

Wireless link layers

- Cellular Digital Packet Data (CDPD):
 - Send IP packets over unoccupied radio channels within the analog cellular-telephone systems
 - Not circuit switched => no per-call/call-duration charges
 - Usage-based billing (contract w/ CDPD providers who have roaming agreements w/ other providers)
 => a wide area mobility solution (limited by availability)
 - Carrier provides IP address, but link layer protocols are responsible for ensuring packets are delivered
 - Max data rate of 11 kbps

nsselaer Polytechnic Institute 4 Shivkumar Kalyanaramar

Wireless link layers (contd)

- Wireless LANs: 1-2 Mbps.
- Defines a set of transceivers which interface between wireless/wired
- Link layer protocols make entire network of transceivers appear as one link at network layer => mobility in 802.11 invisible to IP
- Changing router boundaries => interrupts communications => need to support mobile IP
- Mobile IP: independent of link layer technology
- □ Goal: "seamless" roaming.
 - Radio LAN connections in premises

 Cellular telephone for out-of-range ShivRumar Kalyanaraman

Drivers for Mobile IP

- IP Address is used for two purposes:
 To identify an endpoint
 - To help route the packet
- Move from subnet ("link") => need to change address to allow routing
- Problem 1: How to route packets to this node at its new link ?
- Problem 2: Can we avoid changing the addresses seen by higher layer protocols ?
 Several protocols affected by address change: DNS, TCP, UDP.

6

Shivkumar Kalyanaraman

Naïve solutions

- □ Why not have host-specific routes ?
 - Routers aggregate and use network prefixes for routing. Having host specific routes does not lend to this kind of aggregation => scalability problem
- □ Why not change the address of the mobile as it moves?
 - □ Query/Update traffic to DNS increases.
 - □ TCP/UDP assume that the IP address is constant for the same endpoint

7 Shivkumar Kalyanaraman

Mobility Wish list vs Mobile IP Mobility Wish list

- Scalability: millions of mobile nodes, minimum router state
- Allow mobile node to frequently change links
- □ Do not tear down sessions as mobile node changes links
- □ Automatically configure (find routers/addresses etc) when it moves
- Withstand security attacks
- □ Mobile IP scope:
 - Provide efficient, transparent routing to mobile node
 - □ Allow applications/transports to use one IP address

Shivkumar Kalyanaraman

for communication

IP mobility model

- Two-level addressing:
 - □ Home address : fixed (permanent) address used by other nodes to communicate with the mobile node.
 - □ Care-of-address: address on a (foreign) link to which the mobile is currently attached.
- □ Home agent:
 - Tracks care-of-address of mobile
 - Re-addresses packets destined to home address and tunnels them to the care-of-address {proxy functionality}
- □ Foreign agent:
 - Gives mobile node its care-of-address. Optimizes IP address use.Terminates tunnel from home agent
 - Default router for packets from mobile node Shivkumar Kalyana

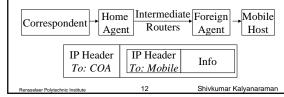
Mobile IP: Processes

- Agent Discovery: To find agents
 - Home agents and foreign agents advertise periodically on network layer and optionally on data link
 - They also respond to solicitation from mobile node
 - Mobile selects an agent and gets/uses care-ofaddress
 - If mobile on home link, no other mobile IP feature is used
- Registration:
 - Mobile registers its care-of-address with home agent. Either directly or through foreign agent
 - I Home agent sends a reply to the mobile node via FA
 - alaer Polytechnic Institute 10 Shivkumar Kalyanaraman

Processes (Cont)

- Each "Mobility binding" has a negotiated lifetime limit
- To continue, reregister within lifetime
- Return to Home:
 - Mobile node de-registers with home agent sets care-of-address to its permanent IP address

 \Box Lifetime = 0 \Rightarrow De-registration

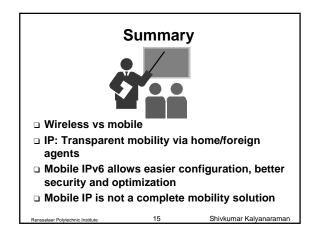

- De-registration with foreign agents is not required. Expires automatically
- Simultaneous registrations with more than one COA allowed (for handoff)

11

Shivkumar Kalyanaraman

Encapsulation/Tunneling

- Home agent intercepts mobile node's datagrams (using proxy ARP) and forwards them to care-ofaddress. Called "triangle routing": sub-optimal
- Home agent tells local nodes and routers to send mobile node's datagrams to it
- De-capsulation: Extracted datagram sent to mobile node



Mobile IPv6

- No need for foreign agent
 - Use IPv6 auto-configuration to quickly obtain careof-address
 - Enough address space in IPv6 => no need for optimization done by typical FAs
- Routing header is implemented more efficiently & securely
 - Route optimization (triangle routing avoidance) can be done with less security concerns
 - Source routing and tunneling can be used.
- The mobile can send registration (binding) messages to peer (as well as home agent) Renseleter Polytechnic Institute
 13 Shivkumar Kalyanaram

TCP considerations

- Timer initial value can lead to spurious retransmissions
 - Need to make the timer configurable or user needs to be aware of the problems
- Congestion management: handoff interpreted as loss by Van Jacobson's algorithm
 - Use of SACK option helps: prevents unnecessary retransmissions
 - Transparency => mechanisms outside the network layer. Eg snoop protocol
- Transmission and timeout freezing on wireless links
- TCP spoofing or connection segmentation
 Renselaer Polytechnic Institute
 14
 Shivkumar Kalyanaraman

Mobile IP: References

- J.D. Solomon, "Mobile IP: The Internet Unplugged", PrenticeHall 1998
- C.E. Perkins, "Mobile IP: Design Principles and Practices," Addison-Wesley, 1998
- □ C. Huitema, "Routing in the Internet," Prentice-Hall, 1995, Chapter 12.
- [RFC2002] C. Perkins, "IP Mobility Support," 10/29/96, 79 pages.
- Mobile-IP working group homepage, http://www.ietf.cnri.reston.va.us/html.charters /mobileip-charter.htmlh

sselaer Polytechnic Institute 16 Shivkumar Kalyanaraman