector � is called a feasible rate if it satisfies (2–3). A feasible
rate � is called optimal if it is a minimizer to the problem (1–3).

As observed in [5, Chapter 5], the derivative of the objective
function with respect to � �� isQ :Q � �� &.�",R# �

3 �$�
:�S3 &.�43K,

We will interpret : S3 &(� 3 , as the first derivative length of link 1 ,
and

Q :UT Q � �� &.�V, as the (first derivative) length of LSP � .
The following characterization of optimal rate is a direct con-

sequence of the Kuhn–Tucker theorem (see also [5, Chapter 5]).
It says that at optimality a pair splits its traffic only among LSPs
that have the minimum (and hence equal) first derivative lengths.

Theorem 1: The rate vector �XW is optimal if and only if, for
each pair � , all LSPs �Y�0�Z with positive flows have minimum
(and equal) first derivative lengths.

B. Asynchronous algorithm

A standard technique to solve the constrained optimization
problem (1–3) is the gradient projection algorithm. In such an
algorithm routing is iteratively adjusted in opposite direction of
the gradient and projected onto the feasible space defined by (2–
3). Each iteration of the algorithm takes the form:

�[&.\^] � ,_# ` �+&.\a,Zb%cXdE:>&(\a,fehg

where cji O is a stepsize and should be chosen sufficiently
small, d>:>&.\a, is a vector whose &�� � �", th element is the first
derivative length ` d>:>&(\a,fe(��k# Q :�T Q �"K� of LSP � at time \ ,
and ` l�e g is the projection of a vector l onto the feasible space.
The algorithm terminates when there is no appreciable change,
i.e., mGm �+&.\^] � ,Zbn�[&(\a,
mGm�oqp for some predefined p .

Note that the above iteration can be distributively carried out
by each pair � without the need to coordinate with other pairs:

�  &(\�] � ,_# ` �  &.\a,�bYcXd>:  &(\a,fe g (4)

where �"�&.\a,Y#5&.�V��J&.\a, � �r�s�Zt, is � ’s rate vector at time \ ,
and d>:  &(\a,u#v& Q :UT Q � �� &.�+&.\a,a, � �w�x�  , is the vector of first
derivative lengths of LSPs in �  . However (4) is not realistic,
for two reasons.

First (4) assumes all updates are synchronized. Second it as-
sumes zero feedback delay. Specifically (4) assumes that as soon
as the IE pairs have calculated a new rate vector �+&.\a, , it is re-
flected immediately in all the link flows:

� 3 &.\a,y# �


�
3 �$��9 �$���! 

�"K�z&(\a, (5)

and in all the first derivative lengths:Q :Q �V�� &.�+&.\a,a,R# �
3 �$�
: S3 &.� 3 &.\a,a, (6)

Moreover all pairs � have available these new values in d>:{�&.\a,
for computation of the rate vector in the next period. In practice
the IE pairs update their rates asynchronously and in an unco-
ordinated manner. Moreover the first derivative length of a LSP
can only be estimated empirically by averaging several measure-
ments over a period of time. We now extend the model to take
these factors into account.

Let |  �-} �8�6���	�
�	�~�t� be a set of times at which IE pair � ad-
justs its rate based on its current knowledge of the (first deriva-
tive) lengths of LSPs �����  . At a time \���|  , � calculates a
new rate vector

�  &(\�] � ,_# ` �  &.\a,�bYcX�  &(\a,fe g (7)

and, starting from time \[] � , splits its traffic �  along its LSPs
in �  according to �  &.\+] � , until after the next update time in|X . Here �"�&.\a, is an estimate of the first derivative length vector
at time \ , and is calculated as follows.

The new rates calculated by the IE pairs may be reflected in
the link flows after certain delays. We model this by (cf. (5))

�� 3 &(\a,?# ��
�.�G���f�J�.�

�


�
3 �$�$9 �����  �� 3

�� &.\ S � \a,<� �� &(\ S , (8)

��
� � �X�f�J�.�

� 3 K� &(\<S
� \a,�# �8��� \ ��� 1 � � � �����  (9)

In the above
�� 3 &.\a, represents the flow rate available at link 1 at

time \ and is an weighted average (convex sum) of past source
rates � �� &(\ S , . The weights � 3 �� &.\ S

� \a, depend on &(1 � � � � � \a, and
can be different between each source � and link 1 , on different
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LSPs � , and at different times \ . This model is very general and
includes in particular the following two popular types:

� Latest data only: only the latest rate � �� &��4, , for some (typi-
cally unknown) �/�Y} \[bn\�� �	�
�	�t� \ � , is used in the measurement
of
�� 3 &.\a, , i.e., � 3 K�z&(\ S

� \a,�# � if \ S #�� and 0 otherwise.
� Latest average: only the average over the latest

�
rates is used

in the measurement of
�� 3 &(\a, , i.e., � 3 �� &(\ S

� \a, i O for \ S #��/b� ] ���
�	�
�t� � and 0 otherwise, for some (typically unknown) � �}	\+bn\�� �
�	�
�	� \ � .
An IE pair � estimates the first derivative length of an LSP� � �  by asynchronously collecting a certain number of mea-
surements (using probe packets, see below), and forming their
mean. Hence (cf. (6))

� �� &.\a,�# ��
�.� ���f�"�.�

�
3 �$�

� 3 �� &.\<S � \a,a:�S3 & ��J3a&.\<S ,a, (10)

��
� � ���f�"�.�

� 3 K� &(\<S � \a,?# �8� � \ �<� 1 � � � ���/�  (11)

Again the estimate is obtained by ‘averaging’ over the past val-
ues of LSP lengths, and can depend on &�1 � � � � � \a, . The model
is very general and include the special cases of using only the
last received measurement or the average over the last

�
val-

ues, as discussed above. The interpretation in both cases is that
the measurements @ 3 �$� : S3 &

�� 3 &.\ S ,a, for \ S i	� have not been re-
ceived by � by time \ , and the measurements for \ S o
� (latest
data only) or for \ S�� � b � (latest average) have been discarded.

This concludes the description of our algorithm model (equa-
tions 7–11). The model is similar to that in [18], with two dif-
ferences. First their model distinguishes between the desired
rate �+&.\a, as calculated by the projection algorithm and the ac-
tual realized source rate

��+&.\a, . The actual rate
��+&.\a, is a convex

combination of the current desired rate �[&(\a, and the previous ac-
tual rate

��[&(\�b � , . This models the fact that a desired rate �+&.\a,
may not be realized immediately, as in a virtual circuit network
where virtual circuits may persist over several update cycles.
We are however only dealing with IP datagrams and hence it is
reasonable to assume that each ingress node can shift its traffic
among the LSPs available to it immediately after each update.
Second their model assumes that, at time \ , each � has available
the current first derivative lengths @ 3 �$� : S &

�� 3 &(\a,a, and uses it in
place of the gradient in the update algorithm. We however as-
sume that, at time \ , � may only have outdated first derivative
lengths (see (10–11)); moreover � uses a weighted average over
several past lengths in the update algorithm. This is because, in
our case, � can only estimate the first derivative lengths through
noisy measurement.

The next result states that the algorithm converges to an opti-
mal routing, provided the following conditions are satisfied:
C1: The cost functions : 3 &(l , are twice continuously differen-
tiable and convex.
C2: Their derivatives : S3 &(l , are Lipschitz over any bounded
sets, i.e., for any bounded set  3 ��� there exists a constant � 3
such that for all l � l S �� 3 , we have m : S3 &�l!,tb : S3 &(l S ,
m � � 3 m lJb{l S m .C3: For any constant � the sets } lVm : 3 &(l , � � � are bounded.
C4: The time interval between updates is bounded.

Theorem 2: Under conditions C1–C4, starting from any ini-
tial vector �[& O , , there exists a sufficiently small stepsize c such

that any accumulation point of the sequence }	�+&.\a, � generated
by the asynchronous algorithm is optimal.

A more careful accounting shows that the stepsize c , and
hence the speed of convergence, depends on the degree of asyn-
chronism as expressed by the parameter \�� defined in (8), the
‘steepness’ of the cost function as expressed by the Lipschitz
constant in condition C2, and the size of the network. For ease
of exposition, suppose the cost functions are uniformly globally
Lipschitz, i.e., for all links 1 and all l , l S , we have

m :�S3 &�l!,+b :�S3 &(l!SG,	m � � m l�b l!SKm
Theorem 3: An upper bound in Theorem 2 is:

c o �� & � ]����J�[& � \�� ] � ,a,
where � is the total number of LSPs in the network, � is the
number of hops in the longest (maximum–hop) LSP, � is the
maximum number of LSPs going through a link, and \ � , defined
in (8), measures the degree of asynchronism.
The theorem suggests that the larger the degree of asynchronism
measured by \�� , the smaller the stepsize and hence slower the
convergence.

C. Example cost function

The choice of cost functions determines the parameters to
be measured and equalized in carrying out MATE. A natural
choice for the link cost is delay. Then Theorem 1 implies that
the derivatives of the LSP delay are the congestion measures to
be equalized.

If we take the delay to be the average delay of an � T�� T �
queue : 3 &.� 3 ,U# � T�&�� 3 b�� 3 , , � 3 representing the link capacity
then : 3 satisfies the conditions of Theorem 2 and hence the al-
gorithm will converge to an optimal traffic split. Note that the
link capacity � 3 typically fluctuates randomly. Hence the delay
derivatives cannot be computed and must be measured. Loss
may be incorporated into the cost by treating each packet loss as
a fixed (large) delay. Another alternative is to use the product of
loss and delay as the cost function. In summary, the basic goal
is to steer the network towards a desired operating performance
based on a chosen cost function.

III. MATE IMPLEMENTATION TECHNIQUES

In this section, we provide further elaboration on the tech-
niques employed in our implementation of the MATE functions.

A. Traffic filtering and distribution

The traffic filtering and distribution function first distributes
the traffic to be engineered for a given ingress-egress pair
equally among � bins, where the number of bins determines
the minimum amount of the traffic that can be shifted. If the
total incoming traffic to be engineered is of rate � bps, each bin
would receive an amount of �u#���T�� bps. The traffic from the
� bins is then mapped into the � LSPs according to the MATE
algorithm described in the last section.

The engineered traffic can be filtered and distributed into the
� bins in a number of ways. A simple method is to distribute the
traffic on a per-packet basis without filtering. For example, one
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may distribute incoming packets at the ingress node to the bins
in a round-robin fashion. Although it does not have to maintain
any per-flow state, the method suffers from potentially having to
reorder an excessive amount of packets for a given flow which
is undesirable for TCP applications.

On the other extreme, one may filter the traffic on a per-flow
basis (e.g., based on o source IP address, source port, destina-
tion IP address, destination port, IP protocol i tuple), and dis-
tribute the flows to the bins such that the loads are similar. Al-
though per-flow traffic filtering and distribution preserves packet
sequencing, this approach has to maintain a large number of
states to keep track of each active flow.

Another method is to filter the incoming packets by using a
hash function on the IP field(s). The fields can be based on the
source and destination address pair, or other combinations. A
typical hash function is based on a Cyclic Redundancy Check
(CRC). The purpose of the hash function is to randomize the
address space to prevent hot spots. Traffic can be distributed
into the � bins by applying a modulo-N operation on the hash
space. Note that packet sequence for each flow is maintained
with this method.

After the engineered traffic is distributed into the � bins, a
second function maps each bin to the corresponding LSP ac-
cording to the MATE algorithm. The rule for the second func-
tion is very simple. If LSP � is to receive twice as much traffic
as LSP � , then LSP � should receive traffic from twice as many
bins as LSP � . The value � should be chosen so that the small-
est amount of traffic that can be shifted, which is equal to

� T��
of the total incoming traffic, has a reasonable granularity.

B. Traffic measurement and analysis

The efficacy of any state-dependent traffic engineering
scheme depends crucially on the traffic measurement process.
MATE does not require each node to perform traffic measure-
ment. Only the ingress and egress nodes are required to partici-
pate in the measurement process.

For the purpose of balancing the loads among LSPs, the avail-
able bandwidth appears to be a desirable metric to measure. The
methods for measuring the available bandwidth of a given path
have been described in the past (e.g., see [11], [8]). Based on
our experience, this metric turns out to be difficult to measure
accurately using the minimal requirements assumed in MATE.

To this end, we found that packet delay is a metric that can
be reliably measured. The delay of a packet on an LSP can be
obtained by transmitting a probe packet from the ingress node to
the egress node. The probe packet is time-stamped at the ingress
node at time |�� and recorded at the egress node at time |�� . If
the ingress’ clock is faster than the egress’ clock by |�� , then
the total packet delay (i.e, queueing time, propagation time, and
processing time) is |���b |��{]w| � . A group of probe packets
sent one at a time on an LSP can easily yield an estimate of
the mean packet delay � ` | � b�| � e"]q|	� . The reliability of the
estimator can be evaluated by bootstrapping (see details below)
to give the confidence interval for the mean delay. One impor-
tant point to note is that the value of | � is not required when
only the marginal delay is needed. MATE exploits this property
by relying only on marginal delays rather than absolute delays.
Therefore, clock synchronization is not necessary.

Packet loss probability is another metric that can be estimated
by a group of probe packets. In general, only reasonably high
packet loss rates can be reliably observed. Packet loss proba-
bility can be estimated by encoding a sequence number in the
probe packet to notify the egress node how many probe packets
have been transmitted by the ingress node, and another field in
the probe packet to indicate how many probe packets have been
received by the egress node. When a probe packet returns, the
ingress node is able to estimate the one-way packet loss proba-
bility based on the number of probe packets that has been trans-
mitted and the number that has been received. The advantage of
this approach is that it is resilient to losses in the reverse direc-
tion.

The bootstrap is a powerful technique for assessing the accu-
racy of a parameter estimator in situations where conventional
techniques are not valid [19]. Most other techniques for com-
puting the variance of parameter estimators or for setting con-
fidence intervals for the true parameter assume that the size of
the available set of sample values is sufficiently large, so that
asymptotic results (central limit theorem) can be applied. How-
ever, in many situations the sample size is necessarily limited,
such is the case in traffic engineering mechanisms like MATE,
where the probe packet load should not consume significant net-
work resources. In MATE, we can use the bootstrap to obtain
reliable estimates of the congestion measures of the mean delay
and cell loss rate from a given set of measurements obtained via
the probe packets. By selecting a desirable confidence interval,
we get a dynamic way of specifying the number of observations
needed. This provides a built-in reliability estimator which auto-
matically selects the required number of probe packets to send.
We have found this quite useful in our implementations, in com-
parison with schemes where the number of probe packets is set
in an ad-hoc manner, and the number of probes may be too small
or too large. The following is a basic procedure for computing a
confidence interval:

� Step 0: Suppose the original sample is 
 #k}	� � � � � �	�
�
�	� ��� � .
� Step 1: Draw a random sample of m values, with replacement,
from 
 . This produces the bootstrap resample  .

� Step 2: Calculate the mean for  (say, ��� ).
� Step 3: Repeat steps 1 and 2 a large number of times to obtain
n bootstrap estimates � � � � � �
�
�	�
� �	� .

� Step 4: Sort the bootstrap estimates into increasing order
��& � , �	�
�
�	� ��&��^, .
� Step 5: The desired & � b��Z, � O8O�� bootstrap confidence interval
for the mean is &���&�� � , � ��&�� � ,a, , where � � #P&��	��T � , and � � #
� b�����] � .

IV. EXPERIMENTAL METHODOLOGY

In this section, we use simulations to evaluate the effective-
ness of MATE. The objective of our simulation study is to
show that within a network that has multiple LSPs between
some ingress and egress nodes, the traffic distribution under
the MATE algorithm is stable, and load balancing is achieved.
We concentrate on two network topologies: one with a single
ingress-egress pair connected by multiple LSPs, and the other
with multiple ingress-egress pairs where some links are shared
among the LSPs from different pairs. Note that in the latter case,
there is a considerable interaction between the pairs. In the fol-
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Fig. 4. Experiment Network Topology 2

lowing, we will present a description of the simulator, the test
networks we use, and the data collection.

We wrote a packet level discrete-event simulator, which sup-
ports entities such as packet queues, switched LSPs, network
connections. We consider networking environments where the
traffic conditions vary due to changes in network load (link uti-
lization), for example, due to ”rush hour” conditions, or some
LSP failures, and traffic variations due to correlations and de-
pendencies. We realize that we can not distribute packets be-
longing to short lived network connections. As a result, we
specify two types of traffic in our simulator: engineered traffic
and cross traffic. The engineered traffic is the traffic that needs
to be balanced, and the cross traffic is the background traffic
that we have no control over. We assign a lifetime to each traffic
source so we are able to simulate the dynamic behaviors of a net-
work by switching on and off cross traffic sources. We consider
a traffic model which exhibits short-range dependencies, such
as Poisson, and another model which can be tuned to model a
large degree of dependencies. For the latter we use the DAR(� )
process (discrete autoregressive process of order � ) [16]. The
parameter � determines the time-scale over which traffic depen-
dency and correlation are exhibited. If � is 1, the process is
a standard Markov process. In our experiments we set � to a
value of 10; this leads to a substantial degree of correlation in
the generated traces.

Figure 3 and Figure 4 are the two network topologies used in
our experiment. The first topology consists of a single pair of
ingress-egress nodes. There are 6 LSPs connecting the ingress
node to the egress node, and all links are identical so that the
LSPs have the same bottleneck link bandwidth.

In the second network topology, we have 3 ingress nodes,
I1, I2, and I3, and three egress nodes, E1, E2, and E3. Alto-
gether, they form three pairs. The links in this network are again
all identical. Each ingress-egress pair has two LSPs for traffic
balancing. We set up this scenario so there is a common link
for every two pairs. In each of our simulations, the engineered
traffic for each pair flows from the ingress node to the egress
node. The cross traffic enters at the intermediate node and ex-
its at egress node(s). We consider two implementations of the
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Fig. 5. Offered load under Poisson traffic for network topology 1
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Fig. 6. Loss under Poisson traffic for network topology 1

basic algorithm. In the first one, a small random delay is intro-
duced before the algorithm moves from the monitoring phase to
the traffic engineering phase upon detection of change in traffic
conditions. This damping mechanism reduces synchronization
among multiple ingress nodes. In the second implementation,
there is a coordination among the ingress nodes so that only one
ingress node at a time enters the traffic engineering phase. This
obviously requires a special coordination protocol. We omit the
details in this paper.

In order to do data collection, we record the total offered load
and the loss rate on each link. We compute the loss rate on each
LSP from the link loss rates. The loss rate on an LSP can be
computed by assuming that the link loss rates are independent
as follows:

\��$\ � 1 1����$� # & � b � & � b 1����$����, ,
where the product is taken over all links � in the LSP.

V. SIMULATION RESULTS

In this section, we show the results from the simulation of the
two networks in the previous section. These results are encour-
aging in that they show our algorithms have good stability and
convergence properties.

First we present the results from a single ingress-egress pair.
We show two sets of data for this scenario. Figure 5 and Fig-
ure 6 show the results of an experiment with Poisson traffic on
the network in Figure 3. Initially, all of the engineered traffic
streams are routed on one of the LSPs, and cross traffic enter the
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Fig. 12. Offered load under Poisson traffic with coordination for network topol-
ogy 2

network at the intermediate nodes connecting the ingress and
egress nodes. We have an unbalanced situation with one heavily
congested LSP and five lightly loaded LSPs. As shown in the
plot, the algorithm is able to successfully reduce the engineered
traffic from the overloaded link and distribute them to the under-
utilized links. The loss curve shows clearly that the loss rate on
the first LSP dropped from 40% to a value that is too small to
observe1. The loss rates on the other LSPs are maintained at
negligible levels throughout the simulation. The final traffic dis-
tribution converges to a steady state, where utilizations are very

�

Note that loss rates on the order of 10% to 20% are not atypical in the Inter-
net.
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Fig. 15. Loss under DAR traffic with coordination for network topology 2

close on all LSPs. We observe similar behavior in Figures 7 and
8 where the Poisson streams are here replaced with DAR traffic
streams that possess correlation and dependence. We point out
that the probe traffic required in the each phase of the algorithm
is around O ��� � of the engineered traffic, thereby ensuring the
scalability of the overall approach.

The Figures 10 - 13 show the simulation scenario for Fig-
ure 4 under the two implementations mentioned earlier. Again
the engineered traffic streams travel from the ingress node to the
egress node, and the cross traffic enters through the intermediate
nodes and exit at the egress nodes. The cross traffic dynamics
are shown in Figure 9. There is a decrease in cross traffic on
link 3 right before 2000 seconds and a increase in cross traf-
fic on link 2 around 3600 seconds. In order to balance traffic,
the algorithms must shift traffic into link 3 and possibly out of
link 2. Both implementations essentially achieve the same per-
formance, where utilizations and loss rates on three LSPs are
comparable. Figure 14 and Figure 15 show the same simulation
with DAR traffic instead of Poisson traffic where coordination
among ingress node is considered.

VI. CONCLUSIONS

Our focus on this paper was to apply adaptive traffic engi-
neering to utilize network resource more efficiently and mini-
mize congestion. We have proposed a class of algorithms called
MATE, which tries to achieve these objectives using minimal
assumptions through a combination of techniques such as boot-
strap probe packets, which control the amount of extra traffic,

and marginal delays that are easily measurable and do not re-
quire clock synchronization. Our analytical models prove the
stability and optimality of MATE. Our simulation results show
that MATE can effectively remove traffic imbalances among that
may occur among multiple LSPs. We observe that, in many
cases, high packet loss rates can be significantly reduced by
properly shifting some traffic to less loaded LSPs. This should
benefit many applications such as TCP. For future work we will
consider more realistic networking environments and examine
the impact of MATE on the application level.
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APPENDIX

Proof of Theorem 1

Since the cost function is convex the first order optimality
condition is both necessary and sufficient: �^W is optimal if and
only if ��W is feasible and there exist constants �  such that for
all &�� � �V, Q :Q �V�� &.� W ,Y#

�
3 �$�
:�S3 &.� W 3 , N �  (12)

with equality if ��W�� i O . Hence all LSPs �n�n�  with ��W�� i O
have their first derivative lengths equal to �  .
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Proof of Theorem 2

Its proof is adapted from that in [18]. Let lJ&(\a,I#k�+&.\[] � ,�b�[&(\a, . Using a first order Taylor expansion for : we have for
some rate vector �V&(\a, 2

:>&.�[&(\[] � ,a,_# :>&.�+&.\a,a,+]�d>:>&(�[&.\a, ,<l"&.\a,+]�� l"&.\a,ad � :>&���&.\a, ,<l"&.\a,
� :>&.�+&.\a,a,+]��[&.\a,alJ&(\a,

]>m m d>:>&.�+&.\a,a,�b �[&.\a,	m m�;!mGm l"&.\a,	m m
]�� � m m lJ&(\a,
mGm � (13)

where �^&.\a,E# &K�  &(\a, � �Y� ��, and the constant � � depends on
the initial vector �[& O , . We next show that

�[&.\a,<l"&.\a, � b
�
c mGm lJ&(\a,
mGm � (14)

m m d>:>&.�[&(\a,a,?b �[&.\a,	m m�;8mGm l"&.\a,	m m � � � ��
� � �X�f�

�
� �
m m l"&.\ S ,
mGm � (15)

for some constant � � that depends on �[& O , .
First, note that (14) holds if the following holds for all � :

�  &(\a,<l  &.\a, � b �c mGm l  &.\a,
mGm � (16)

For \���n|X (16) trivially holds. For \ �%|[ apply the projection
theorem [4] to (7) to obtain

&(�[&(\a,ZbYcX�[&.\a,Zbn�[&(\[] � ,a,t&(�[&(\a,Zb%�+&.\[] � , , � O
Rearranging terms yields (16).

To show (15) note that since all norms in � � are equivalent
there exist constants ��� and ��� such that

m m d>:>&.\a,�b �[&.\a,
mGm �
� �	� C�
� C�
������  

���� Q :Q �"K� &(�[&(\a,a,�b � �� &.\a,
���� (17)

� � � C�
� C�
������  
�
3 �$�

�� : S3 &.� 3 &.\a,a,
b ��
� � ���f�J� �

� 3 ��4&.\<S � \a, :�S3 & ��43 &.\<Sh,a,
�����

� � � C�
� C�
������8 C�
��3 �$� C�
�
�f�"� �

�
� �
�
��� :�S3 &.�J3 &.\a, ,Zb :�S3 & ��43 &(\<SG, , �� (18)

# ��� C�
�3 � � C�
��
�f�J�.�

�
�.�
�
�
�� :�S3 &(�43a&(\a,a,Zb :�S3 & ��43 &.\<Sh,a, ��

Let  �=# } �)m�:>&.�", � :>&.�+& O , , � and  3 �=# }�� m�� #@  @ 3 �$��9 �����8 �V�� , for some �-�  � . In words,  is the set
of rate vectors � at which the total cost :>&.�V, is no greater than
the initial cost. As will be seen, provided the stepsize c is suffi-
ciently small, :>&.�+&.\a, , � :>&(�[& O ,a, for all \ (see (21)). That is, 
is the set of all possible rate vectors given the initial �[& O , . (This�

For simplicity we write �� instead of the more correct notation ����� for
the inner product of two vectors � and � . We usually use ��� ����� to denote the
Euclidean norm, but sometimes ��� ����� � for emphasis.

can be made more rigorous by induction.) Then  3 is the set of
all possible link flows on link 1 . By condition C2, we have for
some constants ��� � �! � � �

mGm d>:>&(\a,�b �^&(\a,
mGm �
� � � C�
�3 � � C�
�

�f�J�.�
�
�.�
�
�
�� �43 &.\a,Zb ��43a&(\<Sh, �� (19)

� �!� C�
�3 � � C�
�
�f�J� �

�
� �
�
�
�


�
3 �$��9 �����8 ������ � �� &(\a,Zb � ��

�.� �G���.�h�"�.�
� 3 �� &.\<S S

� \<S ,�� �� &.\<S S ,
������

� �  C�
� C�
���$���! C�
�
�f�"� �

�
� �
�
�

C�
��
� � �J� �

�
� � �
�
� �
m � �� &.\a,�b%� �� &.\<S S ,
m

� �! C�
� C�
���$���! m �"��4&(\a,Zb%�V��J&.\+b � ,
m ] ;	;
;
]�m �"��4&.\+b � \ � ] � ,+bn�"��4&(\+b � \ � ,
m

� � � �f�
��

� � �X�f�
�
� �
m m l"&.\ S ,
mGm � (20)

Hence

m m d>:>&.�[&(\a,a,?b �[&.\a,	m m�;8mGm l"&.\a,	m m
� � � �f�

��
�.� ���f�

�
�.�
mGm lJ&(\<SG,	m m$; m m l"&.\a,
mGm

� � � ��
� � ���f�

�
� �
mGm lJ&(\<SG,	m m �

where the last inequality follows from the fact that the convex
function @ � � �"��]#� � b @ � � �$� attains its minimum of zero over}%� � � �Xm � ��N O � � N O � at the origin. This completes the proof of
(15).

Substituting (14–15) into (13) we have

:>&.�+&.\^] � ,a,
� :>&.�+&.\a, ,�b

& �
c b'� �)(�m m lJ&(\a,
mGm �

]�� � ��
� � ���f�

�
� �
m m lJ&(\ S ,	m m �

Summing over all \ we have

:>&.�[&(\[] � ,a,
� :>&.�[& O , ,�b

& �
c b'� �)( ��*

�
�
m m lJ&��4,
mGm �

]�� � ��*
�
�

*�
�.� �
*
�
�
�.�
m m l"&.\ S ,
mGm �

� :>&.�[& O , ,�b
& �
c b'� � b'� � & � \��I] � , (

��*
�
�
m m l"&��4,
mGm � (21)

Choose c small enough such that �+ b,� �{b,� �!& � \ � ] � ,Mi O .
Since �[&.\a, is in a compact set and : is continuous, :>&(�[&(\a,a, is
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lower bounded. Then since :>&(�[&(\a,a, is bounded for all \ we must
have @��*

�
� mGm lJ&��4,
mGm � o � , which implies

m m lJ&(\a,
mGm�� O as \�� � (22)

Substituting this into (20) we conclude that

�[&.\a,�� d>:>&.\a, as \�� � (23)

Let � W be an accumulation point of }	�+&.\a, � . One exists since}	�+&.\a, � is in a compact set. By (23) and the fact that : is contin-
uously differentiable we have

�^&(\a,�� 	 DGC
�

 �

dE:>&(\a,%# d>:>&.� W , (24)

Since the time interval between updates is bounded, for any � ,
we can find a subsequence } �[&.\���, � \�n� |  � that converges to�VW , i.e.,

	 DGC �+�+&.\�8,�# �VW . Applying again the projection theo-
rem [4] to (7) we have for any feasible �X
&.�  &.\��,+b%cX�  &(\��,Zbn�  &(\� ] � ,a,t&(�  bn�  &(\�{] � ,a, � O

&(l�$&(\ � ,X] c��"�&.\ � ,a,t&(�" bn�"�&(\ � ] � ,a, N O
Taking

� � � we have by (22) and (24) that for any feasible�  ,
d>:  &(� W ,t&(�  b 	 D C� 
 � �  &.\� ]

� ,a, N O
Since lJ&(\a,�#x�+&.\�] � ,	b �+&.\a,�� O by (22), we have

	 DGC �[�  &.\��]� ,�# 	 D C �+�  &.\��,�# �VW , and hence

d>:2�&.� W ,t&.�V b%� W , N O
for any feasible �  . Summing over all � , we have for any feasible�

d>:>&.� W ,
&.��bn� W , N O
which, since : is convex, is necessary and sufficient for �[W to
be optimal.

Proof of Theorem 3

Since the cost functions : 3 are globally Lipschitz uniformly
in 1 , the constant � � in (13) equals the Lipschitz constant

�
. For

any � –tuple l , m m lVm m � ��� �?mGm lVm m � , and hence the constant � � in
(17) is � . Similarly, since m m l"mGm � � �?mGm lVm m � , the constant �	� in
(18) is ��� . By Lipschitz continuity, the constant � � in (19) is� � # �	� � # ��� � , the constant �  following is �  # � � �0#
��� � � . Finally, since mGm lVm m � � mGm lVm m � , we have � ��# �! �#
��� � � in (20). Hence from (21) an upper bound for the stepsizec is

c o �
� � ] � � & � \��I] � , # �� & � ]����J�[& � \�� ] � ,a,


