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Persistent Issues in Learning and Estimation

Thisis areview, from an intuitive rather than a mathematica perspective, of the satistica foundations of
adaptive recognition systems. Key considerations in adaptive classfication are priors, sample sze and
sampling drategy, labes ddidicd dependencies, and dimensondity. The smadl-sample bias and
vaiance of maximum likdihood, maximum a posteriori and Bayes estimators are compared in a smal
concrete case. Iterdive expectation maximization for esimating the sufficient atistics of mixtures is
illugtrated in asmple setting. It is shown that corrdaion among features is sometimes unjustly maligned.
A counterintuitive increase in the error rate after adding a second feature is traced to the curse of
dimensondlity. Adaptive classfication is presented in the context of both parametric and non-parametric
(nearest neighbors and neurd nets) edtimation. Some recent theoretical results and not-so-recent
experimenta observations on hybrid classfication (based on both labeled and unlabeed samples) are
summarized.

1. Introduction

Adaptive, "unsupervised” classfication based partly on unlabeled samples has along and respectable
history in both pattern recognition and statistics, but in some quartersit is il viewed with suspicion.
Perhaps the over-ambitious term "unsupervised learning” is respongble for some of the mistrugt.
Nevertheless, datic recognition systems have aready been widdy explored and success in many new
goplications will require adaptive techniques that make aggressive use of unlabeled samples. Although
thereisalarge and vauable literature on the theoreticd judtification of these methods, many of the
relevant articles require a degree of datistica sophigtication beyond the reach of most practitioners.

The god of this presentation isto shed light, through examples, on several complex, interacting
phenomena that underlie adaptive classfication. The examples are kept smple (and therefore artificia)
to avoid obscuring the key concepts. They are drawn from the gpplication domains most familiar to the
author: optical character recognition, speech recognition, and remote sensing. Other gpplicationsexist in
biometrics, computer vison, and norspeech time-sgnds.

The firgt step towards an engineering solution based on available methodology is an assessment of the
systemic problem characteristics. Some important festures for classifying specific pattern recognition
goplications from a datistical perspective are the following.
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A priori probabilities of the classes of interest (and of "noise" patterns).

Is the number of classes fixed and known, or doesit vary from test to test? Are the class
populations commensurable (as in the case of digits), or disparate (e.g.,, wordsin text or
speech)? Are they dready known (like letter frequencies) or must they be estimated?

The sampling strategy used to collect training, validation, and test samples.

Isit redigtic to consder areserved subset of asingle sample as atest set representative of fidd
conditions? What should be the granularity of the partition? Will some tuning be needed in the
field? Are the underlying probability distributions Setic, or isit desirable to track drifting or
cyclic population parameters?

Labels. What isthe cost of collecting labeled samples versus that of unlabeled samples? How
relidbleistheinitid labding process?Isit possble to label every sample accuratdy, or are there
many that must be relegated to some catchrdl category (noise, impostor, background, outlier,
stammer, blot)? How specific are the labels: are font, writer, or speaker identities known? Can
the classfier be used as a clustering tool to facilitate the collection of labeed samples? Isit
possible to obtain additiona labeled samples under field conditions from operator correction of
classfier errors?

Satistical dependence. Are samples datigticaly independent, or can information be extracted
from one sample to help classify another? If there is dependence, isit a the symbaolic levd, i.e,
dependence between the labdls, asin language (morphologicd, lexical, syntactic, semantic)
context? Or isit a the levd of the observations themselves, as in font-context in printed metter,
didinctive Syles in writing, and the consistency of an individua's tempo, pitch, prosody,
intonation and pronunciation in speech? Is satistica dependence between samples engendered
by externa factors such as telephone line qudity in speech, and scanner characterigicsin OCR?
Aside from between-sample correlaions, do the features themsalves exhibit class-conditiond
dependence?

Dimensionality. The designer of a classfication sysem usudly has some latitude in determining
the number of festures used for classfication. Even if additional features are hard to come by, it
is aways possible to discard some of the available features. Are there too few features or are
there too many rdative to the sample sze?

In the remaining sections, we illustrate some of the statistical consequences engendered by the answers

to the above queries.

2. Parameter Estimation

Wefird illustrate the difference between popular parameter estimators by estimating from avery few (3)
samplesthe probability g that agiven pixd in a scanned character is Black (B) or White (W). Suppose
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that in our three training samples, one particular pixe is Black in two of the samples, and Whitein the
other. The probability of m successesin n tries (the outcome of the experiment is called C) isgiven by
the binomid formula
P(C=2B,1W| g)= 3q°(1-q).
The maximum likelihood estimator gw. of q isthe value of q that maximizes this probability, argmax,
p(C|q). Setting the derivative of the expresson equd to zero to find the maximum,
gw. = 2/3= 0.667.
In the general case of m successesin n trids, the formulais gy, = myn. Below, we shal compare some
properties of the ML estimator with that of others. Assume that we know from experience that the
probability that any pixd is Black varies according to the following probability dengty:
p(g) = 6q(1-q) [0<q£1]
Thisiscdled thea priori probability, or prior. We see that this prior is symmetric about the value g =
0.5. Now, using Bayes formula, we cdculate the posterior probability:
p(alC=2B,1W) = 60 g*(1-q)".

The maximum a posteriori (MAP) estimator Quap is argmax, p(glc):

quer = (M 1)/(n+2)= 3/5 = 0.600,

and the Bayes estimator g is the expectation of the posterior density, Eyqolal (or E[g|c]):
g = (M+2)/(n+4)= 4/7 = 0.571

We have obtained three sgnificantly different estimates, 0.667, 0.600, 0.571, for the probability that the
pixd is Black. Which is best? Although we cannot give a definitive answer to this question, it motivates
usto investigate further some of the properties of these estimates.

Each of the estimators is arandom variable that takes on a specific vaue according to the outcome of a
(random) experiment. It is customary to characterize the probability distribution of estimators by their
means and variances. Since d| of our estimators are linear functions of m, their means and variances can
be computed from the first and second moments of the binomid digtribution that governs m: Eflm] = nq,
and E[m? = nq(1-g) + n*d>
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The bias of an estimator is defined as (E[q] - q)>. Therefore BIAS[gw.] = (9 - 9)* = 0, and BIAS[gg] =
((nog+2)/(n+4)-0)? = ((2-49)/(n+4))>2. So with three samples and g=0.25, the expected value of gg is
0.37, whilethat of gw. would be the correct 0.25.

However, we should aso condder the variance, which indicates how much the estimate will fluctuate
from sample to sample. Using again the moments of the binomid digtribution,

VAR[aw] = E[qw.] - (Elaw.])* = Unq(1-g), whileVAR[gg] = n/(n+4) q(1-0)
We see that for asmal number of samples, the variance of gw. ismuch larger then thet of gs. The
relevance of our findings for the design of practica recognition systemsiis the following.

The ML edimator is unbiased, but its higher variance fully reflects sample variability. The Bayes (and
aso the MAP) estimator is biased, but has lower variance because it averages prior and posterior
digtributions. With more features, the bias and variance inevitably incresse. For adaptation, where we
have good prior estimates, it makes sense to use Bayes (or MAP) estimators. The variances of the

priors determine the weighting of the new vs. old samples.

3. The curse of dimensionality

Perhaps countertuitively, additiond features may actudly increase the error rate. This phenomenoniis
named after G.F. Hughes, who contributed the first comprehensive analysis. The root causeisthat the
parameters are estimated with too few samples, therefore the decison rule is suboptima. We illustrate
this by classfying a scanned character, S, into Classw; or Class w, usng festures conssting of ether
one pixd (X) or two independent pixels (X, Xz). The prior probabilities are known: P(w;) = P(w;) = 0.5.
For amplicity, let the pixel probabilities be symmetric: if P(x=B|w.) = pi, then P(x=B|w,) = 1-p.

With m binary features and k training samples, there are (2™)* concdivable configurations of the training
set. Given the class-conditioned pixd-vaue probabilities, we can compute, in principle, (i) the
probakility of each configuration, (ii) the resulting probability of misclassfication, and hence (iii) by
aggregation, the expected error rate. The expected error rate is shown for afew cases.

Conditional feature probabilities P* P P
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P(x =Bjwy) = 0.6 040  0.480000.4800
POx=B,) = 0.6, P(x:=Bj;) =060 040 049000 0.4800
POx=B,) = 0.6, P(x:=Bjw;) =055 040 04937504875
POx=B,) = 0.6, P(,:=Bjw;) =050 040 049500 0.4900

It isingructive to compare the results of the following scenarios: (i) Thereis only asingle traning sample
selected with equa probability from wy or wy. (ii) There aretwo training samples S, and S; such that S;
T wy, S;T w,. The appropriate decision rule isto dassify S into the same dass asthe training
sample(s) with the same feature vaues. If there is ambiguity (for instance S, and S; both have (X, %) =
(W,W),or S;=(B,B) and S; = (W,W) but S»= (W,B)), then § isarbitrarily labeled w;. The Bayes
error, P+, which isthe minimum error rate achievable when the priors and the feature probabilities are
estimated perfectly, is 0.40 in each case. But the error P based on k training samples increassswhen a
second feature is added, even if this festure contributes useful information. The additiond information is
negated by additiond "noisg’ in the estimates. This effect is most pronounced for P(x=B|w;) =
P(x.=B|w,) = 0.5, where the second feature contributes no useful information. The error increases less

when the training set islarger.

4. Mixture Populations

When the feature distribution is multimodal, or when the distribution of the test set is different from thet
of the training set and must be estimated using unlabeled sampl es, mixture estimation techniques come
into play. Clustering methods partition a set of samplesinto mutualy exclusive categories, while
methods based on maximum likelihood can cope with overlapping densities. We illudrate the iterative
formulas for estimating the parameters in the popular Expectation Maximization (EM) formulation. We
note, however, that these formulas are identicd to the classica mixture estimators as presented in Duda
and Hart.

Consder atwo-component scalar Gaussian mixture. One of the componentsis selected according to
the mixing parameters, then asample is drawn from the component. The mixing parameters Py, P, are
known (¥3% the variances s ? are equal and known, but the means are unknown. The two samples
(incomplete data) are: C: {x;=0.2, x,=0.7}. The key to EM isto postulate hidden variables z =
(211, 212), 22 = (221, Z2). Thevdueof z is(0,1) or (1,0), depending on source of sample x;, but we shall
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esimate its expectation conditioned on the complete data, { (X1, z1), (X2, )}, usng our current best
estimate of the parameters (E-Sep). Once we have an estimate of the hidden variables, we can find the
maximum likelihood estimates of the unknown parameters, which here are only m and m (M-Step). If
theinitial estimates of the meansarem® = 0.0, m° = 1.0, thefirst two steps are:

E-step: Determine E[z,°, 2,"] (z; is the probability that samplei was from component j):
J

E[ZE] = E[Zfl’zfz] = p(2101|X1), p(2102|X1)

) GRS n10)2/25 2 e n8)2/2s2
- 2,02 0. N2 2 0\2,5,.2 0o 202
e Wg) P52 | 02 m)Zes 2 (02 n‘?) 252 02 mg) 12s
08187 0.0408 9 05
= , = 09525, 0.0475 s =010, c=—
0.8187+ 0.0408  0.8187 + 0.0408 S ( J2p 0.10)

0.0863 0.6376
0.0863+0.6376" 0.0863+ 0.6376

E[Z0] = E[2,,25,] = = 01192, 0.8808

M -step: Determinem, m given zi, z:

0 0

y4
n = 0211 X +—525X, =08888" 02+01112" 0.7 =0.2586,
iyt 7y it Zy
2 z
M =2 X, +—5—2—5-X, = 00511" 02+09489 " 0.7 = 06744
Zp tZy Zp tZy

The estimates convergetom= 0.2, m = 0.7 for smal vauesof s? (which make large deviations from
the mean unlikely), andtom= m = 0.45 for laige s

5. Non-parametric classification

Trainable neura networks are easy to modify for decisonbased reinforcement, where the output of the
classifier produces labeled samples for training. The jury is till out on whether it is better to adapt the

weights on each sample, or to average them firdt.

A vdidation set, which is often used in Neura Network classification to prevent over-traning, is
necessary for all adaptive classfiersto avoid the possibility that some anomalous set of samples
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corrupts the classfier. If this happens, the results on the validation set will catch it, and the previous Sate
of the classfier can be smply restored. Single Nearest Neighbor classification cannot be used directly,
because a midabeled reference pattern will Smply surround itself with new midabeled samples. Insteed,
we use K Nearest Neighbors and deport minority voters. We can tag the contribution of each reference
sample, then omit long-unused references to track changes in the population gtatistics. (Prune and
preprocess for speed.)

Nonparametric techniques are easy to program and hard to andyze. Small-sample and dimensondity

problems are hidden.

6. Correlated features
Are datigtically independent features dways best? Not necessarily. Suppose that P(w,) = %
P(w,) = Y%eand X, , X, are binary pixels such that
P(x=Blw1) = P(x=Bjw1) = P(x,= Bw.) = P(x=B|w.) =2
P(x1=B, X%=BJw1)=P(x;=W, X=W|w;) = %2 and P(x;=B, X:=W|w,) = P(x;=W, X=BJw,) = %

The Bayes error P* isQ. Correlation actualy helpsif it is different for eech class.

7. Partially supervised classification

The vaue of unlabeed samples for obtaining better estimates of mixture dengties was recently explored
by Vittorio Castdli and Thomas Cover. Their conclusion isthat labeled samples are exponentialy more
va uable than unlabeed samples, because only |abeled samples can reved which mixture component
belongs to which class. Once that has been accomplished, however, unlabeed samples are just as useful
for characterizing the densities and the mixture coefficients.

Among the earliest demongtrations (in 1959) of the power of adaptive classification was Bernard Gold's
experiment on recognizing hand-sent Morse signas. He kept arunning tota of the observed lengths of
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three classes of spaces and two classes of marks and showed a significant gain through adapting the

classfier parameters to each operator.
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In 1966, Robert Lucky used adaptive transversa filters for precise adjustment of tap gain settingsin
transversd filters in telephone line equdization for digita transmission. He showed that the filters recover
their optima setting even with a pulse misclassification rate of 10%, and that adaptive equaization
lowered the raw symbol error rate by afactor of 10.

At the same time, George Nagy and Glen Shelton obtained afivefold decrease in printed character
classfication with an omnifont classfier whose parameters were averaged over a set of unlabeled
characters from the same font. Baird and Nagy replicated the experiment 25 years later with 100
different fonts.

Behzad Shahshani and David Landgrebe (1994) combined unlabeled samples with asmall labeled
sample to improve crop classfication rates. They demonsirated that EM estimation based on unlabeled

samples extends the number of features before Hughes deterioration st in.

The use of unlabeled samplesis currently gaining popularity in speech recognition, where large
vocabularies and regiond, individua and line characteristics induce high error rates and representative

labeled samples are difficult to obtain.

8. Summary

Both parametric and nonparametric classfiers require estimating the characterigtics of the datafrom a
training set. The single most important set of parameters are often the priors. Even if thetraining st is
representative, finite sample size introduces bias and variance, epecially when many parameters must
be estimated. Multimoda and composite (Hidden Markov) distributions require mixture estimation
techniques, for which Expectation Maximization provides a sound but not infdlible bass. Unlabeled

samples can improve the estimates.
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Correlation among features can help or hinder. Although independence assumptions are seldom
judtified, they are preferable to biased or high-variance estimates of second-order parameters from

smdl samples.

1
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There is no such thing as completely unsupervised adaptation or learning. But the effective sample size
can be increased by taking advantage of unlabeled samples. When the training set is not representetive,
one may use adaptive methods that exploit mostly-correct classification. Nevertheess, labeled samples
are valuable: endeavor to obtain more. Don't waste rgjects. they contain useful information about the
decison boundaries. Above dl, don't ever let the machine rest. After the day of work is done, make
sure it assmilates everything that it has seen during the day, including operator corrections, to improve

its performance for the morrow.
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