Internet Protocol (IP): Packet Format, Fragmentation, Options

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/Homepages/shivkuma

1

Shivkumar Kalyanaraman

IP Features

- Connectionless service
- Addressing
- Data forwarding
- Fragmentation and reassembly
- Supports variable size datagrams
- Best-effort delivery: Delay, out-of-order, corruption, and loss possible. Higher layers should handle these.
- Provides only "Send" and "Delivery" services Error and control messages generated by Internet Control Message Protocol (ICMP)

What IP does NOT provide

- End-to-end data reliability & flow control (done by TCP or application layer protocols)
- Sequencing of packets (like TCP)
- Error detection in payload (TCP, UDP or other transport layers)
- □ Error reporting (ICMP)
- □ Setting up route tables (RIP, OSPF, BGP etc)
- □ Connection setup (it is connectionless)
- □ Address/Name resolution (ARP, RARP, DNS)

Shivkumar Kalyanaraman

- □ Configuration (BOOTP, DHCP)
- Multicast (IGMP, MBONE)

er Polytechnic Institute 4

IP	Datagra	am Forma	at
0 4 8		16	3
Vers H Len	TOS	Total L	.ength
Identification		Flags Fragment Offset	
Time to live	Protocol	Header Checksum	
	Source IF	P Address	
	Destination	IP Address	
IP Options (if a		iny)	Padding
	Da	ata	-
	5	Shiv	/kumar Kalvanaram

IP Datagram Format

- First Word purpose: info, variable size header & packet.
 - □ Version (4 bits)
 - □ Internet header length (4 bits): <u>units of 32-bit</u> <u>words.</u> Min header is 5 words or 20 bytes.
 - Type of service (TOS: 8 bits): Reliability, precedence, delay, and throughput. Not widely supported
 - □ Total length (16 bits): header + data. <u>Units of</u> <u>bytes.</u> Total must be less than 64 kB.

6

IP Header (Cont)

In 2nd Word Purpose: fragmentation

- Identifier (16 bits): Helps uniquely identify the datagram between any source, destination address
- In Flags (3 bits): More Flag (MF):more fragments Don't Fragment (DF) Reserved

Shivkumar Kalyanaraman

□ Fragment offset (13 bits): In units of 8 bytes

IP Header (Cont)

- □ Third word purpose: demuxing, error/looping control, timeout.
 - Time to live (8 bits): Specified in router hops
 - Protocol (8 bits): Next level protocol to receive the data: for de-multiplexing.
 - Header checksum (16 bits): 1's complement sum of all 16-bit words in the header.
 - Change header => modify checksum using 1's complement arithmetic.
- Source Address (32 bits): Original source.
 Does not change along the path.
 Reinsteller Polytechnic Institute
 8 Shivkumar Kalyanaraman

Header Format (contd)

- Destination Address (32 bits): Final destination.
 Does not change along the path.
- Options (variable length): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- Padding (variable length):
 Makes header length a multiple of 4
- □ Payload Data (variable length): Data + header ≤ 65,535 bytes

9

Further notes on Fragmentation

- Performance: single fragment lost => entire packet useless. Waste of resources all along the way. Ref: Kent & Mogul, 1987
- Don't Fragment (DF) bit set => datagram discarded if need to fragment. ICMP message generated: may specify MTU (default = 0)
- □ Used to determine Path MTU (in TCP & UDP)
- The transport and application layer headers do not appear in all fragments. Problem if you need to peep into those headers.

14

Shivkumar Kalyanaraman

Decimal	Key word	Protocol	
0		Reserved	
1	ICMP	Internet Contr	ol Message Protoco
2	IGMP Internet Group Manageme		p Management
		Protocol	
4	ST	Stream Proto	col
5	TCP	Transmission	Control Protocol
8	EGP	Exterior Gate	way Protocol
9	IGP	Interior Gatew	vay Protocol
17	UDP	User Datagra	m Protocol
Rensselaer Polytech	nic Institute	15	Shivkumar Kalyanaraman

IP Protocol Numbers

Class	Number	Length	Description
0	0	0	End of Options
0	1	0	No Op
0	2	11	Security
0	3	Var	Loose Source Routing
0	7	Var	Record Route
0	8	4	Stream ID (obsolete)
0	9	Var	Strict Source Routing
2	4	Var	Internet Time-Stamp

- □ If fragmentation is going to be avoided all the time, why not have the 4-bytes of fragmentation info as an IP option ?
- □ Is 32-bit addresses going to be enough ?
- Why mess with variable length headers ? Can the variability in header length be controlled to allow better encoding ?
- □ Are the IP options really that useful ? Why variable length option headers ?
- □ Many of these issues addressed in IPv6.

21

Timestamp ensselaer Polytechnic Institute 22 Shivkumar Kalyanaraman