

- □ Computer loads a simple boot program. The boot program loads operating system.
- □ On diskless machine, the computer needs to know the network address of the o/s file
- It needs to know its own IP address., subnet mask, IP address of default router, IP address of DNS server

3

Shivkumar Kalyanaraman

□ It only knows its h/w address.

Configuration

- □ Different nodes have different parameters
- □ Configuration = Setting the parameters
- Key parameters for IP hosts:

IP Address

- Default router address
- Subnet mask
- Name
- DNS server addresses

Method 1: Reverse ARP (RARP)

Shivkumar Kalyanaraman

- □ What is the IP addr of a hardware address?
- □ Need RARP server to respond.
- Once IP address is gotten, it does a "tftp" to get its boot image.
- Design of the RARP server complex unlike ARP which is integrated into TCP/IP host implementations
 - Needs to maintain table for multiple hosts (/etc/ethers)
 - Kernel does not process/parse files =>
 RARP is a user process. But does not run
 over IP.
 5
 Shivkumar Kalyanaraman

RARP (contd)

RARP cannot use IP

- Needs unique Ethernet frame type (0x8035)
- Works through a filter like BPF or nit_if/nit_pf streams modules (fig: A.1, A.2)
- Multiple RARP servers needed for reliability, but unlike ARP where only one reply is sent, each RARP sends a unicast reply => additional traffic
- Description Possibility of collision between RARP replies
- RARP servers cannot be consolidated since
 RARP requests are broadcasts => router
 cannot forward (relay) RARP requests
 setter Polynchrini Institute
 6 Shivkumar Kalyanaraman

Key RARP limitations

- □ RARP is a user process but works over link . layer directly =>
 - RARP server system dependent
 - Needs to interface with link layer driver directly => separate filters and direct access to hardware needed
- □ Returns only IP address
 - Booting and configuration params not returned even though there is space in packet
- Host needs ICMP and TFTP to complete booting
- □ Can't relay RARP requests to a central server.
- Need RARP server per broadcast domain Shivkumar Kalyanaraman 7 elaer Polvtechnic Institute

Method 2: BOOTP

□ Runs over UDP/IP! Issues w/ using UDP/IP:

- □ IP software can broadcast (to 255.255.255.255) even if local IP address unknown => client broadcasts BOOTP request
- □ Port number 67 for server and 68 for client (not an ephemeral port)
 - Delivers BOOTP reply to BOOTP client and not other UDP apps when reply is broadcast
 - Does not wake up other servers during broadcast reply

Shivkumar Kalyanaraman

BOOTP (contd)

□ BOOTP requests/replies sent w/ DF bit set.

- □ Server can send reply via broadcast or unicast:
 - □ For unicast reply, BOOTP server knows the IP address, but the link layer address is not in the ARP cache
 - □ Note that the server cannot send an ARP message because client does not know its **IP** address
 - □ Server can use ioctl(8) {or arp -s } to set the value of the cache => can do this only if it has permission 9

□ Else send broadcast reply

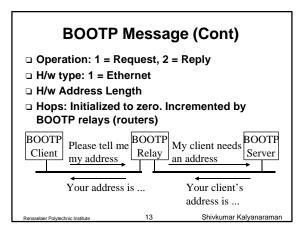
- □ Reply: IP Address, Boot Server IP address, Default Router, Boot file name, subnet mask
 - D More information, but still only a single packet exchange
 - Client gets boot image using TFTP => booting still a 2-step process

BOOTP features (contd)

10

Shivkumar Kalyanaraman

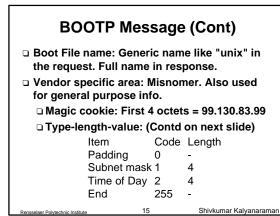
- □ Advantages of using UDP/IP:
 - Bootstrapping can occur across a router via a relaying mechanism
 - BOOTP uses checksum provided by UDP
- □ Multiple requests/replies Process the first one


r Polytechnic Institute

□ Client uses a transaction ID field to sort out replies

- □ Clients responsible for reliability => □ Uses timeout, retransmission & exponential backoff
 - □ Random initial timeout (betn 0 & 4s): simultaneous reboot after power restoration. Shivkumar Kalyanaraman 11

0 BOOTP Message Format _{31b}							
Operation	H/W Type	H/W Length	Hops				
	Transaction Identifier						
Seconds	Seconds elapsed		Unused				
	Client IP Address						
	Your IP Address						
Server IP Address							
	16 B						
	64 B						
	128 B						
	64 B						
Rensselaer Polytechnic Insti	tute	12	Shivkumar Kal	yanaraman			



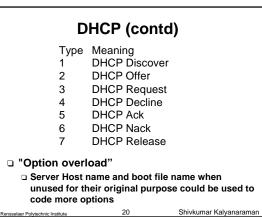
BOOTP Message (Cont)

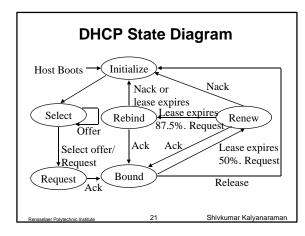
- □ Transaction ID: used to match responses with requests
- □ Seconds = Number of seconds since the client started to boot
- □ If a client knows its IP address, it places it in the Client IP address
- □ If server address/name fields are non-zero in the request, only the indicated host can answer the request
- Your IP Address: Clients IP address returned by the server 14

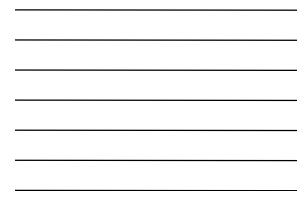
Contents of Vendor-Specific Area					
Item	Code	Length			
Routers	3	4n			
Time Server	4	4n			
IEN116 Server	5	4n			
Domain server	6	4n			
Log server	7	4n			
Quote server	8	4n			
LPR servers	9	4n			
Impress servers10		4n			
RLP Server	11	4n			
Host name	12	4n			
Boot size	13	2			
Reserved	128-254	-			
Rensselaer Polytechnic Institute	16	Shivkumar Kalyanaraman			

Method 3: DHCP

- BOOTP limitation: cannot dynamically assign IP address
- Dynamic Host Configuration Protocol (DHCP)
 BOOTP + Dynamic allocation of IP addresses => compatible with BOOTP. No new fields in header.
 - Addresses can be leased for a period.
 Reallocated to the same or other nodes after lease expiry.
- Non-mobile computers can get a permanent address.


17


r Polytechnic Institute


0 DHCP Message Format 31b						
Operation	H/W Type	H/W Length	Hops			
Seconds	Seconds elapsed		Flags			
	Client IP Address					
	Your IP Address					
	Server IP Address					
		16 B				
	64 B					
	128 B					
]					
Rensselaer Polvtechnic Insti	tute	18	Shivkumar Ka	lyanaramai		

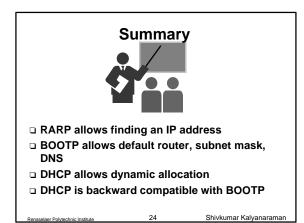
DHCP Message Format

- □ Slightly modified version of BOOTP message
 ⇒ A DHCP server can be programmed to answer BOOTP requests
- BOOTP's Unused field renamed to Flags
- □ Only one bit of 16-bit Flags has been defined
 □ Left-most flag bit =1 ⇒ Servers, please reply using IP broadcast address
 - Servers by default send hardware unicast response
- Vendor specific field renamed to options
 Size increased to 312 bytes (from 64 bytes)
 - Option type 53 specifies the "type of the message"
 - selaer Polytechnic Institute 19 Shivkumar Kalyanaraman

DHCP states

- Boots => INITIALIZE state
- DHCPDISCOVER: broadcast request to servers => SELECT state
- DHCPOFFER (from server) => remain in SELECT
- DHCPREQUEST => select one of the offers and notify server (goto REQUEST state) about the lease
- DHCPACK => server Oks request to lease => go to the BOUND state
- □ Renewal: after 50% of lease go to RENEW state
- Rebind: after 87.5% of time, if server has not responded, try again and go to REBIND.
- If server NACKs or lease expires, or client sends DCHPRELEASE, go to INITIALIZE, else come back to BOUND state

Shivkumar Kalyanaraman


Shivkumar Kalyanaraman

r Polytechnic Institute 22

DHCP: Current Issues

- □ Interaction with DNS
- □ Should the *names* also be dynamically leased?
- Should the names be registered on DNS?
 How to work with a directory service (given a fixed name, find a temporary IP address)?
- Currently there are no protocols for dynamic DNS updates.

23

Initialization: RFCs

- [RFC1533] S. Alexander, R. Droms, "DHCP Options and BOOTP Vendor Extensions", 10/08/1993, 30 pages.
- Vendor Extensions", 10/08/1993, 30 pages.
 [RFC1534] R. Droms, "Interoperation Between DHCP and BOOTP", 10/08/1993, 4 pages.
 [RFC1541] R. Droms, "Dynamic Host Configuration Protocol", 10/27/1993, 39 pages.
 [RFC1542] W. Wimer, "Clarifications and Extensions for the Bootstrap Protocol", 10/27/1993, 23 pages.
 [RFC0951] W. Croft, J. Gilmore, "Bootstrap Protocol", 09/01/1985, 12 pages. (Updated by RFC1532, RFC1395, RFC1497)
 [RFC0906] R. Finlayson, "Bootstrap loading using TFTP", 06/01/1984, 4 pages.

25

elaer Polytechnic Institute