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Abstract 
 

This is a review, from an intuitive rather than a 
mathematical perspective, of the statistical foundations of 
adaptive recognition. Key considerations are priors, 
sample size and sampling strategy, labels, statistical 
dependencies, and dimensionality. The small-sample bias 
and variance of ML, MAP and Bayes estimators are 
compared in a small concrete case. Iterative expectation 
maximization for estimating the sufficient statistics of 
mixtures is illustrated in a simple setting. It is shown that 
correlation among features is sometimes unjustly 
maligned. A counterintuitive increase in the error rate 
after adding a second feature is traced to the curse of 
dimensionality. Adaptive classification is presented in the 
context of both parametric and non-parametric (nearest 
neighbors and neural nets) estimation. Some recent 
theoretical results and older experimental observations 
on hybrid classification are summarized.  

 
 

1. Introduction 
 
Adaptive, "unsupervised" classification based partly on 

unlabeled samples is still viewed with suspicion. 
Nevertheless, static recognition systems have already been 
widely explored and success in many new applications will 
require adaptive techniques that make aggressive use of 
unlabeled samples. Although there is a large and valuable 
literature on the theoretical justification of these methods, 
many of the relevant articles require a degree of statistical 
sophistication beyond the reach of most practitioners.  

The goal of this presentation is to shed light, through 
examples, on several complex, interacting phenomena that 
underlie adaptive classification. The examples are kept 
simple (and therefore artificial) to avoid obscuring the key 
concepts. They are drawn from the application domains 
most familiar to the author: optical character recognition, 
speech recognition, and remote sensing.  

The first step towards an engineering solution based on 
available methodology is an assessment of the systemic 

problem characteristics. Some important features for 
classifying specific pattern recognition applications from a 
statistical perspective are the following. 

A priori probabilities of the classes of interest (and of 
"noise" patterns) . Is the number of classes fixed and 
known, or does it vary from test to test? Are the class 
populations commensurable (as in the case of digits), or 
disparate (words in text or speech)? Are they already 
known (like letter frequencies) or must they be estimated? 

The sampling strategy used to collect training, 
validation, and test samples. Is it realistic to consider a 
reserved subset of a single sample as a test set 
representative of field conditions? What should be the 
granularity of the partition? Will some tuning be needed in 
the field? Are the underlying probability distributions 
static, or is it desirable to track drifting or cyclic population 
parameters? 

Labels. What is the cost of labeled samples versus that 
of unlabeled samples? How reliable is the initial labeling 
process? Is it possible to label every sample accurately, or 
are there many that must be relegated to some catch-all 
category (noise, impostor, background, outlier, stammer, 
blot)? How specific are the labels: are font, writer, or 
speaker identities known? Can the classifier be used as a 
clustering tool to facilitate the collection of labeled 
samples? Is it possible to obtain additional labeled samples 
under field conditions from operator correction of classifier 
errors? 

Statistical dependence. Are samples statistically 
independent, or can information be extracted from one 
sample to help classify another? If there is dependence, is it 
at the symbolic level, i.e., dependence between the labels, 
as in language (morphological, lexical, syntactic, semantic) 
context? Or is it at the level of the observations themselves, 
as in font-context in printed matter, distinctive styles in 
writing, and the consistency of an individual's tempo, pitch, 
prosody, intonation and pronunciation in speech? Is 
statistical dependence between samples engendered by 
external factors such as telephone line quality in speech, 
and scanner characteristics in OCR? Aside from between-
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sample correlations, do the features themselves exhibit 
class-conditional dependence? 

Dimensionality. The designer of a classification system 
usually has some latitude in determining the number of 
features used for classification. Even if additional features 
are hard to come by, it is always possible to discard some 
of the available features. Are there too few features or are 
there too many relative to the sample size? 

In the remaining sections, we illustrate some of the 
statistical consequences engendered by the answers to the 
above queries.  

 

2. Parameter Estimation - labeled samples 
 
We first illustrate the difference between popular 

parameter estimators by estimating from a very few (3) 
samples the probability θ  that a given pixel in a scanned 
character is Black (B) or White (W). Suppose that in our 
three training samples, one particular pixel is Black in two of 
the samples, and White in the other. The probability of m 
successes in n tries (the outcome of the experiment is called 
Χ) is given by the binomial formula: 

P(Χ=2B,1W | θ)= 3θ2(1-θ). 
The maximum likelihood estimator θML of θ is the value 

of θ that maximizes this probability, argmaxθ p(Χ|θ). 
Setting the derivative of the expression equal to zero to find 
the maximum, 

θML = m/n= 2/3 = 0.667. 
Assume that we know from experience that the 

probability θ that any pixel is Black varies according to the 
probability density: p(θ) = 6θ(1-θ). This is called the a 
priori probability, or prior. Now, using Bayes' formula, we 
calculate the posterior probability:  

p(θ|2B,1W) = 60 θ3(1-θ)2.  

The maximum a posteriori (MAP) estimator θθ MAP is 
argmaxθ p(θ|Χ=x), so  

θθ MAP =(m+1)/(n+2)= 3/5 = 0.600, 
and the Bayes estimator θB is the expectation of the 
posterior density, Ep(θ|Χ)[θ]  (or E[θ|Χ=x]):  

θB = (m+2)/(n+4)= 4/7 = 0.571. 
We have obtained three significantly different estimates, 

0.667, 0.600, 0.571, for the probability that the pixel is 
Black. Which is best? Although we cannot give a definitive 
answer to this question, it motivates us to investigate 
further some of the properties of these estimates. 
Each of the estimators is a random variable that takes on a 

specific value according to the outcome of a (random) 
experiment. It is customary to characterize the probability 
distribution of estimators by their means and variances, 

which can be computed from the first and second moments 
of the binomial distribution that governs m: E[m] = nθ, and 

E[m2] = nθ(1-θ) + n2θ2. 

The bias of an estimator is defined as (E[θ] - θ)2. 
Therefore  

BIAS[θML] = (θ - θ)2 = 0, and  
BIAS[θB] = ((nθ+2)/(n+4)-θ)2 = ((2-4θ)/(n+4))2.  

So with three samples and θ=0.25, the expected value  
of θB is 0.37, while that of θML would be the correct 0.25.  

However, we should also consider the variance, which 
indicates how much the estimate will fluctuate from sample 
to sample. Using again the moments of the binomial 
distribution,  

VAR[θML] = E[θML
2] - (E[θML])

2  
 = 1/n θ(1-θ),   while VAR[θB] = n/(n+4)2 θ(1-θ). 

We see that for a small number of samples, the variance 
of θML is much larger than that of θB. The relevance of our 
findings for the design of practical recognition systems is 
the following. 

The ML estimator is unbiased, but its higher variance 
fully reflects sample variability. The Bayes (and also the 
MAP) estimator is biased, but has lower variance because 
it averages prior and posterior distributions. With more 
features, the bias and variance inevitably increase. For 
adaptation, where we have good prior estimates, it makes 
sense to use Bayes (or MAP) estimators. The variances of 
the priors determine the weighting of the new vs. old 
samples.  

 

3. Mixture Populations  
 
When the feature distribution is multimodal, or when the 

distribution of the test set is different from that of the 
training set and must be estimated using unlabeled 
samples, mixture estimation techniques come into play. 
Clustering methods partition a set of samples into mutually 
exclusive categories, while methods based on maximum 
likelihood can cope with overlapping densities. We 
illustrate the iterative formulas for estimating the 
parameters in the popular Expectation Maximization (EM) 
formulation. These formulas are identical to the classical 
mixture estimators as presented in Duda and Hart.  

Consider a two-component scalar Gaussian mixture. One 
of the components is selected according to the mixing 
parameters, then a sample is drawn from the component. 
The mixing parameters P1, P2 are known (½,½); the variances 
σ2=0.01 are equal and known, but the means are unknown. 
The two samples (incomplete data) are:  
Χ: {x1=0.2, x2=0.7}. The key to EM is to postulate hidden 
indicator variables  z1 = (z11, z12), z2 = (z21, z22). The value of 
zi is (0,1) or (1,0), depending on the source of sample xi, but 
we shall estimate its expectation conditioned on the 
complete data,  {(x1, z1), (x2, z2)}, using our current best 
estimate of the parameters (E-Step). Once we have an 
estimate of the hidden variables, we can find the maximum 
likelihood estimates of the unknown parameters, which here 



are only µ1 and µ2 (M-Step). If the initial estimates of the 
means are µ1

0 = 0.0, µ2
0 = 1.0, the first two steps are: 
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The estimates converge to µ1= 0.2,  µ2 = 0.7  for small 
values of σ2 (which make large deviations from the mean 
unlikely), and to µ1= µ2 = 0.45 for large σ2.  

 

4. Nonparametric Classification 
 
Trainable neural networks are easy to modify for 

decision-based reinforcement, where the output of the 
classifier produces labeled samples for training. The jury is 
still out on whether it is better to adapt the weights on each 
sample, or to average them first. 

A validation set, which is often used in Neural Network 
classification to prevent over-training, is necessary for all 
adaptive classifiers to avoid the possibility that some 
anomalous set of samples corrupts the classifier. If this 
happens, the results on the validation set will catch it, and 
the previous state of the classifier can be restored. Single 
Nearest Neighbor classification cannot be used directly, 
because a mislabeled reference pattern will simply surround 
itself with new mislabeled samples. Instead, we use K 
Nearest Neighbors and deport minority voters. We can tag 
the contribution of each reference sample, then omit long-
unused references to track changes in the population 
statistics. (Prune and preprocess for speed.) 

Nonparametric classifiers are easy to program and hard 
to analyze. Small-sample and dimensionality problems are 
hidden. 

 

5. The Curse of Dimensionality 
 
Perhaps countertuitively, additional features may 

actually increase the error rate. This phenomenon is named 
after G.F. Hughes, who contributed the first comprehensive 
analysis. The root cause is that the parameters are 
estimated with too few samples, therefore the decision rule 
is suboptimal. We illustrate this by classifying a scanned 
character, S, into Class ω1 or Class ω2 using features 
consisting of either one pixel (x) or two independent pixels 
(x1, x2). The prior probabilities are known:  

P(ω1) = P(ω2) = 0.5. 
For simplicity, let the pixel probabilities be symmetric: 

P(xi=B|ω1) = pi, and P(xi=B|ω2) = 1-pi. 
With m binary features and k  training samples, there are 

(2m)k conceivable configurations of the training set. Given 

the class-conditioned pixel-value probabilities, we can 
compute, in principle, (i) the probability of each 
configuration, (ii) the resulting probability of 
misclassification, and hence by aggregation,  
(iii) the expected error rate. The expected error rate is shown 
for a few cases. Here P* is  the Bayes error, the minimum 
achievable when the priors and the feature probabilities are 
estimated perfectly. It is 0.40 in each case. Pk is the error 
rate based on k  training samples.  

Conditional feature probabilities      P*        P1       P2 
P(x=B|ω1)=  0.6  0.40 0.48000 0.4800 
P(x1=B|ω1)=0.6, P(x2=B|ω1)=0.60   0.40 0.49000 0.4800 
P(x1=B|ω1)=0.6, P(x2=B|ω1)=0.55 0.40 0.49375 0.4875 
P(x1=B|ω1)=0.6, P(x2=B|ω1)=0.50 0.40 0.49500 0.4900 
 
It is instructive to compare the results of the following 

scenarios: (i) There is only a single training sample selected 
with equal probability from ω1 or ω2. (ii) There are two 
training samples S1 and S2 such that S1 ∈∈  ω1,  
S2 ∈∈  ω2. The appropriate decision rule is to classify S into 
the same class as the training sample(s) with the same 
feature values. If there is ambiguity (for instance S1 and S2 
both have (x1, x2) = (W,W), or S1 = (B,B) and S2 = (W,W) 
but S= (W,B)), then S is arbitrarily labeled ω1. The error 
increases when a second feature is added, even if this 
feature contributes useful information. The additional 
information is negated by the additional "noise" in the 
estimates. This effect is most pronounced for  

P(x2=B|ω1) = P(x2=B|ω2) = 0.5,  
where the second feature contributes no useful 
information. The error increases less when the training set 
is larger. 

 

6. Correlated Features 
 
Are statistically independent features always best? Not 

necessarily. Suppose that P(ω1) = ½, P(ω2) = ½, and  
x1 , x2 are binary pixels such that  

P(x1=B|ω1) = P(x2=B|ω1)=P(x1= B|ω2)=P(x2=B|ω2)=½ , 
P(B,B|ω1)=P(W,W|ω1)=½, and P(B,W|ω2)=P(W,B|ω2)=½. 
If the equiprobable features x1 and x2 were independent, 

then the Bayes error P* would be 0.50. But with the given 
(correlated) distribution, P* is 0. Correlation actually helps 
if it is different for each class. 

 

7. Partially Supervised Classification 
 
The value of unlabeled samples for obtaining better 

estimates of mixture densities was recently explored by 
Vittorio Castelli and Thomas Cover. Their conclusion is 
that labeled samples are exponentially more valuable than 
unlabeled samples, because only labeled samples can 
reveal which mixture component belongs to which class. 



Once that has been accomplished, however, unlabeled 
samples are just as useful for characterizing the densities 
and the mixture coefficients. 

Among the earliest demonstrations (in 1959) of the 
power of adaptive classification was Bernard Gold's 
experiment on recognizing hand-sent Morse signals. He 
kept a running total of the observed lengths of three 
classes of spaces and two classes of marks and showed a 
significant gain through adapting the classifier parameters 
to each operator.  

In 1966, Robert Lucky used adaptive adjustment of tap 
gain settings in transversal filters in telephone line 
equalization for digital transmission. He showed that the 
filters recover their optimal setting even with a pulse 
misclassification rate of 10%, and that adaptive equalization 
lowered the raw symbol error rate by a factor of 10. 

At the same time, George Nagy and Glen Shelton 
obtained a fivefold decrease in printed character 
classification with an omnifont classifier whose parameters 
were averaged over a set of unlabeled characters from the 
same font. Baird and Nagy replicated the experiment 25 
years later with 100 different fonts. 

Behzad Shahshani and David Landgrebe (1994) 
combined unlabeled samples with a small labeled sample to 
improve crop classification rates. They demonstrated that 
EM estimation based on unlabeled samples allows the use 
of more features before Hughes deterioration set in. 

The use of unlabeled samples is currently gaining 
popularity in speech recognition, where large vocabularies 
and regional, individual and line characteristics induce high 
error rates and representative labeled samples are difficult 
to obtain. 

 

8. Summary 
 
Both parametric and nonparametric classifiers require 

estimating the characteristics of the data from a training set. 
The single most important set of parameters are often the 
priors. Even if the training set is representative, finite 
sample size introduces bias and variance, especially when 
many parameters must be estimated. Multimodal and 
composite (Hidden Markov) distributions require mixture 
estimation techniques, for which Expectation Maximization 
provides a sound but not infallible basis. Unlabeled 
samples can improve the estimates. 

Correlation among features can help or hinder, 
depending on whether it differs from class to class. 
Although independence assumptions are seldom justified, 
they are preferable to biased or high-variance estimates of 
second-order parameters from small samples.  

There is no such thing as completely unsupervised 
adaptation or learning, without external cues. But the 
effective sample size can be increased by taking advantage 

of unlabeled samples. When the training set is not 
representative, one may use adaptive methods that exploit 
mostly-correct classification. Nevertheless, labeled samples 
are valuable: endeavor to obtain more. Don't waste rejects: 
they contain useful information about the decision 
boundaries. Above all, don't ever let the machine rest. After 
the day of work is done, make sure it assimilates everything 
that it has seen during the day, including operator 
corrections, to improve its performance for the morrow. 
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