Interior Gateway Protocols: RIP \& OSPF

\qquad
\qquad
\qquad
Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute \qquad shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/Homepages/shivkuma \qquad
\qquad

\qquad
\qquad
\square Routing Tables \& static routing \qquad

- Dynamic routing (inter- and intra-domain)
\square Distance vector vs Link state routing \qquad
- RIP, RIPv2
- OSPF \qquad
- Refs: Chap 9, 10.
- Books: "Routing in Internet" by Huitema,
"Interconnections" by PerIman
Shivkumar Kalyanaraman

Routing vs Forwarding

\qquad

- Fig 9.1
- Routing table used by IP forwarding. Can
\qquad display routing table using command "netstat -rn" \qquad
- Route Table setup by:
- a) 'route' command
\qquad
- b) routing daemon (eg: ‘routed')
- c) ICMP redirect message.
\qquad
\qquad

3 Shivkumar Kalyanaraman

Routing Table structure

- Fields: destination, gateway, flags, ...
- Destination: can be a host address or a network address. If the ' H ' flag is set, it is the host address.
- Gateway: router/next hop IP address. The ' G ' flag says whether the destination is directly or indirectly connected.
- U flag: Is route up ?
- G flag: router (indirect vs direct)
- H flag: host (dest field: host or n/w address?)

Rensselaer Polytechnic Institute
4
Shivkumar Kalyanaraman

Static Routing

\qquad

- Upon booting, default routes initialized from files. Eg: /etc/rc.net in AIX, /etc/netstart in BSD, /etc/rc.local in SUN/Solaris
- Use 'route' command to add new routes eg: route add default sun 1
- ICMP redirect: sent to host by router when a "better" router exists on the same subnet.
- Alt: router discovery ICMP messages \qquad \square Router solicitation request from host \square Router advertisement messages from routers
Rensselaer Polytechnic Institute $\quad 5 \quad$ Shivkumar Kalyanaraman

Dynamic routing

\qquad

- Internet organized as "autonomous systems" (AS). \qquad
- Interior Gateway Protocols (IGPs) within AS. Eg: RIP, OSPF, HELLO
- Exterior Gateway Protocols (EGPs) for AS to AS routing. Eg: EGP, BGP-4
- Reality: most of internet uses default routes (which is allowed within dynamic routing). Serious dynamic routing starts near core of
\qquad AS and from one AS to another.

Dynamic routing methods

- Source-based: chart route at source.
- Link state routing: Get map of network (in terms of link states) and calculate best route (but specify only a signpost: l.e. the next-hop)
- Distance vector: Set up signposts to destinations looking at neighbors' signposts.
- Key: to make it a "distributed" algorithm ?

Distance Vector routing

- "Vector" of distances (signposts) to each possible destination at each router.
- How to find distances ?
- Distance to local network is 0 .
- Look in neighbors' distance vectors, and add link cost to reach the neighbor
- Find which direction yields minimum distance to to particular destination. Turn signpost that way.
- Keep checking if neighbors change their signposts and modify local vector if necessary.
- And that's it !
-Called the "Bellman-Ford algorithm"
Shivkumar Kalyanaraman

Routing Information Protocol

\qquad

- Uses hop count as metric
- Tables (vectors) "advertised" to neighbors \qquad every 30 s .
- Robustness: Entries reinitialized (as 16 or infinity) if no refresh for 180 s .
- Efficiency: Triggered updates used to inform neighbors when table changes.
- Protocol details:
- Runs over UDP.
\qquad
\qquad
- Init: send request message asking for vectors
- Format can carry upto 25 routes (within 512 bytes)
\qquad
- RIPv1 does not carry subnet masks => many networks use default of $\mathbf{2 5 5 . 2 5 5}$.255.0

[^0]
RIP problems

- Counting-to-infinity problem:
- Simple configuration $A->B->C$. If C fails, B needs to update and thinks there is a route through A. A needs to update and thinks there is a route thru B.
\square No clear solution, except to set "infinity" to be small (eg 16 in RIP)
- Split-horizon: If A's route to C is thru B, then A advertises C's route (only to B) as infinity.
- Slow convergence after topology change:
\qquad \square Due to count to infinity problem \square Also information cannot propagate thru node until it recalculates routing info.
Rensselaer Polytechnic Institute 10 Shivkumar Kalyanaraman

RIP problems (contd)

\qquad
\qquad
\qquad
\qquad
\qquad

Black-holes:

- If one node goes broke and advertises route of \qquad zero to several key networks, all nodes immediately point to it.
- How to install a fix in a distributed manner ?? - Require protocol to be "self-stabilizing" l.e even if some nodes are faulty, once they are isolated, the system should quickly return to normal operation
- Broadcasts consume non-router resources
- Does not support subnet masks (VLSMs)
- No authentication

Rensselaer Polytechnic Institute
11
Shivkumar Kalyanaraman

RIPv2

- Why ? Installed base of RIP routers
- Provides: \qquad
- VLSM support
\square Authentication \qquad
\square Multicasting
-"Wire-sharing" by multiple routing \qquad domains,
- Tags to support EGP/BGP routes. \qquad
- Uses reserved fields in RIPv1 header.
\square First route entry replaced by authentication \qquad info.

Link State protocols

- Create a network "map" at each node.
-For a map, we need inks and attributes (link states), not of destinations and metrics (distance vector)
- 1. Node collects the state of its connected links and forms a "Link State Packet" (LSP)
- 2. Broadcast LSP => reaches every other node in the network.
- 3. Given map, run Dijkstra's shortest path algorithm => get paths to all destinations
- 4. Routing table $=$ next hops of these paths.

13
Shivkumar Kalyanaraman

Dijkstra's algorithm

\qquad

- A.k.a "Shortest Path First" (SPF) algorithm.
- Idea: compute shortest path from a "root" node to every other node."Greedy method": $\square \underline{P}$ is a set of nodes for which shortest path has already been found.
aFor every node "o" outside P, find shortest one-hop path from some node in P.
- Add that node " 0 " which has the shortest of these paths to P. Record the path found. -Continue till we add all nodes (\&paths) to P \qquad
\qquad

Dijkstra's algorithm

\qquad

- P: (ID, path-cost, next-hop) triples.
aID: node id. \qquad
-Path-cost: cost of path from root to node
- Next-hop: ID of next-hop on shortest path from the root to reach that node \qquad
$\square \mathrm{P}$: Set of nodes for which the best path cost (and next-hop from root) have been found.
- I: (ID, path-cost, next-hop):
- Set of candidate nodes at a one-hop distance from some node in P.
\square Note: there is only one entry per node. In the interim, some nodes may not lie in P or T.
\qquad
interim, some nodes may not lie in P or T.
\qquad
- $\underline{R}=$ Routing table: (ID, next-hop) to be created

Dijkstra's algorithm

- 1. Put root l.e., (myID, 0,0) in P \& (myID,0) to R.
- 2. If node \underline{N} is just put into P, look at N 's links (l.e. its LSP).
-2a. For each link to neighbor \underline{M}, add cost of the root-to-N-path to the cost of the N -to-M-link (from LSP) to determine a new cost: \underline{C}.
-2b. The "next-hop" corresponds to the next-hop ID in N's tuple (or N if M is the root itself): \underline{h}
-2c. If M not in T (or P) with better path cost, add (M, C, h) to T.
- 3. If $T=$ empty, terminate. Else, move the min-cost triple from T to P, and add (M, h) to R. Go to step 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ensselaer Polytechnic Institute
16
Shivkumar Kalyanaraman

Topology dissemination

\qquad

- aka LSP distribution
- 1. Flood LSPs on links except incoming link \qquad
- Require at most 2 E transfers for n / w with E edges
\square 2. Sequence numbers to detect duplicates
\qquad
Why? Routers/links may go down/up
- Problem: wrap-around => have large seq \# space \qquad
- 3. Age field (similar to TTL)
- Periodically decremented after acceptance \qquad
- Zero => discard LSP \& request everyone to do so
- Router awakens => knows that all its old LSPs \qquad would have been purged and can choose a new initial sequence number \qquad

Link state vs Distance vector

\square Advantages:

- More stable (aka fewer routing loops)
\square Faster convergence than distance vector
- Easier to discover network topology, troubleshoot network.
- Can do better source-routing with linkstate
- Type \& Quality-of-service routing (multiple route tables) possible
- Caveat: With path-vector-type distance
vector routing, these arguments don't hold

OSPF

- OSPF runs directly on top of IP (not over UDP)
- It can calculate a separate set of routes for each IP type of service (=> multiple routing entries)
- Dimensionless cost (eg: based on throughput, delay)
- Load balancing: distributing traffic equally among routes
- Supports VLSMs: subnet mask field in header
- Supports multicasting, authentication, unnumbered networks (point-to-point). elaer Polytechnic Institute 19 Shivkumar Kalyanaraman

[^0]: ${ }_{9}$ Shivkumar Kalyanaraman

