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Q TCP interactive data flow

Q TCP bulk data flow

a TCP congestion control
QTCP timers

Q TCP futures and performance

Ref: Chap 19, 20, 21; RFC 793, 1323, 2001,
papers by Jacobson, Karn/Partridge
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TCP Interactive Data Flow
Q Problems:
aOverhead: 40 bytes header + 1 byte data

QaTo batch or not to batch: response time
important

a Batching acks:
a Delay-ack timer: piggyback ack on echo
Q200 ms timer (fig 19.3)
0 Batching data:
aNagle's algo: Don’t send packet until next
ack is received.

a Developed because of congestion in WANs
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TCP Bulk Data Flow
a Sliding window:
a Send multiple packets while waiting for
acks (fig 20.1) upto a limit (W)
a Receiver need not ack every packet
QAcks are cumulative.

QAck # = Largest consecutive sequence
number received + 1

aTwo transfers of the data can have different
dynamics (eg: fig 20.1 vs fig 20.2)
0 Receiver window field:
aReduced if TCP receiver short on buffers
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TCP Bulk Data Flow (Contd)
u End-to-end flow control

aWindow update acks: receiver ready

a Default buffer sizes: 4096 to 16384 bytes.

aldeal: window and receiver buffer =
bandwidth-delay product

a TCP window terminology: figs 20.4, 20.5, 20.6
a Right edge, Left edge, usable window
Q“closes” => left edge (snd_una) advances

Q“opens” =>right edge advances (receiver
buffer freed => receiver window increases)

a“shrinks” =>right edge moves to left (rare)
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The Congestion Problem

Qa Problem: demand outstrips available capacity ...
Q Q: Will the “congestion” problem be solved when:
Q0 a) Memory becomes cheap (infinite memory)?

.\‘.... — EO_)'\

No buffer Too late
Q b) Links become cheap (high speed links)?

All links 19.2 kb/s Replace with 1 Mb/s
e

File Transfer time= 5mins File Transfer Time = Zhours
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ac) Processors become cheap (fast routers
switches)?

[D]
Scenario: All links 1 Gb/s. A& Bsendto C.
Ans: None of the above solves congestion !
a Congestion: Demand > Capacity

Qlt is a dynamic problem => Static solutions
are not sufficient

Q TCP provides a dynamic solution

Rensselaer Polytechnic Institute 7 Shivkumar Kalyanaraman

TCP Congestion Control

Q Window flow control: avoid receiver overrun
a Dynamic window congestion control:
avoid/control network overrun
0 Observation: Not a good idea to start with a
large window and dump packets into network
Q Treat network like a black box and start from a
window of 1 segment (“slow start”)
Q Increase window size exponentially
(“exponential increase”) over successive RTTs
=> quickly grow to claim available capacity.
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a Technique: Every ack: increase cwnd (new
window variable) by 1 segment.

a Effective window = Min(cwnd, Wrcvr)
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Dynamics

| = e— Y 5 ES— R i 5 S ]
1st RTT 2nd RTT 3rdRTT 4hRTT

0 Rate of acks = rate of packets at the
bottleneck: “Self-clocking” property.
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Congestion Detection
o Packet loss as an indicator of congestion.
a Set slow start threshold (ssthresh) to
min(cwnd, Wrcvr)/2
0 Retransmit pkt, set cwnd to 1 (reenter slow
start)

<~ —— - — - Receiver Window

Congestion
Window Idle
(cwnd) 1Intervali
1 ,
Time (units of RTTs)
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Congestion avoidance

a Increment cwnd by 1 per ack until ssthresh
a Increment by 1/cwnd per ack afterwards
(“Congestion avoidance” or “linear increase”)
Q ldea: ssthresh estimates the bandwidth-delay
product for the connection.
Q Initialization: ssthresh = Receiver window or
default 65535 bytes. Larger values thru options.
Q If source is idle for a long time, cwnd is reset to
one.
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Timeout and RTT Estimation
a Timeout: for robust detection of packet loss

a Problem: How long should timeout be ?

a Too long => underutilization; too short =>
wasteful retransmissions

a Solution: adaptive timeout: based on RTT

Q RTT estimation:
a Early method: exponential averaging:
aR- a*R+(1-a)*M {M =measured RTT}
0 RTO =b*R {b = delay variance factor}
Q Suggested values: a =0.9,b=2
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RTT Estimation
a Jacobson [1988]: this method has
problems w/ large RTT fluctuations

a New method: Use mean & deviation of RTT
a A = smoothed average RTT
a D = smoothed mean deviation
QErr=M-A {M=measured RTT}
aA- A+g*Err {g=gain =0.125}
a D~ D+ h*(Err| - D) {h = gain = 0.25}
QRTO=A+4D

Q Integer arithmetic used throughout.
Complex initialization process ...
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Timer Backoff/Karn’s Algorithm
a Timer backoff: If timeout, RTO = 2*RTO
{exponential backoff}
a Retransmission ambiguity problem:

a During retransmission, it is unclear whether
an ack refers to a packet or its
retransmission. Problem for RTT estimation

a Karn/Partridge: don’t update RTT
estimators during retransmission.

aRestart RTO only after an ack received
for a segment that is not retransmitted
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Fast Retransmit and Recovery

a Goals:

Qa Timeout avoidance: The 500 ms timer granularity
can have an adverse performance impact
especially for high speed n/ws

Q Selective retransmission: Especially when packets
are dropped due to error or light congestion

0 Fast Recovery: Converge quickly to a state of
congestion avoidance (linear increase) with half-
current window -- the assumed ideal window size.

a Observation: Receivers are required to send an
immediate duplicate acknowledgment when they
receives out-of-order data segments.
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Fast Retransmit and Recovery
sgo\>

Ack 500
Ack 500
Ack 500
FRR <= Ack 500
Ack 500

Q 3 duplicate acks => assume loss

Q More duplicate acks => other packets have reached
destination safely.

Q Wait for about 1/2*RTT, and resume transmitting new
segments for every subsequent duplicate ack
received. Stop this process once the ack for the
missing segment received
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Fast Retransmit and Recovery
0 Fast Retransmit: Received third duplicate ack:

Q Set ssthresh to 1/2 of current cwnd

a Retransmit the missing segment

Q Set cwnd to ssthresh+3

0 Fast Recovery: For each duplicate ack hence:
a Increment cwnd by 1 MSS
a New packets are transmitted once cwnd
grows large enough.

a[If old cwnd was a pipe of length 1*RTT, the
network gets a relief period of 1/2*RTT]
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FRR (contd)

a Upon receiving the next (non-duplicate) Ack:
a Set cwnd to ssthresh & enter linear growth

phase
} New packets sent during this
CWND phase
CWND/2
TIME
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FRR problems

Q Burst loss of 3 pkts => Timeout + window
shutdown to cwnd/8 !

T CWND
w
CWND/2
CWND/8
CWND/4
> Time —>
1 Fasth Timeout
Retransmit  2nd Fast
Retransmit
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TCP Performance Optimization

0 SACK: selective acknowledgments: specifies
blocks of packets received at destination.

0 Random early drop (RED) scheme spreads
the dropping of packets more uniformly and
reduces average queue length and packet
loss rate.

a Scheduling mechanisms protect well-
behaved flows from rogue flows.

a Explicit Congestion Notification (ECN):
routers use a explicit bit-indication for
congestion instead of loss indications.
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Congestion control summary

a Sliding window limited by receiver window.

a Dynamic windows: slow start (exponential
rise), congestion avoidance (linear rise),
multiplicative decrease.

a Adaptive timeout: need mean RTT & deviation

a Timer back off and Karn’s algo during
retransmission

0 Go-back-N or Selective retransmission
a Cumulative and Selective acknowledgements
Q Timeout avoidance: FRR

a Drop policies, scheduling and ECN
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Summary

ii
Q Interactive and bulk TCP flow

a TCP congestion control

a Informal exercises: Perform some of the
experiments described in chaps 19-21 to see
various facets of TCP in action
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