
Networking fundamentals:

Reference:
S. Keshav, "An Engineering Approach to Computer Networking: ATM
Networks, the Internet and the Telephone Network", Addison-Wesley
Professional Computing Series, ISBN 0-201-63442-2
==
Fundamental problems in networking:
- Coding, transmission
- Multiple access, location tracking
- Switching and scheduling
- Naming, Addressing, Routing
- Error control, flow control
==
Fundamental concepts and techniques in networking to attack these
problems:
- Coding and transmission:

- Digitization/sampling, CRC for error control, framing or timing for
synchronization.

- Multiple access:
- Media characteristics: Shared (broadcast) or switched media;
- Basic access: time division (TDMA), Frequency division (FDMA),

Code-division or frequency hopping (CDMA)
- Basic techniques: collision, carrier sense, collision detect, multiple

access, slots, tokens, cells, frequency reuse, handoffs, base-stations.
- Switching and scheduling:

- Alternative to network of switches: billions of wires to your home !
- Two parts: Switch controller (control plane) and switching hardware
 (data plane). Separate network of switching controllers is an overlay
 network.. In the Internet switch (router) controller protocols also use IP.
- Connecting inputs to outputs: Space division and time division

- Space division: data paths from input to output separated in space
- Eg: crossbar: inputs = row, outputs = column; crosspoints

- Time division: n inputs stored in buffer; switch reads n times faster
and writes to outputs in proper order. Order swapping equipment
called time slot interchange (TSI) -- core of PBXs. Combination of
time-division and space-division is used in real telephony switches.

- Packet switching involves buffering, and an intelligent switching core
known as the fabric. Simple fabric = bus. Complex: batcher-banyan
networks.

- Buffering also necessitates a header (meta-data) in packets.
- Where there is buffering, there is an issue of scheduling to determine

buffer, bandwidth and delay allocation to competing packets/flows.
Scheduling is not so important in circuit switching…

- Naming/Addressing:
- name/address resolution protocols: mapping names/addresses between

different protocol layers
- hierarchical addresses/names for manageability. Geographic hierarchy

or provider-based hierarchy…
- Address reuse and translation schemes: managing a scarce address

space.
- Separation between routing/connection-setup and forwarding

- Routing:
- Intra-domain: connectivity, shortest-path access
- Inter-domain: connectivity, policy-based access.
- Large transit domains (ISPs): traffic engineering, QoS support

- Error control and flow control:
- Error detection (CRC) + discard or error correction (FEC etc)
- Loss/congestion detection + Retransmission
- Backoff, Window or rate-based transmission

==
General System Design ideas:

- Protocol: Set of rules and formats that govern the communication
between peers. Specification involves: message semantics and actions
taken while sending/receiving them. Interface between layers is also
called the architecture. Interface design crucial because interface
outlives the technology used to implement the interface.

- Layering and encapsulation: manage complexity through the divide-
and-conquer approach. Allows a subroutine abstraction between a
layer and its adjacent layers. Layering allows pipelined
implementations (if not fully parallel ones).
- Application layer framing: packet format at every layer flexible

and partly application-defined
- Circuit-switching (resource (circuit) reservation followed by time-

bound transmission). Resources wasted if unused: expensive.
Straighforward to assure quality for voice (150 ms round trip delay,
64 Kbps bandwidth). Observe that time slots have no meta-data
(header) associated. All relevant meta-data is inferred from timing and
state installed during circuit/connection-setup.

- Packet-switching (packets with meta-data (header) and store-and-
forward type transmission). Very efficient – can exploit multiplexing
gains both in space and time (see below), at the cost of a self-
descriptive header per-packet, buffering and delays for applications.
Great for data. Switch design for packets different from those for
voice samples. ..

- Statistical Multiplexing: Reduce resource requirements by exploiting
statistical knowledge of the system. Specifically, setup server such
that:

average rate <= service rate <= peak rate
Muxing Gain = peak rate/service rate.
Cost: buffering, delays for applications. Useful only if peak rate
differs significantly from average rate.
Spatial muxing: Decrease resource sizing expecting smaller set
of sources to be active at any time instant. Cost: call-blocking.
Temporal muxing: even if many are active at any particular
time instant, expect that the average over time will be much
smaller. Add buffers. Cost: buffers and meta-data (headers) in
packets => need packet switching to exploit both spatial and
temporal gains.
Tradeoff space and time resources for (gain in) money (i.e.
optimize use of expensive resource).
Virtualization: If QoS is met, multiplexed
shared resource may seem like a unshared virtual resource. In
fact, multiplexing can allow us to convert a physical resource
into multiple virtual resources. Specifically, Multiplexing +
indirection = virtualization, i.e., refer the virtual resource as if it
were the physical resource itself. Eg: virtual memory, virtual
circuit, socket ports in BSD, telephone call. But, indirection
requires binding and unbinding...
Economics: Assumption: buffer cheaper than bandwidth =>
tradeoff the latter for the former. With WDM and new wire
installation techniques, cost of bandwidth dropping =>
economic drive for spatial statistical muxing reducing: eg:
Qwest.

- Pipelining and parallelism: trading computation for (gain in) time.
Can split up task into N independent subtasks, each requiring same
amount of time. Note that both throughput and response time are
speeded up by a factor of N. Pipelining: Can't independently split
subtasks - the subtasks may be serially dependent (eg: ordering

requirement of layering, instruction execution or on TCP packets).
We can still get factor-of-N speedup in throughput, but NOT in
response time by using pipelining

- Batching: trading response time for (gain in) throughput Batching is
 good when overhead per task increases less than linearly w/ number

of tasks and time to accumulate a batch is not too long. Eg: Interrupt
handling of back to back packets can be batched. Silly window
avoidance in TCP is an application of batching. TCP also has triggers
to avoid batching for telnet packets -- when response time is
important and cannot be traded off any further.

- Randomization: breaking ties without biases or high probability of
repeat of tie. Eg: Use of exponential backoff in broadcast multiple
access (ethernet), avoidance of ACK or NAK implosion in reliable
multicast, or in some routing algorithms.

- Locality: Critical in exploiting smaller, faster resource to create an
illusion of a larger, faster resource. The real larger, slower resource, is
used as backup when the access to the smaller resource fails.

- Hierarchy: Scales well. Loose hierarchies more efficient than strict
ones (eg: children can interconnect). Eg: managing name space or
address allocation and forwarding. Different types of hierarchy:
topological, routing, traffic management, organizational. Make sure
you are dealing with the right one.

- Separating data and control: Per-packet actions are part of critical
data path -- fewer control actions => greater forwarding speed.
Greater separation of data and control => need to install more state in
the network. Eg: separate CCIS channel for signaling in telephony
networks with the SS7 protocol that enables international calling. In
the internet, routing protocols setup tables (control), which are then
simply read during forwarding (data).

- Extensibility: hooks for future growth. Eg: version field, reserved
 fields.

==

