
Shivkumar KalyanaramanRensselaer Polytechnic Institute 1

TCP (Part II)

Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute

shivkuma@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/shivkuma

Shivkumar KalyanaramanRensselaer Polytechnic Institute 2

q TCP interactive data flow
q TCP bulk data flow
q TCP congestion control
q TCP timers
q TCP futures and performance
Ref: Chap 19, 20, 21; RFC 793, 1323, 2001,

papers by Jacobson, Karn/Partridge

Overview

Shivkumar KalyanaramanRensselaer Polytechnic Institute 3

TCP Interactive Data Flow
q Problems:

q Overhead: 40 bytes header + 1 byte data
q To batch or not to batch: response time

important
q Batching acks:

q Delay-ack timer: piggyback ack on echo
q 200 ms timer (fig 19.3)

q Batching data:
q Nagle’s algo: Don’t send packet until next

ack is received.
q Developed because of congestion in WANs

Shivkumar KalyanaramanRensselaer Polytechnic Institute 4

TCP Bulk Data Flow
q Sliding window:

q Send multiple packets while waiting for
acks (fig 20.1) upto a limit (W)

q Receiver need not ack every packet
q Acks are cumulative.
q Ack # = Largest consecutive sequence

number received + 1
q Two transfers of the data can have different

dynamics (eg: fig 20.1 vs fig 20.2)
q Receiver window field:

q Reduced if TCP receiver short on buffers

Shivkumar KalyanaramanRensselaer Polytechnic Institute 5

TCP Bulk Data Flow (Contd)
q End-to-end flow control
q Window update acks: receiver ready
q Default buffer sizes: 4096 to 16384 bytes.
q Ideal: window and receiver buffer =

bandwidth-delay product
q TCP window terminology: figs 20.4, 20.5, 20.6

q Right edge, Left edge, usable window
q “closes” => left edge (snd_una) advances
q “opens” => right edge advances (receiver

buffer freed => receiver window increases)
q “shrinks” => right edge moves to left (rare)

Shivkumar KalyanaramanRensselaer Polytechnic Institute 6

The Congestion Problem
q Problem: demand outstrips available capacity …
q Q: Will the “congestion” problem be solved when:

q a) Memory becomes cheap (infinite memory)?

No buffer Too late

All links 19.2 kb/s Replace with 1 Mb/s

S S S S S S S S

File Transfer Time = 7 hoursFile Transfer time = 5 mins

q b) Links become cheap (high speed links)?

Shivkumar KalyanaramanRensselaer Polytechnic Institute 7

Ans: None of the above solves congestion !
q Congestion: Demand > Capacity

q It is a dynamic problem => Static solutions
are not sufficient

q TCP provides a dynamic solution

A

B
S

C

D
Scenario: All links 1 Gb/s. A & B send to C.

q c) Processors become cheap (fast routers
switches)?

Shivkumar KalyanaramanRensselaer Polytechnic Institute 8

TCP Congestion Control
q Window flow control: avoid receiver overrun
q Dynamic window congestion control:

avoid/control network overrun
q Observation: Not a good idea to start with a

large window and dump packets into network

q Treat network like a black box and start from a
window of 1 segment (“slow start”)

q Increase window size exponentially
(“exponential increase”) over successive RTTs
=> quickly grow to claim available capacity.

Shivkumar KalyanaramanRensselaer Polytechnic Institute 9

q Technique: Every ack: increase cwnd (new
window variable) by 1 segment.

q Effective window = Min(cwnd, Wrcvr)

Shivkumar KalyanaramanRensselaer Polytechnic Institute 10

Dynamics

q Rate of acks = rate of packets at the
bottleneck: “Self-clocking” property.

100 Mbps 10 Mbps

Router
Q

1st RTT 2nd RTT 3rd RTT 4th RTT

Shivkumar KalyanaramanRensselaer Polytechnic Institute 11

Congestion Detection
q Packet loss as an indicator of congestion.

q Set slow start threshold (ssthresh) to
min(cwnd, Wrcvr)/2

q Retransmit pkt, set cwnd to 1 (reenter slow
start)

Time (units of RTTs)

Congestion
Window
 (cwnd)

Receiver Window

Idle
Interval

Timeout

1

ssthresh

Shivkumar KalyanaramanRensselaer Polytechnic Institute 12

Congestion avoidance

q Increment cwnd by 1 per ack until ssthresh

q Increment by 1/cwnd per ack afterwards
(“Congestion avoidance” or “linear increase”)

q Idea: ssthresh estimates the bandwidth-delay
product for the connection.

q Initialization: ssthresh = Receiver window or
default 65535 bytes. Larger values thru options.

q If source is idle for a long time, cwnd is reset to
one.

Shivkumar KalyanaramanRensselaer Polytechnic Institute 13

Timeout and RTT Estimation
q Timeout: for robust detection of packet loss
q Problem: How long should timeout be ?

q Too long => underutilization; too short =>
wasteful retransmissions

q Solution: adaptive timeout: based on RTT

q RTT estimation:

q Early method: exponential averaging:

q R ← α*R + (1 - α)*M { M =measured RTT}
q RTO = β*R {β = delay variance factor}
q Suggested values: α = 0.9, β = 2

Shivkumar KalyanaramanRensselaer Polytechnic Institute 14

RTT Estimation
q Jacobson [1988]: this method has

problems w/ large RTT fluctuations
q New method: Use mean & deviation of RTT

q A = smoothed average RTT

q D = smoothed mean deviation
q Err = M - A { M = measured RTT}

q A ← A + g*Err {g = gain = 0.125}
q D ← D + h*(|Err| - D) {h = gain = 0.25}
q RTO = A + 4D
q Integer arithmetic used throughout.

Complex initialization process ...

Shivkumar KalyanaramanRensselaer Polytechnic Institute 15

Timer Backoff/Karn’s Algorithm
q Timer backoff: If timeout, RTO = 2*RTO

{exponential backoff}
q Retransmission ambiguity problem:

q During retransmission, it is unclear whether
an ack refers to a packet or its
retransmission. Problem for RTT estimation

q Karn/Partridge: don’t update RTT
estimators during retransmission.

qRestart RTO only after an ack received
for a segment that is not retransmitted

Shivkumar KalyanaramanRensselaer Polytechnic Institute 16

Fast Retransmit and Recovery
q Goals:

q Timeout avoidance: The 500 ms timer granularity
can have an adverse performance impact
especially for high speed n/ws

q Selective retransmission: Especially when packets
are dropped due to error or light congestion

q Fast Recovery: Converge quickly to a state of
congestion avoidance (linear increase) with half-
current window -- the assumed ideal window size.

q Observation: Receivers are required to send an
immediate duplicate acknowledgment when they
receives out-of-order data segments.

Shivkumar KalyanaramanRensselaer Polytechnic Institute 17

Fast Retransmit and Recovery

q 3 duplicate acks => assume loss
q More duplicate acks => other packets have reached

destination safely.
q Wait for about 1/2*RTT, and resume transmitting new

segments for every subsequent duplicate ack
received. Stop this process once the ack for the
missing segment received

0
500

Ack 500
Ack 500
Ack 500
Ack 500
Ack 500

FRR

Shivkumar KalyanaramanRensselaer Polytechnic Institute 18

Fast Retransmit and Recovery
q Fast Retransmit: Received third duplicate ack:

q Set ssthresh to 1/2 of current cwnd
q Retransmit the missing segment
q Set cwnd to ssthresh+3

q Fast Recovery: For each duplicate ack hence:
q Increment cwnd by 1 MSS

q New packets are transmitted once cwnd
grows large enough.

q [If old cwnd was a pipe of length 1*RTT, the
network gets a relief period of 1/2*RTT]

Shivkumar KalyanaramanRensselaer Polytechnic Institute 19

FRR (contd)

q Upon receiving the next (non-duplicate) Ack:
q Set cwnd to ssthresh & enter linear growth

phase

CWND

TIME

CWND/2

New packets sent during this
phase

Shivkumar KalyanaramanRensselaer Polytechnic Institute 20

FRR problems
q Burst loss of 3 pkts => Timeout + window

shutdown to cwnd/8 !

CWND

Time1st Fast
Retransmit 2nd Fast

Retransmit

Timeout

CWND/2

CWND/4
CWND/8

W

Shivkumar KalyanaramanRensselaer Polytechnic Institute 21

TCP Performance Optimization

q SACK: selective acknowledgments: specifies
blocks of packets received at destination.

q Random early drop (RED) scheme spreads
the dropping of packets more uniformly and
reduces average queue length and packet
loss rate.

q Scheduling mechanisms protect well-
behaved flows from rogue flows.

q Explicit Congestion Notification (ECN):
routers use a explicit bit-indication for
congestion instead of loss indications.

Shivkumar KalyanaramanRensselaer Polytechnic Institute 22

Congestion control summary
q Sliding window limited by receiver window.
q Dynamic windows: slow start (exponential

rise), congestion avoidance (linear rise),
multiplicative decrease.

q Adaptive timeout: need mean RTT & deviation
q Timer back off and Karn’s algo during

retransmission
q Go-back-N or Selective retransmission

q Cumulative and Selective acknowledgements
q Timeout avoidance: FRR
q Drop policies, scheduling and ECN

Shivkumar KalyanaramanRensselaer Polytechnic Institute 23

Summary

q Interactive and bulk TCP flow
q TCP congestion control
q Informal exercises: Perform some of the

experiments described in chaps 19-21 to see
various facets of TCP in action

