
Design and Analysis of Frame-based Fair Queueing:

A New Traffic Scheduling Algorithm for Packet-Switched Networks

Dimitrios Stiliadis and Anujan Varma

Computer Engineering Department

University of California

Santa Cruz, CA 95064

Abstract

In this paper we introduce and analyze frame-based fair

queueing, a novel traffic scheduling algorithm for packet-

switched networks. The algorithm provides end-to-end delay

bounds identical to those of PGPS (packet-level generalized

processor sharing), without the complexity of simulating the

fluid-model system in the background as required in PGPS.

The algorithm is therefore ideally suited for implementation

in packet switches supporting a large number of sessions.

We present a simple implementation of the algorithm for

a general packet switch. In addition, we prove that the

algorithm is fair in the sense that sessions are not penalized

for excess bandwidth they received while other sessions were

idle. Frame-based fair queueing belongs to a general class

of scheduling algorithms, which we call Rate-Proportional
Servers. This class of algorithms provides the same end-to-

end delay and burstiness bounds as PGPS, but allows more

flexibility in the design and implementation of the algorithm.

We provide a systematic analysis of this class of schedulers

and obtain bounds on their fairness.

I. INTRODUCTION

Providing QoS guarantees in a packet network requires
the use of traffic scheduling algorithms in the switches (or
routers). The function of a scheduling algorithm is to se-
lect, for each outgoing link of the switch, the packet to be
transmitted in the next cycle from the available packets be-
longing to the flows sharing the output link. Implementa-
tion of the algorithm may be in hardware or software. In
ATM networks, where information is transmitted in terms
of small fixed-size cells, the scheduling algorithm is usually
implemented in hardware. In a packet network with larger
packet-sizes, the algorithm may be implemented in software.

Several scheduling algorithms are known in the liter-
ature for bandwidth allocation and transmission schedul-
ing in output-buffered switches. These include the
packet-by-packet version of Generalized Processor Sharing
(PGPS) [1] (also known m Weighted Fair Queueing [2]),

This researchis supported by the NSF Young Investigator Award
No. MIP-9257103.

Permission to make digital/hard copy of part or all of this work
for personal or classroom use is granted without fea providad
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republlsh, to post on
servere, or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS ’96 5/96 PA, USA
01996 ACM 0-89791 -793 -6196 /0005 . ..$3.50

VirtualClock [3], Self-Clocked Fair Queueing (SCFQ) [4],

Delay-Earliest-Due-Date (Delay-EDD) [5], Weighted Round

Robin [6], and Deficit Round Robin [7]. Many of these al-

gorithms are also capable of providing deterministic upper

bounds on the end-to-end delay seen by a session when the

burstiness of the session traffic is bounded (for example,

shaped by a leaky bucket).

Based on their internal structure, traffic schedulers can

be classified into two main types: sorted-priority and frame-

based [8]. In a sorted-priority scheduler, there is a global

variable — usually referred to as the virtual time — asso-

ciated with each outgoing link of the switch. Each time

a packet arrives or gets serviced, this variable is updated.

A timestamp, computed as a function of this variable, is

associated with each packet in the system. Packets are

sorted based on their timestamps, and are transmitted in

that order. VirtualClock [3], Weighted Fair Queueing [2],

and Delay-EDD [5] follow this architecture. A frame-based

scheduler, on the other hand, does not require a priority-

queue of packets to be maintained. Instead, bandwidth

guarantees are provided by splitting time into frames of

fixed or vzwiable length, and limiting the amount of traf-

fic a session is allowed to transmit during a frame period.

Examples for frame-based schedulers include Hierarchical

Round Robin [9], Stop-and-Go Queueing [10], Weighted

Round Robin [6] and Deficit Round Robin [7].

A traffic scheduling algorithm must possess several desir-

able features to be useful in practice:

1. Isolation of flows: The algorithm must isolate an end-

to-end session from the undesirable effects of other

(possibly misbehaving) sessions. Note that isolation is

necessary even when policing mechanisms are used to

shape the flows at the entry point of the network, as the

flows may accumulate burstiness within the network.

2. Low end-to-end delays: Real-time applications require

from the network low end-to-end delay guarantees.

3. Utilization: The algorithm must utilize the link band-

width efficient ly.

4. Fairness: The available link bandwidth must be di-

vided among the connections sharing the link in a fair

manner. An unfair scheduling algorithm may offer
widely different service rates to two connections with

the same reserved rate over short intervals.

5. Simplicity of implementation: The scheduling algo-
rithm must have a simple implementation. In an ATM

network, the available time for completing a scheduling

decision is very short and the algorithm must be im-

plemented in hardware. In packet networks with larger

packet sizes and/or lower speeds, a software implemen-

104

tation may be adequate, but scheduling decisions must

still be made at a rate close to the arrival rate of pack-

ets.

6. Scalability: The algorithm must perform well in

switches with a large number of connections, as well

as over a wide range of link speeds.

Weighted Fair Queueing (WFQ), also known as Packet-

level Generalized Processor Sharing (PGPS), is an ideal

scheduling algorithm in terms of its fairness and delay

bounds, but is complex to implement because of the need

to simulate an equivalent fluid-model system in the back-

ground. Timestamp computations in PGPS have a time-

complexity of O(V), where V is the number of sessions

sharing the outgoing link. Self-Clocked Fair Queueing

(SCFQ) [4] enables timestamp computations to be per-

formed in O(1) time and has fairness comparable to that of

PGPS, but results in increased end-to-end delay bounds [11],

[12]. The VirtualClock scheduling algorithm [3] provides the

same end-to-end delay bound as that of PGPS with a simple

timestamp computation algorithm, but the price paid is in

terms of fairness. A backlogged session in the VirtualClock

server can be starved for an arbitrary period of time as a

result of excess bandwidth it received from the server when

other sessions were idle [1].

Frame-based fair queueing (FFQ) is a sorted-priority al-

gorithm, and therefore uses timestamps to order packet

transmissions. However, it requires only O(1) time for the

timestamp calculation independent of the number of sessions

sharing the server. At the same time, the end-to-end delay

guarantees of FFQ are identical to those obtained from a

corresponding PGPS server, In addition, the server is fair

in the sense that connections axe always served proportion-

ally to their reservations when they are backlogged, and are

not penalized for an arbitrary amount of time for bandwidth

they received while the system was empty. The algorithm

uses a framing approach similar to that used in frame-based

schedulers to update the state of the system; the transmis-

sion of p~kets, however, is still based on timestamps.

II. PRELIMINARIES

We assume a packet switch where a set of V connections

share a common output link. The terms connection, flow,

and session will be used synonymously. We denote with pi

the rate allocated to connection i.

We assume that the servers are non-cut-through devices.

Let Ai (-r, t) denote the arrivals from session i during the

interval (~, f] and Wi (~, t) the amount of service received

by session i during the same interval. In a system based

on the fluid model, both Ai (~, t) and W,(T, t) are continu-

ous functions oft. However, in the packet-by-packet model,

we aasume that Ai (T, t) increases only when the last bit of

a packet is received by the server; likewise, Wi (T, t) is in-

creased only when the last bit of the packet in service leaves

the server. Thus, the fluid model may be viewed as a spe-

cial case of the packet-by-packet model with infinitesimally

small packets.

Definition 1: A system busy period is a maximal interval

of time during which the server is never idle.

A,

7

-+<$”’ i
.-)’1

.7 1
,- [

.“
/0” I I

,0< Pi I I// }

tl t2 t3 t4

Fig. 1. Intervals (tl, tq]and (t3, t4] are two different busy periods.

During a system busy period the server is always transmit-

ting packets.

Definition 2: A backlogged period for session i is any pe-

riod of time during which packets belonging to that session

are continuously queued in the system.

Let Qi (t)represent the amount of session i traffic queued in

the server at time t,that is,

Q!(t) = Ai(O, t) - Wi(O, t).

A connection is backlogged at time t if Qi (t) >0.

Definition 3: A session i busy period is a maximal inter-

val of time (~1, rz] such that for any time tc (n,TZ],packets

of connection i arrive with rate greater than or equal to pi,

or,

Ai(~l, t) ~ pi(t -~l).
A session busy period is the maximal interval of time

during which if the session was serviced with exactly the

guaranteed rate, it would remain continuously backlogged

(Figure 1). Multiple session-i busy periods may appear dur-

ing a system busy period.

The session busy period is defined only in terms of the

arrival function and the allocated rate. It is important to

realize the basic distinction between a session backlogged

period and a session busy period. The latter is defined with

respect to a hypothetical system where a backlogged connec-

tion i is serviced at a constant rate Pi, while the former is

baaed on the actual system where the instantaneous service

rate varies according to the number of active connections

and their service rates. Thus, a busy period may contain in-

tervals during which the actual backlog of session i traffic in

the system is zero; this occurs when the session receives an

instantaneous service rate of more than pi during the busy

period.

In [11], we introduced a general model for traffic schedul-

ing algorithms, called Latency-Rate (CR_) servers. Any

server in this class is characterized by two parameters: la-

tency ~i and minimum allocated rate p,. Let us assume that

the jth busy period of connection i starts at time T. We de-

note by Wi:j (~, t)the total service provided to the packets

of the connection that amived after time ~ and until time t
by server S. Notice that the total service offered to connec-

tion i in this interval, W,s (T, t), may actually be more than

W~j (~, t) since some packets from a previous busy period,
that are still queued in the system, may be serviced as well.

105

Definition 4: A server S belongs in the class J!%? if and

only if for all times t after time ~ that the j-th busy period

started and until the packets that arrived during this period

are serviced,

VVf,(t-,t) ~ max(O,pi(t– r – @?)).

@ is the minimum non-negative number that can satisfy

the above inequality.

The right-hand side of the above equation defines an en-

velope to bound the minimum service offered to session i

during a busy period. It is easy to observe that the latency

g: represents the worst-case delay seen by a session-i packet

arriving into an empty queue. The maximum delay through

a network of CR-servers can be computed from the knowl-

edge of the latencies of the individual servers and the traffic

model. Thus, the theory of ,C7?-servers allows us to deter-

mine tight upper-bounds on end-to-end delays in a network

of servers where the servers on a path may not all use the

same scheduling algorithm.

The function W~j (r, t) may be a step function in a

packet-by-packet scheduler. As in the case of W, (T, t), we

update w~~j(r, t)only when the last bit of a packet has been

serviced. Only in the case of a fluid-server, packets can be

arbitrarily small and thus Wi~j (~, t) may be continuous.

To determine end-to-end delay bounds, we assume that

trfic from session i at the source is leaky-bucket shaped

[13]. That is,

A~(~)t)~oi+pi(t–7)

during any time interval (~, t].Also, we assume that session i

is allocated a minimum rate of pi in the network. We state

without proof the following key result from [11].

Theorem 1: The maximum delay D~ and the maximum

baxklog Q: of session i after the Kth node in an arbitrary

network of C’R-servers are bounded as

where E3:sj) is the latency of the jth server on the path of

the session.

In Table I we summarize the latencies of many well-

known work-conserving schedulers, along with bounds on

their fairness and implementation complexity. The fairness

parameter in the table is the maximum difference in nor-

malized service offered by the scheduler to two connections

over any interval during which both connections are con-
tinuously backlogged. The implementation complexity is at

least O(logz V) for all sorted-priority schedulers.

The packet-by-packet approximation of GPS (PGPS) has

the lowest latency among all the packet-by-packet servers;

thus, from Theorem 1, PGPS has the lowest bounds on end-

to-end delay and buffer requirements. However, PGPS also

has the highest implementation complexity. VlrtualClock

has the same latency as PGPS, but is not a fair algorithm [3],

[1]. Notice, however, that none of the other algorithms suf-

fers from such a high level of unfairness. In SCFQ as well

as the round-robin schedulers, the latency is a function of

the number of connections that shaze the output link. In a

broadband network, the resulting end-to-end delay bounds

may be prohibitively large.

The GPS scheduler provides ideal fairness by offering the

same normalized service to all backlogged connections at

every instant of time. Thus, if we represent the total amount

of service received by each session by a function, then these

functions can be seen to grow at the same rate for each

backlogged session. Golestani [4] introduced such a function

and called it virtual time. The virtual time of a backlogged

session is a function whose rate of growth at each instant is

exactly the rate of normalized service provided to it by the

scheduler at that instant. Similarly, we can define a global

virtual-time function that increases at the rate of the total

service performed by the scheduler at each instant during a

server-busy period. In a GPS scheduler, the virtual times

of all backlogged connections are identical at every instant,

and are equal to the global virtual time. This is achieved by

setting the virtual time of a connection to the global virtual

time when it becomes backlogged and then increasing the

former at the rate of the instantaneous normalized service

received by the connection during the backlogged period.

This allows an idle connection to receive service immediately

once it becomes backlogged, resulting in zero latency.

We introduce such a function to remesent the state of

each connection in a scheduler and call it potential. The po-

tential of a connection is a non-decreasing function of time

during a system-busy period. When connection i is back-

logged, its potential increases exactly by the normalized ser-

vice it received. That is, if Pi(t) denotes the potential of.,
connection i at time t,then, during any interval (r, t]within

a backlogged period for session i,

W,(T,t)
Pi(t) – P~(T) = —

p, “

Note that the potentials of all connections can be initialized

to zero at the beginning of a system-busy period, since all

state information can be reset when the system becomes

idle.

From the above definition of potentials, it is clear that

a fair algorithm must attempt to increase the potentials of

all backlogged connections at the same rate, the rate of in-

crease of the system potential. Thus, the basic objective is

to equalize the potential of each connection. Sorted-priority

schedulers such as GPS, PGPS, SCFQ, and VirtualClock all

attempt to achieve this objective. However, in our defini-

tion of potential, we did not specify how the potential of a

connection is updated when it is idle, except that the po-
tential is non-decreasing. Scheduling algorithms differ in the

way they update the potentials of idle connections. Ideally,

during every time interval that a connection i is not back-

logged, its potential must increase by the normalized service

that the connection could receive if it were backlogged. We

will call this service the missed service of connection i. If the

potential of an idle connection is increased by the service it

missed, it is easy to see that, when the connection becomes

106

Server Latency Fairness I Complexity
I I I

GPS o 0

1.
max(max(Cj +*+-j $Ci+*+fi),

PGPS L+* where
Pi r Ci = min((V - 1) w

o(v)

‘,%%(:))”— —

SCFQ fi++(v-1) :+Z
Pj

O(log v)

VirtualClock ~++ m O(log v)

Deficit Round Robin y ~
7 o(1)

Weighted Round Robin
fF–#; +Lc} ~

T 7 o(1)

TABLE I. Latency, fairness and implementation complexity of several work-conserving servers. L; is the maximum packet eize of
session i and L~~Z the maximum packet size among all the sessions. Ci is the maximum normalized service that a session
may receive in a PGPS server in excess of that in the GPS server. In weighted round-robin and deficit round-robin, F is the
frame size and & is the amount of traflic in the frame allocated to session i. L. ie the size of the fixed packet (cell) in weighted
round-robin.

busy again, its potential will be identical to that of other

backlogged connections in the system, allowing it to receive

service immediately.

One way to update the potential of a connection when

it becomes backlogged is to define a system potential that

keeps track of the progress of the total work done by the

scheduler. The system potential P(t) is a non-decreasing

function of time. When an idle session i becomes backlogged

at time t,its potential Pi(t) can be set to P(t)to account

for the service it missed. Schedulers use different functions

to maintain the system potential, giving rise to widely dif-

ferent delay- and fairness-behaviors. In general, the system

potential at time tcan be defined as a non-decreasing func-

tion of the potentials of the individual connections before

time t,and the real time t.Let t– denote the instant just

before time t.Then,

P(t)= 7(Pl(t–), P2(t–), . . . ,Pv(t–), t). (2.1)

For example, the GPS server initializes the potential of a

newly backlogged connection to that of a connection cur-

rently backlogged in the system, That is,

P(t) = R(t), for any i e B(t);

where B(t) is the set of backlogged connections at time t.
The VirtualClock scheduler, on the other hand, initializes

the potential of a connection to the real time when it be-

comes backlogged, so that

P(t2) – P(tl) = tz - tl.

We will later show how the choice of the function P(t) in-

fluences the delay and fairness behavior of the scheduler.

The utility of the system potential function P(t) is in es-

timating the amount of service missed by a connection while

it was idle. In an ideal server like GPS, the system potential

is always equal to the potential of the connections that are

currently backlogged and are thus receiving service. How-

ever, this approach requires that all connections can receive

service at the same time. In a packet-by-packet scheduler we

need to relax this constraint since only one connection can

be serviced at a time. In the next section we will formulate

the necessary conditions that the system potential function

must satisfy in order for the server to have zero latency.

If the potential of a newly backlogged connection is es-

timated higher than the potential of the connections cur-

rently being serviced, the former may have to wait all the

other connections before it can be serviced. The self-clocked

fair queueing (SCFQ) algorithm is a self-contained approach

to estimate the system potential function. The potential of

the system is estimated by the finish potential of the packet

that is currently being serviced. This approximation, may

assign to the system potential function a value greater than

the potential of some backlogged connections. Thus, a con-

nection may not receive service immediately when a busy

period starts. This behavior is different from that in GPS,

where an idle connection starts to receive service immedl-

ately when it becomes backlogged.

III. RATE-PROPORTIONAL SERVERS

We now use the concept of potential introduced in the

last section to define a general class of schedulers, which we

call Rate-Proportional Servers (RPS). We will fist define

these schedulers based on the fluid model and later extend

the definition to the packet-by-packet version. We denote
the set of backlogged connections at time t by l?(t).

107

Definition 5: A rate proportional server has the following

properties:

1. Rate pa is allocated to connection i and

where r is the total service rate of the server.

2. A potential function P,(t) is associated with each con-

nection i in the system, describing the state of the

connection at time t. This function must satisfy the

following properties:

(a) When a connection is not backlogged, its potential

remains constant.

(b) If a connection becomes backlogged at time ~, then

P~(T) = max(P~(~–), P(T–)) (3.2)

(c) For every time t > T, that the connection remains

backlogged, the potential function of the connection

is increased by the normalized serviced offered to

that connection during the interval (r, t]. That is,

Wi(T,t)
Pi(t)= R(T) + —

pi
(3.3)

3. The system potential function P(t) describes the state

of the system at time t.Two main conditions must be

satisfied for the function P(t):

(a) For any interval (t,,tz]during a system busy period,

P(t2) – P(tl) > (t2 – tl).

(b) The system potential is always less than or equal to

the potential of all backlogged connections at time

t. That is,

P(t) < InIn,)(P, (t)). (3.4)

4. Connections are serviced at each instant t according

to their instantaneous potentials as per the following

rules:

(a) Among the set of backlogged connections, only the

set of connections with the minimum potential at

time t is serviced.

(b) Each connection in this set is serviced with an in-

stantaneous rate proportional to its reservation, so

as to increase the potentials of the connections in

this set at the same rate.

The above definition specifies the properties of the system

potential function for constructing a zero-latency server, but

does not define it precisely. In practice, the system potential
function must be chosen such that the scheduler can be im-

plemented efficiently. When we introduce the frame-based

fair queueing algorithm in the next section, it will become

clear how this definition can be used to design a practical

scheduling algorithm.

GPS multiplexing is a rate-proportional server where the

system potential is always equal to the potential of the back-

logged connections. Since the service rate offered to the

connections is proportional to their reservations at every in-

stant, the normalized service they receive during an interval

(tl,tz]is never less than (tz– tI).Thus, the amount of

service received by a connection i, backlogged during the

interval (t1,tz),is given by

w’i(tl, t2) 2 pt(t2 –tI),

and therefore,

P(t2) – P(tl) = Pt(t2) – Pi(tl) =
wi(tl, t2)

pi

VirtualClock is a rate-proportional server as well. Consider

a server where the system potential function is defined as

P(t) = t.

It is easy to verify that such a server satisfies all the prop-

erties of a rate-proportional server. Consider a packet-by-

packet server that transmits packets in increasing order of

their finishing potentials. Such a server is equivalent to the

packet-by-packet VirtualClock server.

We now proceed to show that every rate-proportional

server is a zero-latency server. This will establish that this

class of servers provide the same upper-bounds on end-to-

end delay as GPS. To prove this result, we first introduce

the following definitions:

Definition 6: A session-i active period is a maximal in-

terval of time during a system busy period, over which the

potential of the session is not less than the potential of the

system. Any other period will be considered as an inactive

period for session i.

The concept of active period is useful in analyzing the be-

havior of a rate-proportional scheduler. When a connection

is in an inactive period, it can not be backlogged and there-

fore can not be receiving any service. On the other hand, an

active period need not be the same as a backlogged period

for the connection. Since, in a rate-proportional server, the

potential of a connection can be below the system potential

only when the connection is idle, a transition from inactive

to active state can occur only by the arrival of a packet of

a connection that is currently idle, whose potential is be-

low that of the system. A connection in an active period

may not receive service throughout the active period since a

rate-proportional server services only connections with the

minimum pot ential at each instant. However, it always re-

ceives service at the beginning of the active period, since its

potential is set equal to the system potential at that time.

Since C7?-servers are defined in terms of busy periods, it

is necessary to establish the correspondence between busy

periods and active periods in a rate-proportional server. We
will now show that the beginning of a busy period is the

beginning of an active period as well.

Lemma 1: If r is the beginning of a session-i busy period

in a rate-proportional server, then r is also the beginning of

an active period for session i.

A proof of this and subsequent lemmas and theorems can

be found in [14]. When connection i becomes active, its po-

tential is the minimum among all backlogged connections,

108

enabling it to receive service immediately. However, if a sub-

sequent connection j becomes active during the busy period

of connection i, then the service of i may be temporarily sus-

pended until the potentials of i and j become equal. In the

following lemma, we derive a lower bound on the amount of

service received by connection i during an active period.

Lemma 2: Let T be the time at which a connection i

becomes active in a rate-proportional server. Then, at any

time t > ~ that belongs in the same active period, the service

offered to connection i is

‘Wi(T, t) > ~i(t‘T).

both the servers. Let us assume that the service offered

to session i during the interval (r, t] by the fluid server is

W’F(T, t)and by the packet-by-packet server is W~(~, t).t
Let us assume that the kth packet leaves the system under

p. The same packetthe PRPS service dkcipline at time tk
F. Using a similar approachleaves the RPS server at time tk

as the one used for GPS servers [1], we can prove the fol-

lowing lemma

Lerruna 3: For all packets in a packet-by-packet rate-

proportional server,

This lemma is proved in [14]. Intuitively, this result asserts

that the service of a backlogged connection is suspended
If we include the partial service received by packets in trans-

only if it has received more service then its allocated rate
mission, the maximum lag in service for a session i in the

earlier during the active period.
packet-by-packet server occurs at th~ instant when a packet

A session busy period may actually consist of multiple
starts service. Let us denote with Wi (t) the service offered

session active periods. In order to prove that a rate propor-
to connection i at time t if this partial service is included.

tional server is an CR server with zero latency, we need to
At the instant when the kth packet starts service in PRPS,

prove that for every time t after the beginnirig of the j-th

busy period at time T, ~iF(o, i%k) < ~iF(oj tk – %)+ L...

Wi,j(7, t) ~ ~i(t – ‘7_).

The above lemmas lead us to one of our key results:

Theorem 2: A rate-proportional server belongs to the

class Cl? and has zero latency.

The main argument for proving this theorem is that dur-

ing inactive periods the connection is not backlogged and

is thus receiving no service. By Lemma 2, the connection

can receive less than its allocated bandwidth only during an

inactive period. However, since no packets are waiting to be

serviced in an inactive period, the connection busy period

must have ended by then. The formal proof can be found

in [14].

Thus, the definition of rate-proportional servers provides

us a tool to design scheduling algorithms with zero latency.

Since both GPS and VirtualClock can be considered as rate-

proportional servers, by Theorem 2, they have the same

worst-case delay behavior.

A. Packet-by-Packet Rate-Proportional Servers

A packet-by-packet rate proportional server can be de-

fined in terms of the fluid-model as one that transmits pack-

ets in increasing order of their finishing potential. Let us ae-

sume that when a packet from connection i finishes service

in the fluid server, the Dotential of connection i is TSi. We

can use this finishing ~otential to timestamp packets and

schedule them in increasing order of their time-stamps. We

call such a server a packet-by-packet rote-proportional server

(PRPS).

In the following, we denote the maximum packet size of

session i as .Li and the maximum packet size among all the

sessions as Lmaz.

In order to analyze the performance of a packet-by-packet

rate-proportional server we will bound the difference of ser-

< Wip(o,tk) + Lma..

Thus, we can state the following corollary:

Corollary 1: At any time t,

J&:(0, t)– ti/’(O, t)< L~az.

In order to be complete we also have to bound the amount by

which the service of a session in the packet-by-packet server

can be ahead of that in the fluid-server. Packets are serviced

in PRPS in increasing order of their finishing potentials. If

packets from multiple connections have the same finishing

potential, then one of them will be selected for transmission

first by the packet-by-packet server, causing the session to

receive more service temporarily than in the fluid server. In

order to bound this additional service, we need to determine

the service that the connection receives in the fluid-server.

The latter, in turn, requires knowledge of the potentials the

other connections sharing the same outgoing link. We will

use the following lemma to derive such an upper bound.

Lemma 4: Let (O, t]be a server-busy period in the fluid

server. Let i be a session backlogged in the fluid server at

time t such that i received more service in the packet-by-

packet server in the interval (O, t].Then there is another

session j, with Pj (t) < Pi(t), that received more service in

the fluid server than in the packet-by-packet server during

the interval (O, t].
A proof of this lemma can be found in [14]. We will

now use the above lemma and a method similar to the one

presented in [15] for the PGPS server to find an upper bound

for the amount of service a session may receive in PRPS as

compared to that in the fluid server.

Lemma 5: At any time t,

vice offered between the packet-by-packet server and the
fluid-server when the same pattern of arrivals is applied to fi~p(O, t) – TC%’,F(O,t) < min((V – l) Lma., p, max (~

l<n<v pn))

109

Lemma 5 establishes two distinct upper bounds for the

excess service received by a session in the packet-by-packet

server. A formal proof of the lemma is given in [14].

B. Delay Analysis

Bwed on the bounds on the discrepancy between the

service offered by the packet-by-packet server and that by

the fluid server at any time during a session busy period, we

can bound the performance of the PRPS system using the

worst-case performance of the fluid-system. Thus, we will

now prove that a packet-by-packet rate proportional server

is an LX-server and estimate its latency.

Let us assume that a packet from connection i leaves the

PRPS system at time tp and the fluid-system at time tF.
Then, by Lemma 3,

L
t:g:+y.

For the analysis of a network of CR servers it is required

that the service is bounded for any time after the beginning

of a busy period. In addition, we can only consider that a

packet left the packet-by-packet server if all of its bits have

left the server. These requirements are necessary in order to

provide accurate bounds for the traffic burstiness inside the

network. Therefore, just before time tP + ~ the whole

packet has not yet departed the packet-by-packet server. Let

Li be the maximum packet size of connection i. The service

offered to connection i in the packet-by-packet server will

be equal to the service offered to the same connection in the

fluid server until time tp,minus this last packet. Therefore,

the service received by session i during the jth busy period

in the packet-by-packet server is given by

Hence, we can state the following corollary:

Corollary 2: A packet-by-packet rate proportional server

is an CR server and its latency is

L
y+:.

Note that this latency is the same as that of PGPS. Thus,

any packet-by-packet rate-proportional server has the same

upper bound on end-to-end delay and buffer requirements

as those of PGPS when the traffic in the session under ob-

servation is shaped by a leaky bucket.
Although all servers in the RPS class have zero latency,

their fairness characteristics can be widely different. There-

fore, we take up the topic of fairness in the next section and

derive bounds on the fairness of rate-proportional servers.

C. Fairness of Rate-Proportional Servers

In our definition of rate-proportional servers, we speci-

fied onlv the conditions the svstem notential function must

satisfy to obtain zero latency, but did not explain how the

choice of the actual function affects the behavior of the

scheduler. The choice of the system-potential function has a

significant influence on the fairness of service provided to the

sessions. In the last section, we showed that a backlogged

session in a rate-proportional server receives an average ser-

vice over an active period at least equal to its reservation.

However, significant discrepancies may exist in the service

provided to a session over the short term among schedul-

ing algorithms belonging to the RPS claas. The scheduler

may penalize sessions for service received in excess of their

reservations at an earlier time. Thus, a backlogged session

may be starved until others receive an equivalent amount of

normalized service, leading to short-term unfairness.

Since, in a fluid-model rate-proportional server, back-

logged connections are serviced at the same normalized rate

in steady state, unfairness in service can occur only when an

idle connection becomes backlogged. If the estimated sys-

tem potential at that time is far below that of the backlogged

connections, the new connection may receive exclusive ser-

vice for a long time until its potential rises to that of other

backlogged connections.

Let us assume that at timer two connections i, j become

greedy, requesting an infinite amount of bandwidth. Thus,

the two connections will be continuously backlogged in the

system after time ~. A scheduler is considered as fair if the

difference in normalized service offered to the two connec-

tions i, j during any interval of time (tl, t2]after time r is

bounded. That is,

W,(tl, tz) *j(tl, t2) < FR,
(3.6)pi – Pj –

where 773< co is a measure of the fairness of the algorithm.

Note that the requirement of an infinite supply of packets

from sessions i and j arises because we require the two ses-

sions to be backlogged at every instant after ~ in each of

the schedulers we study. Since, for the same arrival pattern,

the backlogged periods of individual sessions can vary across

schedulers, a comparison of fairness of different scheduling

algorithms can yield misleading results without this condl-

tion. When the connections have an infinite supply of pack-

ets after time ~, they will be continuously backlogged in the

interval (t1,tz]irrespective of the scheduling algorithm used.

Thus, to compare the fairness of different schedulers, we can

analyze each of the schedulers with the same arrival pattern

and determine the difference in normalized service offered

to the two connections in a specified interval of time.

Let us denote with AP, the maximum difference between

the system potential and the potential of the connections

being serviced in a rate-proportional server. The following
theorem formalizes our basic result on the fairness properties

of rate-proportional servers.

Theorem 3: If the system potential function in a rate-

proportional server never lags behind more than a finite

amount AP from the potential of the connections that are

serviced in the system, the difference in normalized service

offered to any two connections during any interval of time

that they are continuously backlogged is also bounded by

110

AP. That is, if AP < co, then for ail i,j 6 13(t1, tz)during

the interval (t1,tz],

T’vi(tl, tz) _ l’i’’j(tl, t2) ~ ~p

pi ~j –“

A proof of this theorem is given in [14]. The theorem

applies to the fluid system. A real system can only use a

packet-by-packet rate-proportional server. We will now ex-

pand the above theorem to prove that a similar relationship

holds for the packet-by-packet version of the algorithm. Let

us define C~ as

Ci = min((V – 1)*, X#nyv(:))
--

That is, C’i is the maximum normalized service that a con-

nection can receive over any interval in the packet-by-packet

server in excess of that offered by the fluid-server.

Theorem 4; In a packet-by-packet rate-proportional

server, for every time interval (tl,tz]after time -r that both

connections became greedy,

I@j(tl, ‘t2) _ T’?i(tl, t2) <

Pj
P, 1-

L L
max(AP + Cj + W+~,AP+Ci+Y+ :)

(3.7)

A proof of this theorem can be found in [14]. Since PGPS

is a packet-by-packet rate proportional server with AP = O,

we obtain the following result on the fairness of a PGPS

scheduler by setting AP = O in Eq. (3.7).

Corollary 3: For a PGPS scheduler,

tij(tl, t2) _ T’ii(tl, t2) <

Pj
~, l--

L L
UltlX(Cj + -=+; ,ci +=+ ;) (3.8)

It can be shown that t~e above bound ~ tight. For ex-

ample, consider the case where connections i, ~ are already

backlogged in the system, at time r. Then, connection j

may have received an additional amount of service equal to

C~ in the PGPS server and connection i may have received

less service equal to L~aa in the PGPS server compared to

the GPS server. The finishing potential of the last packet

serviced from connection i before a packet is serviced from

connection j maybe F, < Pj (~)+ C; + ~. The total normal-

ized service that connection i may recewe while connection

j is waiting is bounded by Cj + ~ + %.

IV. FRAME-BASED FAIR QUEUEING

The basic difficulty in the design of a scheduling algo-

rithm in the RPS class is in maintaining the system po-

tential function. We use a potential function that can be

calculated in a simple way, and use a framing mechanism to

bound its difference AP from the potential of a backlogged
connection.

The fluid version of the frame-based fair queueing (FFQ)

algorithm is defined as follows: FFQ is a rate-proportional

server and therefore follows all the conditions in Definition 5.

That is, at each instant, it services only the set of backlogged

connections with the minimum potential and connections in

this set are serviced at rates proportional to their reserva-

tions. We assume that a rate pi is allocated to connection i.

Let r~ = p~/r denote the fraction of the link rate allocated to

connection i. We split the time in frames and assume that F

bits may transmitted during a frame period. Furthermore,

let us define T as the frame period. Then,

~~=rix F=pi)(T.

Thus, @ denotes the amount of session i traffic that can be

serviced during one frame. If a connection is backlogged its

potential is increasing by the normalized service offered to

it. Thus, when +i bits are serviced from connection i, its

potential will increase by

!!i=~,
pi

We impose one more restriction on the value of #i, that if

L~ is the maximum packet size for connection i, then

Li<~i. (4.9)

That is, the largest packet of a connection can be trans-

mitted during a frame period. We denote the current frame

in progress at time t by f(t).The function f(t)is a step

function. When the system is empty, f(t) is reset to O and

the potentials of all connections are also reset to O. When

the potentials of all backlogged connections become equal

to T, the value of f(t)is increased by T. Similarly, when

the potentials of all connections reach the value k. T for any

integer k, the function f(t) is stepped up to k . T.

In a fluid server, all backlogged connections reach the

value k. T at the same time. However, in a packet-by-packet

server this is not the case. In order to allow frame updates

to occur only when a packet finishes or starts service in

the packet-by-packet server, we relax the above update rule

for f(t) in the p~ket-by-packet version of the algorithm as

follows: f(t) can be updated to the value k . T at any time

after all backlogged connections reach the potential k. T and

before their potentials become higher than (k+ 1). T. Thus,

we update the frame at time t when both of the following

conditions hold:

1. The potentials of all backlogged connections belong in

2

the next frame. That is,

pi(t) > f(t)+ T> Vi ~ B(t), (4,10)

where B(t) is the set of connections currently back-

logged.
P,(t) <f(t) +2z’, i=l,2,v.

111

Note that the above conditions may hold at different instants

of time. Updating the system potential function at any time

during these intervals will result in a valid algorithm. Let

us assume that we decide to update the frame at time r.

Then, at time ~ we set

f(T) = f(r-) + T, (4.11)

where T- is the instant just before the update occurred.

The system potential is estimated in terms of the function

~(t) which keeps track of the progress of the total work

performed by the server. When ~(t) is updated, say at time

~, the system potential is set to

P(r) = max(P(~–)) f(~)). (4.12)

At any other time t,the system potential is computed m

P(t) = P(T)+ (t – T), (4.13)

where r is the laat instant of time when an update occurred.

If P(t) is used to initialize the potential of a connection

when it becomes backlogged, it is easy to see that the po-

tential of every backlogged connection cannot be less than

P(t) at any time t.The potential of a connection z can drift

away from P(t) wit hin a frame, but the discrepancy is cor-

rected when the next frame-update occurs. Thus, the frame

update mechanism is the means by which FFQ bounds the

difference between the system potential and the potentials

of individual connections. The maximum interval between

successive updates acts as bound for the difference in poten-

tials AP. A tight bound for AP will be derived later.

A. Performance Bounds for Fhame-based Fair Queueing

In this section we show that FFQ belongs to the class of

rate-proportional servers. Note that, in our description of

FFQ, we did not define exactly the time when the frame is

updated, but instead defined an interval during which the

update must occur. We will show that this is sufficient to

prove that frame-based fair-queueing is a rate-proportional

server. This flexibility y in updating the frame will allow us

to provide a simple implementation for the packet-by-packet

version of the algorithm.

We now state sequence of two lemmas to classify frame-

based fair queueing as a rate-proportional server. Formal

proofs can be found in [14].

Lemma 6: If the system potential function is updated as

described by the frame-based fair queueing algorithm, then

for any interval (t1,t2]during a system busy period,

P(t2) – P(tl) > (t2 – tl)

Lemma 7: If the system potential function is updated as

described by the frame-based fair queueing algorithm, then

P(t) < Pi(t), vi GB(t)

Based on the above two lemmas, we can now state the

following theorem:

Theorem 5: Frame-baaed fair queueing is a rate-

proportional server.

Since we proved that every rate-proportional server is an

,!X-server with zero latency, frame-based fair queueing is

also an LA?-server with zero latency. Therefore, it provides

the same upper bound on end-to-end delay as GPS in a

network of servers.

B. Fairness of Frame-based Fair Queueing

Since frame-based fair queueing is a rate-proportional

server, in order to analyze its fairness it is sufficient to prove

that the difference between the system potential and the po-

tential of any backlogged connection is always bounded. In

[14], we prove the following Lemma:

Lemma 8: For every connection i that is backlogged at

time t,

Note that the fastest way for the potential of a connection

to reach the value Pi(t) from the time that the frame was

last updated is through its normalized service. However, by

the time the next frame update occurs, the system poten-

tial function would have increased by at least the time to

service #, bits of connection i. This bounds the difference

in potentials to 2T – $.

The above bound applies to the fluid server. The packet-

by-packet version of frame-based fair queueing, described in

the next section, guarantees that a frame update will always

occur before the finishing potential of any packet becomes

greater than f(t)+ 2T. Thus, when we estimate the fairness

of the packet-by-packet algorithm (P FFQ), the maximum

difference between the starting potential of a connection

and the finishing potential of any other connection is still

bounded by 2T. Using the general proof of Theorem 4 for

rate-proportional servers and the fact that T = F/r, it is

easy to show that

Corollary 4: For any two connections i, j that are contin-

uously backlogged in the interval (t1,t.2]in the PFFQ server,

T&,(tl,t2) wj(tl, t2)
< ~+max(~,~)

p, – pj

The fairness of the algorithm depends on the selection of

the frame size. The latter, in turn, depends on the maximum

packet size of each connection and its minimum bandwidth

allocation. Thus, the algorithm is especially suited to appli-

cation in ATM networks where the packets are transmitted

in terms of small cells and the frame size can be kept small.

Notice, however, that the frame size does not affect the la-

tency of the server as is the case in frame-based schedulers
such as weighted-round-robin and deficit-round-robin. In

addition, some short-term unfairness is unavoidable in any

packet-level scheduler. We have already seen in Theorem 4

that the difference in normalized service received by two con-

nections can be proportional to the number of backlogged

connections even in a PGPS server. Most applications can

tolerate a small amount of short-term unfairness x long as

the unfairness is bounded.

112

V. IMPLEMENTATION OF FRAME-BASED FAIR QUEUEING

In the last section we described frame-based fair queueing

and showed that it is a rate-proportional server. A straight-

forward implementation of the algorithm will be similar to

that of any other rate-proportional server. That is, the fluid

server is simulated in parallel and packets are transmitted in

increasing order of their finishing potentials. This approach,

however, is very expensive since up to V events maybe trig-

gered in the simulator of the fluid model during the service

time of one packet. This results in an algorithm with O(V)

time complexity that is not acceptable in a high-speed net-

work.

We will now describe how we can extract the information

needed by the scheduler from the packet-by-packet system

itself, without requiring the parallel simulation of the fluid

server. The resulting algorithm haa O(1) implementation

complexity.

We first prove the following lemma that enables us to find

a suitable time to update the frame in FFQ by using only in-

formation extracted from the packet-by-packet system. Let

us first define the starting potential s: of a packet j of con-

nection i as the potential of the connection when packet j

s@rts being serviced in the corresponding fluid server. Let

B(t) denote the set of backlogged sessions at time t in the

packet-by-packet server.

Lemma 9: Assume that at time t,for each backlogged

session in the packet-by-packet system, the starting poten-

tial of its first packet belongs in the next frame. That is,

.s: ~ j(t)+T, Vi c ~(t).

Then, the potential of each backlogged session in the fluid

server is also greater than f(t)+ T.

The intuition behind the lemma is that we can deter-

mine a valid update time for the frame by using information

extracted by the packet-by-packet server. The scheduler

can keep track of all the connections that are backlogged

and have packets with starting potential in the next frame.

When the starting potentials of the packets at the head of

the queue of all backlogged sessions have crossed the frame,

we know that the potentials of the connections in the fluid-

system have also crossed the frame. Therefore, the crossing

time of the last connection is a valid time to update the

frame and the system potential function.

A. Implementation for General Packet-Switched Networks

Without loss of generality we can assume that the service

rate of the server is 1. Thus the time to transmit F bits is

also equal to F. A fraction ri of the output link bandwidth

is allocated to connection i and therefore q$ = F x r, bits

can be sent from connection i during a frame. An additional

requirement is that the maximum packet size must be less

than +,, so that a single packet can be transmitted within

one frame. On the arrival of a packet, it is stamped with

a timestamp equal to the potential of the connection when

the packet finishes service. Packets are then serviced in in-

creasing order of their timestamps. When a packet finishes

service, a frame update mechanism is used to calculate the
new system potential.

Calculate current value of system potential.

Let tbe the current time and t.the time when the

packet currently in transmission started its service

1. temp e P + (t – t,)/F

Calculate the starting potential of the new packet

2. SP(i, k) t max(TS(i, k – 1), temp)

Calculate timestamp of packet

3. TS(i, k) + SP(i, k) + length(i, lc)/pi

Check if packet crosses a frame boundary

4. nl - int(SP(i, k)); n2 i- int(TS(i, k))

5. if (nl < n2) then

6. i?[nl] i- 13[nl] + 1 (increment counter);

7. mark packet

8. endif

Fig. 2. Algorithm executed on the arrival of a packet.

On the arrival of a packet the algorithm in Figure 2 is ex-

ecuted. An explanation of the algorithm follows: The vzwi-

able P keeps t~ack of the system potential. P is a floating-

point number with two parts — the integer part representing

the current frame number and the fractional part represent-

ing the elapsed reed time since the last frame update. On

arrival of a packet, the current potential is estimated in the

variable ternp, scaled to the frame size. The starting po-

tential of the packet is then computed as the maximum of

the finishing potential of its previous packet and the system

potential. The packet is then stamped with its finishing

potential, computed from knowledge of its length and the

reserved rate. If the starting and finishing potentials of the

packet belong to different frames, the current packet is one

that crosses over to the next frame. Therefore the packet

is marked to indicate that it is the iirst packet of the ses-

sion to cross over to the next frame. In addition, a counter

is incremented to keep track of the number of connections

that have crossed over into the new frame. The algorithm

maintains one counter per frame to keep track of the number

of sessions whose packets cross into the frame. Later, when

the marked packet is scheduled for transmission, the corre-

sponding counter is decremented; when the counter reaches

zero, the potentials of all the backlogged connections have

crossed over to the next frame, and a frame update can be

performed,

The array of counters B is used to count the number of

connections that have packets with a starting potential in

each frame. Although an infinite number of frames may need

to be serviced, in practice the number of distinct frames in

which the potentials of queued padets can fall into is limited

by the buffer size allocated to the connections. Thus, if bi

denotes the buffer space allocated to connection i, the size

of the array B can be limited to

113

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Increase system potential by the transmission time

of the packet just completed

P+- P + length(j)/F

Find the next packet for transmission.

T’S~in +- min,e~(T’S(i))

Determine frame of the packet with

the minimum timestamp.

F~i. +- i~t(Z’S~in)

Perform frame update operation if required

if (current packet is marked) then

B[Fmme] +- B[l+arne] – 1

end if

if (B [Frame] = O and Frnin > Rune) then

Frame +- Frame+ 1

P + max(l+ame, P)

end if

Store starting time of transmission

of next packet in t.
t,+- current time

Transmit packet from head of queue.

Fig. 3. Algorithm executed on the departure of a packet.

If M is rounded up to the nearest power of 2, then the

array can be addressed with the [logz M] least significant

bits of the current frame number. Obviously, instead of

the array, a linked-list implementation of the counters can

be used as well. When a packet finishes transmission, the

algorithm described in Figure 3 is executed to update the

state of the system. We assume that the current packet

being transmitted is the kth packet of connection i.

The system potential is first increased by the transmis-

sion time of the current packet. The packet with the mini-

mum timestamp is then selected. Packets can be organized

in a priority list structure, like a heap, and the time com-

plexity of the operation is O(log V). The variable Frame

keeps track of the index of the frame currently in progress.

If the packet is marked (first packet from the connection to

cross the frame), the counter corresponding to the current

frame is decremented. If the counter becomes zero, the ses-

sion being serviced is the last to cross the current frame.

However, it is possible that during the transmission of that

packet, a packet arrived from another connection with a po-

tential in the current frame. Thus, only if all connections

have crossed the frame and no packet has a finish potential

in the current frame can we update the frame number. The

system potential is then updated, based on the new frame

number.

Although the algorithm described above can be applied

to an ATM network as stated above, the implementation

may be simplified even further by replacing the necessary

multiplication by a shift operation. We require that F is

a power of two. The unit of time is the time required to

transmit one cell at the link rate. The average cell inter-

arrival time 1/p~ is selected as an integer. Then, we define

the system potential F’(t) as the current frame number mul-

tiplied by the maximum frame size plus the units of time

that passed since the last update of the frame. Forcing the

frame size to be a power of two enables the multiplication

step to be implemented as a shift operation over b = logz F

bits. If this approach is used, the priority list implementa-

tion can be simplified as well by using the techniques de-

scribed in [16]. The interested reader is referred to [14] for

a correctness proof of the algorithm, and more details on its

implement ation.

VI. SIMULATION RESULTS

The analysis in the previous sections showed that Frame-

based Fair Queueing provides the same end-to-end delay

bound as PGPS and bounded unfairness. In this section

we study the behavior of the FFQ algorithm by simulation

in some realistic network configurations. For comparison,

we provide simulation results for PGPS and Self-Clocked

Fair Queueing (SCFQ). The performance metrics we use for

this comparison are the average and maximum delays. We

present results from simulating the algorithms as applied to

a single output port of an ATM switch.

In our model, we considered eight sessions sharing the

same outgoing link. The reservations of the sessions are

shown in Table 1. An ON-OFF traffic model was used to

generate traffic within each session. Both the ON and OFF

periods of the traffic model were drawn from a Poisson dis-

tribution; the mean duration of the ON period of session i

was set to 100 x p, cell times, and the mean OFF time to

100 x (1 – p,) cell times, where p, is the reservation of session

i. The traffic was then shaped through a leaky bucket.

Since our interest is in evaluating the delay in the sched-

uler rather than the effect of input burstiness, we selected

a o of 2 for each connection. We also assumed that one

session (session 1) is misbehaving, attempting to transmit

more than its reservation. We assumed an infinite number

of buffers, causing session 1 to remain backlogged through-

out the simulation. For the simulation of Frame-based Fair

Queueing we set the frame size as 1000 cell times. With

this model, we measured the delays and bandwidth alloca-

tions received by all the sessions. A summary of our results

is presented in Table II. Delays are shown in the table in

terms of cell-transmission times.

Both the average and maximum delays of session O, which

has reserved 50% of the link bandwidth, are substantially

lower in the FFQ server as compared to the SCFQ server.

FFQ provides a maximum end-to-end delay of 2 for this

session. By using Theorem 1, the maximum end-to-end de-

lay for virtual channel O can be computed as & + 1 = 5.

Note, that the maximum delay observed under SCFQ is

even higher than this upper bound. A large value of the

maximum delay may lead to increased burstiness and buffer
requirements within the network, if the session is going

through multiple hops. This is consistent with [11], [12]

where it was shown that the maximum delay for SCFQ in-

creases with the number of connections sharing the outgoing

link,

The delays of sessions 2–7 are also lower in the FFQ

server. The higher delays experienced in the SCFQ server

are a result of its different fairness properties. The SCFQ

114

Session Reserved Arrival FFQ PGPS SCFQ
Bandwidth Rate Avg. Delay Max Delay Avg. Delay Max Delay Avg. Delay Max Delay

o 0.500000 0.498 1.995 2.00 1.995 3.00 4.2353 8.00
1 0.062500 0.100 N/A N/A N/A N/A N/A N/A
2 0.062500 0.062 6.424 21.0 7.259 25.0 15.101 29.0
3 0.062500 0.061 8.391 21.0 9.166 23.0
4

15.828 25.0
0.078125 0.076 3.685 12,0 4.152 13.0 10.284 14.0

5 0.078125 0.076 5.264 13.0 5.759 17.0 11.060 18.0
6 0.078125 0.076 6.2S3 14.0 6.795 16.0
7

11.616 18.0
0.078125 0.076 7.023 14.0 7.550 16.0 11.943 20.0

TABLE II. Comparison of average delays from a emulation of FFQ, PGPS and SCFQ algorithms. The eight sessions shown share

the same outrmt link. Delavs are measured in terms of cell-transmission times. Session 1 is misbehaving while others are

transmitting ;ithin their reservations.

algorithm provided to session 1 more service than its reser-

vation, sacrificing the delays of the other connections. In

contrast, the FFQ server may slightly penalize the misbe-

having connection for bandwidth it received while the other

connections were absent. Remember that the system poten-

tial may lag behind the connection potentials by an amount

determined by the frame size. However, it is important to

note that FFQ behaves very similar to PGPS for all connec-

tions. At the same time, the average delays experienced by

the connections under SCFQ differ significantly from those

in PGPS. These results, clearly illustrate that FFQ can be

considered as a very good approximation of PGPS.

VII. CONCLUSIONS

In this paper, we introduced and analyzed frame-based

fair queueing, a novel traffic scheduling algorithm with ap-

plication in both ATM and general packet networks. The

algorithm provides the same end-to-end delay guarantees as

a PGPS server if the input traffic is leaky-bucket shaped.

We also analyzed the fairness properties of the algorithm,

and showed that the difference in normalized service offered

to any two connections that are continuously backlogged

is always bounded. The main advantage of the algorithm

compared to PGPS is that it does not require simulation of

the fluid server, enabling it to be implemented in a simple

and efficient manner. All the information needed for the al-

gorithm can be extracted from the packet-by-packet server

itself.

Apart from the scheduling algorithm itself, a major con-

tribution of this paper is in developing a framework for de-

signing schedulers with low latency and bounded fairness.

This framework of rate-proportional servers (RPS) provides

valuable insight into the behavior of scheduling algorithms.

It is hoped that this framework will lead to the development

of other algorithms in the future,

Further work will include the analysis of frame-based fair

queueing under probabilistic input traffic models, such as

the exponentially- bounded- burstiness model [17]. We also

plan to implement the algorithm in hardware using our

FPGA-based ATM Simulation Testbed [18]. A network of

switches will be simulated in order to evaluate the perfor-

mance of the algorithm in conjunction with variable-bit-rate
traffic.

ACKNOWLEDGMENTS

The authors would like to acknowledge the anonymous

reviewers for their helpful comments.

p]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

A. K. Parekh and R. G. Gallager, “A generalized processor shar-
ing approach to flow control - the single node case, ” in Proc. of
INFOCOM ’92, vol. 2, pp. 915–924, May 1992.
A. Demers, S. Keshav, and S. Shenker, ‘{Analysis and simulation
of a fair queueing algorithm,” Internetworking: Research and
,!hperience, vol. 1, no. 1, pp. 3–26, 1990.
L. Zhang, “VktualClock: a new traffic control algorithm for
packet switching networks,” ACM Transactions on Computer
Systems, vol. 9, pp. 101–124, May 1991.
S, Gole~tani ~~Aself-clocked fair queueing scheme for broadband

applications:” in Proc. of INFOCOM ’94, pp. 636–646, IEEE,
April 1994.
D. Ferrari and D. Verma, “A scheme for real-time channel es-
tablishment in wide-area networks,” IEEE Journal on Selected
Areas in Commumcations, vol. 8, pp. 368–379, April 1990.
M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted
round-robin cell multiplexing in a general-purpose ATM switch
chip, ” IEEE Journal on Selected Areas in Communications,
vol. 9, pp. 1265–79, October 1991.
M. Shreedhar and G. Varghese, “Efficient Fair Queueing us-
ing Deficit Round Robin,” in Proc. SIGCOMM’95, pp.231–242,
September 1995.

H. Zhang and S. Keshav, “Comparison of rate based service dis-
ciplines,” in Proc. of ACM SIGCOMM ’91, pp. 113–122, 1991.
C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled
servers for very high-speed networks,” in IEEE Global Telecom-
munications Conference, pp. 300.3.1–300.3.9, December 1990.
S. Golestani, “A framing strategy for congestion management,”
IEEE Journal on Selected Areas m Commumcatzons, vol. 9,

PP. 1064–1077, September 1991.
D. Stiliadis and A. Varma, “Latency-rate servers: A gen-
eral model for analysis of traffic scheduling algorithms, ”
in Proc. of IEEE INFOCOM ’96, March 1996, also
(http://www.cse. ucsc.edu/research/hsnlab/publications/).
S. Golestani, “Network delay analysis of a class of fair queueing
algorithms,” IEEE Journal on Selected Areas in Cornmunica-
tiorls, VO]. 13, pp. 1057–70, August 1995.
J. Turner, “New directions in communications (or which way
to the information age?),” IEEE Communtcatiorw Magazine,
vol. 24, pp. 8–15, October 1986.
D. Stiliadis and A. Varma, “Frame-based fair queueing:a
new traffic scheduling algorithm for packet-switched net-
works,” Tech. Rep. UCSC-CRL-95-39, U.C. Santa Cruz,
http://www.cse. ucsc.edu/research/hsnlab/pub1ications/,
J. Rexford, A. Greenberg, and F. Bonomi, “A fair leaky-bucket
shaper for ATM networks.” AT&T unpublished report.
J. L. Rexford, A. Greenberg, and F. Bonomi, “Hardware efficient
fair queueing architectures for high-speed networks,” in Proc, of
IEEE INFOCOM 96, March 1996.
0. Yaron and M. Sidi, “Performance and stability of commu-
nication networks via robust exponential bounds,” IEEE/A CM
Transactions on Networking, vol. 1, pp. 372–385, June 1993.
D. Stiliadis and A. Varma, ‘fFAST: an FPGA.ba*ed simulation
testbed for ATM Networks, “ in Proc. ICC ’96, June 1996.

115

