

Why Names?

- Computers use addresses
- □ Humans cannot remember IP addresses \Rightarrow Need names
 - Example, "shiva" for 128.113.50.56
- Simplest Solution: Each computer has a unique name and has a built in table of name to address translation

3

- Problem: Not scalable
- □ Solution: DNS (Adopted in 1983)
- □ Hierarchical Names: shiva.ecse.rpi.edu

Name Hierarchy

- □ Unique domain suffix is assigned by Internet Authority
- □ The domain administrator has complete control over the domain
- No limit on number of subdomains or number of levels
- computer.site.division.company.com
- computer.site.subdivision.division.company. com
- Domains within an organization do not have to be uniform in number of subdomains or levels Renseleer Polyderhic Institute
 S Shivkumar Kalyanaraman

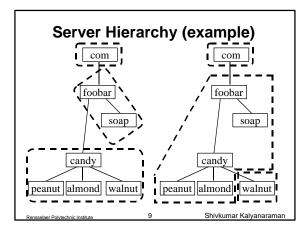
Name Hierarchy (Cont)

- Name space is not related to physical interconnection, e.g., ecse.rpi.edu and ipl.rpi.edu could be on the same floor or in different cities
- Geographical hierarchy is also allowed, e.g., cnri.reston.va.us

6

Shivkumar Kalyanaraman

 A name could be a subdomain (eg: ecse.rpi.edu) or an individual object (eg: cortez.rpi.edu)

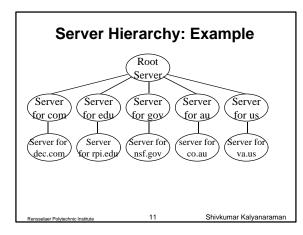

Ton		Domains
rop	Lever	Domains

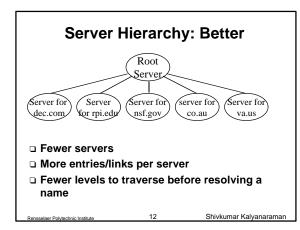
com	Commercial		
edu	Educational		
gov	Government		
mil	Military		
net	Network		
org	Other organizations		
arpa	Advanced Research Project Agency		
country code	au, uk, ca		
ensselaer Polvtechnic Institute	7 Shivkumar Kalvanaraman		

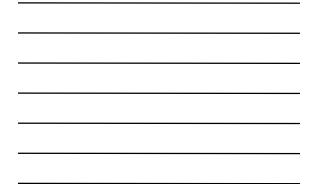
Server Hierarchy

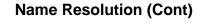
- Servers are organized in a hierarchy
- □ Each server has an authority over a part of the naming hierarchy
- □ The server does not need to keep all names.
- □ It needs to know other servers who are responsible for other subdomains
- □ A single node in the naming tree cannot be split among multiple servers
- □ A given level of hierarchy can be partitioned into multiple servers

8

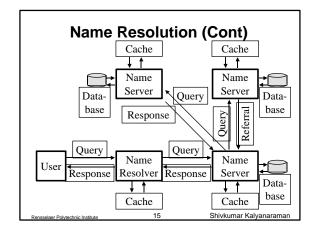



Server Hierarchy (Cont)


- □ Authority ⇒ has the name to address translation table
- □ Responsible ⇒ Either has the name to address translation table or knows the server who has
 - But such a reply is called "nonauthoritative" reply
- A single server can serve multiple domains, e.g., purdue.edu and laf.in.us
- Root server knows about servers for top-level domains, e.g., com
- Each server knows the root server


 Rensselaer Polytechnic Institute
 10
 Shivkumar Kalyanaraman

- Each computer has a name resolver routine, e.g., gethostbyname & gethostbyaddr in UNIX
- Each resolver knows the name of a local DNS server
- □ Resolver sends a DNS request to the server
- DNS server either gives the answer, forwards the request to another server, or gives a referral


13

Shivkumar Kalyanaraman

Referral = Next server to whom request should be sent

Name Resolution Cache Cache **↓**↑ ↓ ↑ Query Name Name Server Response Server Data-Data-Response base base Query Query Query Name Name User Resolver Response Server Response Data-↓ ↑ **↓**↑ base Cache Cache Shivkumar Kalyanaraman 14

Name Resolution (Cont)

- Resolvers use UDP (single name) or TCP (whole group of names)
- □ Knowing the address of the root server is sufficient
- Recursive Query:
 Give me an answer (Don't give me a referral)
- Iterative Query:
 Give me an answer or a referral to the next server

Shivkumar Kalyanaraman

Shivkumar Kalyanaraman

Shivkumar Kalyanaraman

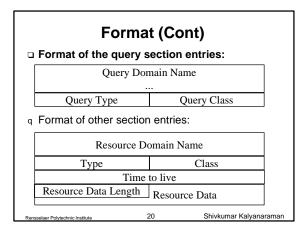
- □ Resolvers use recursive query.
- □ Servers use iterative query.
- Rensselaer Polytechnic Institute 16

DNS Optimization

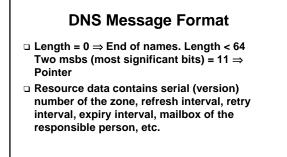
- Spatial Locality: Local computers referenced more often than remote
- $\hfill\square$ Temporal Locality: Same set of domains referenced repeatedly \Rightarrow Caching
- □ Each entry has a time to live (TTL)
- □ Replication: Multiple servers. Multiple roots. Ask the geographically closest server.

17

Abbreviations


- Servers respond to a full name only
- However, humans may specify only a partial name

18


- Resolvers may fill in the rest of the suffix, e.g., shiv = shiv.ecse.ohio-state.edu
- □ Each resolver has a list of suffixes to try

DNS Message Format					
Identification		Parameter			
Number of Questions	s Nu	mber of Answers			
Number of Authority	Nun	nber of Additional			
Quest	Question Section				
Answ	Answer Section				
Autho	Authority Section				
Additional Information Section					
Rensselaer Polytechnic Institute	19	Shivkumar Kalyanaram			

21

Bit	Meaning		
0	Operation: 0=Query, 1=Response		
1-4	Query type: 0=Standard, 1=Inverse, 2,3 obsolete		
5	Set if answer authoritative		
6	Set if message truncated		
7	Set if recursion desired		
8	Set if recursion available		
9-11	Reserved		
12-15	Response type: 0=No error, 1=Format error,		
	2=Server Failure, 3=Name does not exist		

Types of DNS Entries

DNS used other types of resolution

□ Eg: also for finding mail server, pop server, responsible person, etc for a computer

- DNS database has multiple "types" $\Box \operatorname{Record} \operatorname{type} A \Rightarrow \operatorname{Address} \operatorname{of} X$
- $\Box \operatorname{Record} \operatorname{type} \mathsf{MX} \Rightarrow \operatorname{Mail} \operatorname{exchanger} \operatorname{of} \mathsf{X}$ DNS database may also have multiple "classes"

Can support name resolution for multiple protocols eg: IP, SNA, DECbit etc

□ Pointer queries: given IP address find name nsselaer Polytechnic Institute 23 Shivkumar Kalyanaraman

Туре	Meaning	
A	Host Address	
CNAME	Canonical Name (alias)	
HINFO	CPU and O/S	
MINFO	Mailbox Info	
MX	Mail Exchanger	
NS	Authoritative name server for a domain	
PTR	Pointer to a domain name	(link)
RP	Responsible person	
SOA	Start of zone authority (Which part of	
	naming hierarchy implem	ented)
TXT	Arbitrary Text	
ansselaer Polvtechnic	nstitute 24	Shivkumar Kalyanarama

. .

- DNS: Maps names to addresses
- □ Names are hierarchical. Administration is also hierarchical.
- □ No standard for number of levels
- Replication and caching is used for performance optimization.

25 hytechnic Institute

Informal Exercises

I /etc/hosts is a table of name-to-IP-address mappings □ Find out approximately how many hosts, subnets

- and domains are there in the RPI campus net Does this table give some addresses of root servers as well ?
- □ Why does the /etc/hosts in ECSE have the entire table for the campus net.
- Lookup the file /etc/resolv.conf which gives the domain name and addresses of nameservers.
 - Why are multiple nameservers listed ?
 - □ Lookup the name of an IP address using nslookup. This generates a pointer query - you can watch it using tcpdump. What is unusual about pointer using tcpaunp. queries on the wire ? 26echnic Institute

Shivkumar Kalyanaraman