

- 0101 = A4:6B:86:05 (32 bits)
- □ Maximum number of address = 2³² = 4 Billion

3

- Class A Networks: 15 Million nodes
- □ Class B Networks: 64,000 nodes or less
- □ Class C Networks: 250 nodes or less

```
Shivkumar Kalyanaraman
```

IP Address Format

- Three all-zero network numbers are reserved
- □ 127 Class A + 16,381 Class B + 2,097,151 Class C networks = 2,113,659 networks total
- Class B is most popular.
- □ 20% of Class B were assigned by 7/90 and doubling every 14 months ⇒ Will exhaust by 3/94
- Question: Estimate how big will you become? Answer: More than 256! Class C is too small. Class B is just right.

4

Shivkumar Kalyanaraman

How Many Addresses?

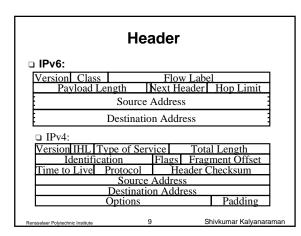
- □ 10 Billion people by 2020
- Each person has more than one computer
- □ Assuming 100 computers per person $\Rightarrow 10^{12}$ computers
- More addresses may be required since
 Multiple interfaces per node
 Multiple addresses per interface
- □ Some believe 2⁶ to 2⁸ addresses per host
- □ Safety margin \Rightarrow 10¹⁵ addresses
- □ IPng Requirements ⇒ 10¹² end systems and 10⁹ networks. Desirable 10¹² to 10¹⁵ networks

 Renselser Polyschic Institute
 5
 Shivkumar Kalyanaraman

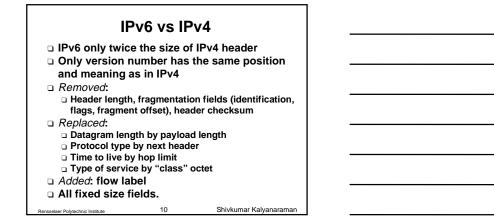
Address Size

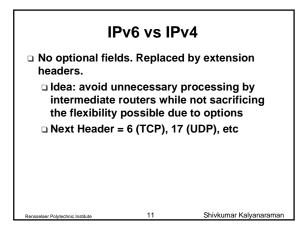
- □ H Ratio = log₁₀(# of objects)/available bits
- □ 2^n objects with n bits: H-Ratio = $log_{10}2 = 0.30103$
- □ French telephone moved from 8 to 9 digits at 10^7 households \Rightarrow H = 0.26 (~3.3 bits/digit)
- □ US telephone expanded area codes with 10^8 subscribers \Rightarrow H = 0.24
- □ Physics/space science net stopped at 15000 nodes using 16-bit addresses ⇒ H = 0.26
- □ 3 Million Internet hosts currently using 32-bit addresses \Rightarrow H = 0.20 \Rightarrow A few more years to go

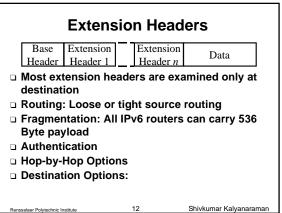
6


```
nsselaer Polytechnic Institute
```

IPv6 Addresses

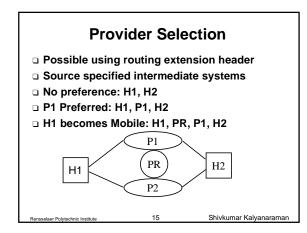

- 128-bit long. Fixed size
- □ 2¹²⁸ = 3.4×10³⁸ addresses
- ⇒ 665×10²¹ addresses per sq. m of earth surface □ If assigned at the rate of 10⁶/μs, it would take 20 years
- □ Expected to support 8×10^{17} to 2×10^{33} addresses $8 \times 10^{17} \Rightarrow 1,564$ address per sq. m
- □ Allows multiple interfaces per host.
- □ Allows multiple addresses per interface
- Allows unicast, multicast, anycast
- □ Allows provider based, site-local, link-local
- 85% of the space is unassigned Shivkumar Kalyanaraman


Colon-Hex Notation


- Dot-Decimal: 127.23.45.88
- □ Colon-Hex:
- FEDC:0000:0000:0000:3243:0000:0000:ABCD
- □ Can skip leading zeros of each word
- □ Can skip <u>one</u> sequence of zero words, e.g., FEDC::3243:0000:0000:ABCD *or* ::3243:0000:0000:ABCD
- □ Can leave the last 32 bits in dot-decimal, e.g., ::127.23.45.88
- Can specify a prefix by /length, e.g., 2345:BA23:7::/40

sselaer Polytechnic Institute

Extension Header (Cont) Only Base Header:							
Base Header	TCP						
Next = TCP	Segment						
Only Base Header and One Extension Header:							
Base Header	Route Header	TCP					
Next = TCP	Next = TCP	Segment					
□ Only Base Header and Two Extension Headers:							
Base Header	Route Header	Auth Header	TCP				
Next = TCP	Next = Auth	Next = TCP	Segment				
Rensselaer Polytechnic Institute	13	Shivk	umar Kalyanaraman				

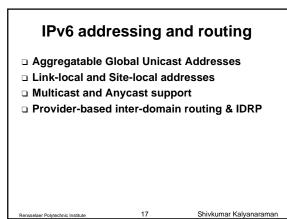

Routing Header

Next Header Hdr Ext Len Routing Type Sgmts left Reserved Address 1

Address 2

Address n

- □ Type = 0 \Rightarrow Current source routing
- Router will look at RH if its address is in the destination field
- New Functionality: Provider selection, Host mobility, Auto-readdressing (route to new address) Remseleur Polyechnic instatute
 14 Shivkumar Kalyanaraman



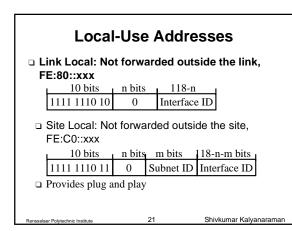
Fragmentation

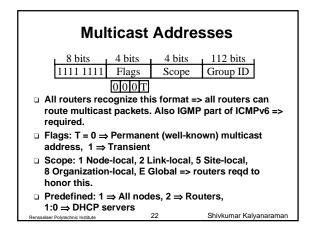
- Routers cannot fragment. Only source hosts can.
- ⇒ Need path MTU discovery or tunneling
- □ Fragmentation requires an extension header
- Payload is divided into pieces
- A new base header is created for each fragment
 Bort 1
 Der 1
 Der 1

	fragment	← Part 1 ──	*	Part I	n→
	Base Header	Data			
	New Base Header	Frag. 1 Header		Part 1	
	New Base Header	Frag. 2 Header		Part 2	
	New Base Header	Frag. n Header		Part n	
Ren	sselaer Polytechnic Institute	16		Shivkumar Ka	lyanaraman

Initial IPv6 Prefix Allocation

Prefix	Allocation	Prefix				
0000 0000	Unassigned	101				
0000 0001	Unassigned	110				
0000 001	Unassigned	1110				
0000 010	Unassigned	11110				
0000 011	Unassigned	1111 10				
0000 1	Unassigned	1111 110				
0001	Unassigned	1111 1110				
001	Unassigned	1111 1110 0				
010	Link-Local	1111 1110 10				
011	Site-Local	1111 1110 11				
100	Multicast	1111 1111				
*Has been renamed as "Aggregatable global unicast"						
	18	Shivkumar Kalyanarama				
	0000 0000 0000 0001 0000 001 0000 010 0000 011 0000 1 0001 0001 001	0000 0000Unassigned0000 0001Unassigned0000 001Unassigned0000 010Unassigned0000 011Unassigned0000 1Unassigned0001Unassigned001Unassigned001Link-Local011Site-Local100Multicastned as "Aggregatable global				




Aggregatable Global Unicast Addresses

- Address allocation:"provider-based" plan
- Format: TLA + NLA + SLA + 64-bit interface ID
- □ TLA = "Top level aggregator." (13 bits)
- Ranges of TLA values allocated to various registries
- □ For "backbone" providers or "exchange points"
- NLA = "Next Level Aggregator" (32 bits) Second tier provider and a subscriber
- In More levels of hierarchy possible within NLA
- □ SLA = "Site level aggregator" = 16 bits for link Shivkumar Kalyana

Aggr. Global Unicast Addrs

- Renumbering after change of provider => change the TLA and NLA. But have same SLA & I/f ID
- □ Interface ID = 64 bits
 - Will be based on IEEE EUI-64 format
 - □ An extension of the IEEE 802 (48 bit) format.
 - □ Possible to derive the IEEE EUI-64 equivalent of current IEEE 802 addresses
 - Along with neighbor discovery procedures, obviates need for ARP. 20

Multicast & Anycast

□ Example: $43 \Rightarrow$ NTP Servers □ FF01::43 \Rightarrow All NTP servers on this node

 \Box FF02::43 \Rightarrow All NTP servers on this link

□ FF05::43 \Rightarrow All NTP servers in this site

□ FF08::43 \Rightarrow All NTP servers in this org.

□ FF0F::43 \Rightarrow All NTP servers in the Internet □ Structure of Group ID:

□ First 80 bits = zero (to avoid risk of group collision, because IP multicast mapping uses only 32 bits)

23

Inter-domain routing

- CIDR supports aggregation using address allocation based on geographical constraints
- Required: aggregation to be correlated to topology structure to allow routing
- □ Future: providers will define routing topology => aggregation should be based on providers
- IPv6: allows both provider-based (aggregatable global unicast addrs) and geographic address allocation
- Multiple addresses/interface => free customers from providers. Cost of switching is small. 24

Shivkumar Kalyanaraman

Inter-domain routing (contd)

- BGP-4 too much optimized for 32-bits
- Inter-domain routing protocol (IDRP) from the OSI world is the current choice for IPv6.
 - IDRP has a superset of BGP functionalities
 It does not use TCP => can send new (and modified) routing packets if the old ones do not make it {instead of retransmitting stale information}
 - It uses address-prefixes instead of AS numbers {builds on TLA/NLA and avoids AS assignment by IANA}

c Institute 25 Shivkumar Kalyanaraman

Address Autoconfiguration

- Allows plug and play
- BOOTP and DHCP are used in IPv4
- DHCPng will be used with IPv6
- □ Two Methods: Stateless and Stateful
- Stateless:
 - A system uses link-local address as source and multicasts to "All routers on this link"
 - Router replies and provides all the needed prefix info

26

Address Autoconfiguration

- All prefixes have a associated lifetime
- System can use link-local address permanently if no router
- Stateful:

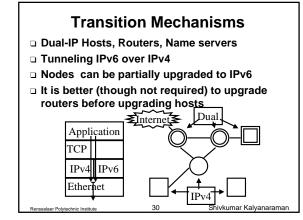
elaer Polytechnic Institute

- Problem w stateless: Anyone can connect
- Routers ask the new system to go DHCP server (by setting managed configuration bit)
- System multicasts to "All DHCP servers"

27

DHCP server assigns an address

Shivkumar Kalyanaraman


Neighbor Discovery

- Media addresses allowed to be upto 128 bits long
- Part of ICMPv6 functionality
- □ Subsumes ARP, Router discovery.
- Source maintains several caches: destination cache, neighbor cache, prefix cache, router cache
- Multicast solicitation for neighbor media address if unavailable in neighbor cache
- Neighbor advertisement message sent to soliciting station.
- Redirects also part of ICMPv6
 Renselaer Polytechnic Institute
 28
 Shivkumar Kalyanaramar

Real-time support

- Is Flow label and the "class" octet field
- Flow = sequence of packets from a single source to a particular (unicast/multicast) destinations requiring special handling by intermediate routers
- Applications becoming adaptive
 Even adaptive voice available for IP telephony
- Hierarchical transmissions:
 - Can cause congestion {Steve McCanne, SIGCOMM'96} =>"priority" renamed as "class"

- "Class" field currently being worked upon by differentiated services group
 - Polytechnic Institute 29

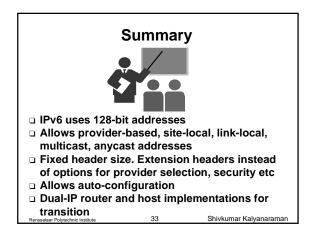
Application Issues

- Most application protocols will have to be upgraded: FTP, SMTP, Telnet, Rlogin
- 27 of 51 Full Internet standards, 6 of 20 draft standards, 25 of 130 proposed standards will be revised for IPv6
- □ No checksum ⇒ checksum at upper layer is mandatory, even in UDP
- non-IETF standards: X-Open, Kerberos, ... will be updated
- Should be able to request and receive new DNS records

Rensselaer Polytechnic Institute 31 Shivkumar Kalyanaraman

Implementations

- 4.4-lite BSD by US Naval Research Laboratory
- □ UNIX, OPEN-VMS by DEC
- DOS/WINDOWS by FTP Software
- HP-UX SICS (Swedish Institute of Comp. Science)


32

Linux

- NetBSD by INRIA Rocquencourt
- □ Solaris 2 by Sun

er Polytechnic Institute

Streams by Mentat

IPng: Key References

- C. Huitema, "IPv6: The New Internet Protocol," Prentice-Hall, 1998, 247 pp.
- IP Next Generation, http://playground.sun.com/pub/ipng/html/ipn g-implementations.html
- IP: Next Generation, http://www.cnri.reston.va.us/ipng/ipng.html
- G-bone: http://www-6bone.lbl.gov/6bone/

Rensselaer Polytechnic Institute 34 Shivkumar Kalyanaraman